I    Find the Laplace transforms of the following functions, using the information in Table 3.1.
(However, some of the individual terms in these functions may not have Laplace transforms.)
               (a) f(t)=5+e−3t +te−4t
               (b) f(t)=sin(4t)+t−3+e −(t−3) +5/t
               (c) f(t)=t cos(4t)+t/5
               (d) f(t)=(t−1) cos(4(t−1))+t2 
An        a. f ( t )=5+ e−3t +te−4 t
s            Using rules 2, 5, and 7 from the Table
                       5  1     1
               F ( s) = +    +
                       s s+ 3 ¿¿
                                             5
                                       − ( t −3 )
          b. f ( t )=sin ( 4 t )+ t−3+e           +
                                              t
               Transform using Table 3.1 from the book
                         4     e−3 s e−3 s       1
               F (s) ¿ 2
                      s +16 s
                             + 2 +
                                     s+1
                                           +5 L
                                                 t        ()
                                            1
               ¿ No Laplace Transform for
                                             t
                                    t
          c. f ( t )=tcos ( 4 t ) +
                                    5
               Transform using Table 3.1 from the book; for functions multiplied with “t”, solve for the
               Laplace of the other function then find its negative derivative with respect to the same
               variable.
                                        1
                                          ∗1
                        −d      s       5
               F ( s) =
                              (
                        ds s 2 +16
                              2
                                        )
                                       + 2
                                          s
                        −−s +16 1
               F ( s) = 2         2
                                      + 2
                         ( s +16 ) 5 s
          d. f ( t )=( t−1 ) cos ( 4 ( t−1 ) ) +t 2
             f ( t )=tcos ( 4 t−4 )−cos ( 4 t−4 ) +t 2
             For the first term of the equation, use the same principle with that on letter C, and for the
             rest, solve using Table 3.4 from the book.
                       −d cos ( 4 s ) +4 sin ( 4 ) cos ( 4 s )+ 4 sin ( 4 ) 2
             F ( s) =
                        ds    (     s 2+16
                                                    −
                                                      )   s2 +16
                                                                           + 3
                                                                            s
                          −−cos ( 4 s 2 )−8 sin ( 4 s ) +16 cos ( 4 )       cos ( 4 s )+ 4 sin ( 4 ) 2
               F ( s) =                               2
                                                                        −           2
                                                                                                    + 3
                                            2
                                          ( s +16 )                                s +16             s
II   The dynamic model for a process is given by
                                                d2y/ dt2 + 6 dy /dt +8y = 3u(t)
     where u(t) is the input function and y(0) and dy/dt (0) are both zero.
     What are the functions of the time(e.g.,e−t/τ) in the solution for each of the following cases?
               (a) u(t)=be−2t  
               (b) u(t)=ct
     b and c are constants. Note:You do not have to find y(t) in these cases. Just determine the
     functions of time that will appear in y(t). 
An
s
III   Find the complete time domain solutions for the following differential equations using Laplace
      transforms:
                a. d3x/dt3 + 4x = et with x(0) = 0 ,  dx(0)/dt = 0, d2x(0)/dt2 = 0
                b. dx/dt - 12x = sin 3t with x(0) = 0
               c. d2x/dt2 + 6dx/dt + 25x = e-t   with x(0) = 0 , dx(0)/dt = 0
An    a.
s
               Taking the Laplace Transform of the equation:
      b.
               Taking the Laplace Transform of the equation:
C.
        d 2 x 6 dx
L   (   dt  2
              +
                dt
                   +25 x=e−t             )
                            25      1
s2 X ( s )+ 6 sX ( s ) +        =
                            s 2
                                  s +1
                         1  25
X ( s ) ( s 2 +6 s )=      − 2
                        s+1 s
               s2−25 s−25
X ( s )=
           ( s2 ) ( s+1 ) ( s 2+ 6 s )
             s2−25 s−25           A B C D    E
X ( s )=                         = 3+ 2+ + +
           ( s ) ( s+1 ) ( s +6 ) s s s s+1 s+6
              3
A s 2 +7 As+ 6 A
B s 3+7 B s2 +6 Bs
C s 4 +7 C s 3 +6 C s2
D s 4 +6 D s 3
E s 4 + E s3
@ s0
6 A=−25
       −25
A=
        6
@ s1
   −25
7( )  6
           +6 B=−25
              175
6 B=−25+
                6
      25 1 25
B=      ()
       6 6 36
             =
@ s2
−25         25
  6
       +7 ( )
            36
                +6 C=1
           25
6 C=1−
           36
        36−25 11
6 C=            =
          36      36
       11
C=
      216
    3
@s
25        11
36
    +7  ( )
          216
               +6 D+ E=0
@ s4
 11
      + D+ E=0
216
25        11             11
36
    +7  ( )
          216
               +6 D+ E=
                        216
                            + D+ E
        −150−66
5 D=
            216
      −1
D=
        5
      11 1
         − + E=0
     216 5
         1 11
     E= −
         5 216
         216−55 161
     E=            =
           1080      1080
                 −25    25     11   1     161
     L−1 X ( s )= 3 +        +    −   +
                 6 s 36 s 216 s 5(s+1) 1080( s+6)
                           2
                −25 t 2 25t 11 e−t 161e−6 t
     f ( t )=          +   +   − +
                 12      36 216 5   1080
IV   Expand each of the following s-domain functions into partial fractions:
               a. Y(s) = 6(s+1)/s2(s+1)
               b. Y(s) = 12(s+2)/s(s2 + 9)
              c. Y(s) = (s+2)(s+3)/(s+4)(s+5)(s+6)
              d. Y(s) = 1/(s+1)2(s+2)
An                       6 (s+1) 6 α 1 α 2
s         a. Y(s) =                = = +
                         s 2 (s +1) s 2 s s2
                         6
                α 2=s2
                         s2   |
                              s=0
                                      =6              α 1=0
                6
     Y ( s )=
                s2
                         12(s +2)              α 1 α 2 s +α 3
          b. Y(s) =               2
                                           =      + 2
                          s (s + 9)            s     s +9
                 Multiply both sides by s( s2 +9)
                 12 ( s+ 2 )=α 1 ( s2 + 9 ) +(α 2 s+ α 3 )( s)
                 12 s+ 24=( α 1+ α ) s 2 +α 3 s+9 α 1
                 Equating coefficients of like powers of s,
                 s2 :α 1 +α 2=0
           s1 :α 3 =12
           s0 :9 α 1 =24
           Solving simultaneousy,
                8       −8
           α 1 = , α 2=    , α 3=12
                2        3
                         −8
                              s +12)
                               (
                    81    3
           Y ( s )=    +
                    3s     s 2+ 9
                       (s+2)(s+3)     α    α    α
    c. Y(s) =                       = 1 + 2 + 3
                    (s+ 4)(s+5)(s+6) s+ 4 s +5 s+5
                  ( s+2)(s +3)
           α 1=
                  (s +5)(s +6) s=−4
                                    =1  |
       ( s+2 ) ( s +3 )
α 2=
       ( s+ 4 )( s+6 )     |
                           s=−5
                                   =−6
       ( s +2 ) ( s +3 )
α 3=
       ( s+ 4 )( s+5 )     |
                           s=−6
                                   =6
             1   6    6
Y ( s )=       −    +
           s +4 s+ 5 s+6
    d.
End of Assignment No 4