Fox 7th - Answers Selected Problems
Fox 7th - Answers Selected Problems
1.5 M = 5913 kg
1.7 L = 27.25 in. D = 13.75 in.
W2
1.9 y = 2.05 2
gt
1.11 d = 0.109 mm
1.15 y = 0.922 mm
1.17 a) N·m/s, lbf·ft/s b) N/m2, lbf/ft2 c) N/m2, lbf/ft2, d) 1/s, 1/s e) N·m, lbf·ft
f) N·s, lbf·s g) N/m2, lbf/ft2 h) m2/s2·K, ft2/s2·R i) 1/K, 1/R j) N·m·s, lbf·ft·s
1.19 a) 6.89 kPa b) 0.264 gal 47.9 N·s/m2
1.21 a) 0.0472 m3/s b) 0.0189 m3 c) 29.1 m/s d) 2.19 x 104 m2
1.23 101 gpm
1.25 SG = 13.6 v = 7.37 x 10−5 m3/kg γE = 847 lbf/ft3, γM = 144 lbf/ft3
1.27 2.25 kgf/cm2
At ⋅ p0
1.29 c = 0.04 K1/2·s/m m& max = 2.36 (ft2, psi, R)
T0
1.31 CD is dimensionless
1.33 c: N·s/m, lbf·s/ft k: N/m, lbf/ft f: N, lbf
3 2
1.35 H(m) = 0.457 − 3450·(Q(m /s))
1.37 ρ = 0.0765 ± 2.66 x 10−4 lbm/ft3 (± 0.348%)
1.39 ρ = 1130 ± 21.4 kg/m3 SG = 1.13 ± 0.0214
1.41 ρ = 930 ± 27.2 kg/m 3
1
2.7 Streamlines: y=
⎛ b ⎞
2⎜⎜ + c ⎟⎟
⎝ax ⎠
2.9 Streamlines: y = 3x Δt = 0.75 s
2.11 Streamlines: x2 + y2 = c
2.13 Pathlines: y = 2/x Streamlines: y = 2/x
K
2.15 ω=
2πa
( )
1
B t + 12 At 2
2.17 Pathlines: y = y0e , x = x0e
Ct
Streamlines: y=x 1+ 0.5t
b
−
−b t
1
at 2
2.19 Pathlines: y = y0e , x = x0 e 2
Streamlines: y = Cx at
40 ⎛ x ⎞
Pathlines: y = 4t + 1 , x = 3e0.05t y = 1+
2
2.21 Streamlines: ln⎜ ⎟
t ⎝ 3⎠
2.23 Streamlines: y (t0 ) = v0 sin(ωt )(t − t0 ) , x (t0 ) = u0 (t − t0 )
1
(t −τ ) (t −τ )+ 0.1(t 2 −τ 2 ) (1+ 0.2 t )
2.25 Streaklines: y = e , x=e Streamlines: y=x
2
x
2.29 Streamlines: y = +4 (4 m, 8 m) (5 m, 10.25 m)
4
2.31 (2.8 m, 5 m) (3 m, 3 m)
b′T 2
3
3.31 h = 1.11 in
3.33 θ = 11.1o S = 5/SG
3.35 patm = 14.4 psi Shorter column at higher temperature
3.37 Δh = 38.1 mm Δh = 67.8 mm
3.39 Δh = 0.389 cm
3.43 Δz = 587 ft Δz = 3062 ft
3.45 p = 57.5 kPa p = 60.2 kPa
3.49 pA = 1.96 kPa pB = 8.64 kPa pC = 21.9 kPa pair = − 11.3 kPa pair = 1.99 kPa
3.51 FA = 79,600 lbf
3.53 W = 68 kN
3.55 FR = 0.407 lbf
3.57 FR = 8.63 MN R = (8.34 MN, 14.4 MN)
3.59 F = 600 lbf
3.63 D = 8.66 ft
3.65 d = 2.66 m
3.67 SG = 0.542
3.69 F = − 137 kN
3.71 FV = 7.62 kN x´FV = 3.76 kN·m FA = − 5.71 kN
3.73 FV = − ρgwR π/4 2
x´ = 4R/3π
6
3.75 FV = 1.05 x 10 N x´ = 1.61 m
3.77 FV = 1.83 x 107 N α = 19.9o
3.79 FV = 416 kN FH = 370 kN α = 48.3o F = 557 kN
3.81 FV = 2.47 kN x´ = 0.645 m FH = 7.35 kN y´ = 0.217 m
4 ρL ( H − d ) 2
3
3.83 M= M = 583 kg
3 a
⎡ ⎛θ sin(2θ max ) ⎞⎤
3.85 M = 2 ρLR ⎢(d − R ) sin(θ max ) + R⎜ max + ⎟⎥ M = 631 kg
⎣ ⎝ 2 4 ⎠⎦
3.87 γ = 8829 N/m3 h = 0.292 m
3.89 VNot submerged/ VSubmerged = 10.5%
3.91 SG = Wa/(Wa − Ww)
3.93 FB = 1.89 x 10−11 lbf V = 1.15 x 10−3 ft/s (0.825 in/min)
3.95 L/VHe = 0.0659 lbf/ft3 L/VH2 = 0.0712 lbf/ft3 L/Vair = 0.0172 lbf/ft3/0.0249 lbf/ft3
3.97 D = 116 m M = 703 kg
3.99 θ = 9.1o (with A = 25 cm2 not A = 20 cm2)
3.101 x = 0.257 m f = 6.1 N
3.103 D = 2.57 ft
3.105 f = 0.288 cycle/s (ω = 1.81 rad/s)
3.107 F = 34.2 lbf
3.113 a = g(h/L)
3.115 ω = 185 rad/s (1764 rpm)
3.117 Δp = ρω2R2/2 ω = 7.16 rad/s
3.119 dy/dx = − 0.25 p = 105 − 1.96x (p: kPa, x: m)
3.121 α = 30o dy/dx = 0.346
3.123 T = 47.6 lbf p = 55.3 lbf/ft2 (gage)
Introduction to Fluid Mechanics 7th Edition
Fox, Pritchard, & McDonald
4.1 x = 0.934 m
4.3 x = 747 m t = 23.9 mm
4.5 V0 = 87.5 km/hr
4.7 τ = 1.50 hr
3.47h 2 + 2400
4.9 yc = (yc, h: mm) h = 21.2 mm μs ≥ 0.604
6.94h + 40
4.11 Q = − 90 ft3/s
r r r
( )
ρ ∫ V V ⋅ dA = −450ρiˆ + 360ρˆj (slug·ft/s/s; ρ: slug/ft3)
4.13
r r
∫ V ⋅ dA = −24 m s
3
r r r
( ) (
∫ V V ⋅ dA = 64iˆ − 96 ˆj − 60kˆ m s
4
)
2
m& ρ 2 g sin (θ )h 3
4.29 =
w 3μ
4.31 U = 1.5 m/s
4.33 Q = 1.05 x 10−5 m3/s (10.45 mL/s) Vave = 0.139 m/s umax = 0.213 m/s
4.35 vmin = 5.0 m/s
4.37 ∂Voil/∂t = − 2.43 x 10−2 ft3/s (0.18 gal/s)
4.39 dh/dt = − 8.61 mm/s
4.41 dh/dt = − 0.289 mm/s
4.43 Q = 1.5 x 104 gal/s A = 4.92 x 107 ft2
4.45 t = 22.2 s
4.47 dy/dt = − 9.01 mm/s
4.49 Qcd = 4.50 x 10−3 m3/s Qad = 6.0 x 10−4 m3/s Qbc = 1.65 x 10−3 m3/s
2 π tan 2 (θ ) y05 2 6 V0
4.51 t= t=
5 2g A 5 Q0
4.53 mf = (− 2406, 2113) lbf
4.55 mf2/mf1 = 1.33
4.57 mf = (− 320, 332) N
4.61 T = 3.12 N
4.63 F = 35.7 lbf
4.65 m& 1 = 31.2 lbm s m& 2 = 32.0 lbm s (because of weight plus momentum loss)
4.67 V = 51 m/s V = 18.0 m/s V = 67.1 m/s
4.69 F = 1.81 kN (tension)
2 πD
2 ⎡ ⎛ d ⎞2 ⎤
4.71 R x = − ρV (1 + sin θ )⎢1 − ⎜ ⎟ ⎥ Rx = − 314 N
4 ⎣⎢ ⎝ D ⎠ ⎦⎥
4.73 F = 11.6 kN
4.75 F = (− 714, 498) N
4.77 F = 1.70 lbf
4.79 F = 22.7 kN
4.81 d/D = 0.707 No-dimensional pressure = 0.5
4.83 t = 1.19 mm F = 3.63 kN
4.85 Rx = − 4.68 kN Ry = 1.66 kN
4.87 Rx = − 1040 N Ry = − 667 kN
4.89 F = 2456 N
4.91 Q = 0.141 m3/s Rx = − 1.65 kN Ry = − 1.34 kN
4.93 F = 37.9 N
⎛ 5π 2 ⎞
4.95 f = ρU 2 ⎜ − ⎟
⎝ 8 π⎠
4.97 umax = 60 ft/s Δp = 0.699 lbf/ft2
4.99 D = 0.446 N
4.101 D/w = 0.163 N/m
4.103 h2/h = (1 + sinθ)/2
4.105 h = H/2
4.107 Q = 257 L/min
4.109 V = V02 − 2 gh h = 4.28 m
4.111 V = 175 ft/s F = 2.97 lbf
4.113 p1 = 68.4 kPa (gage0 F = 209 N
A0
4.115 V = V02 − 2 gz A=
2 gz
1− 2
V0
2 2
⎛ Q ⎞ ⎛x⎞
4.117 p = p0 − ρ ⎜ ⎟ ⎜ ⎟
⎝ wh ⎠ ⎝ L ⎠
V0 r
4.119 V =
2(h0 − V0t )
4.123 Rx = − 2400 N Ry = 1386 N
ρQ ⎛ ρQ ⎞ ρQ
2
4.125 V =− + ⎜ ⎟ + Vj Vj = 80 m/s
2k ⎝ 2k ⎠ k
4.127 F = 3840 lbf
4.129 F = 4.24 kN t = 4.17 s
4.131 α = 30 o
F = 10.3 kN
4.133 a = 13.5 m/s2
4.135 t = 0.680 s
U ⎛ M0 ⎞
4.137 = ln⎜⎜ ⎟⎟ V = 0.61 m/s
V ⎝ M 0 − ρVAt ⎠
4.139 amax at t = 0 θ = 90o U→V
2aM
4.141 A = A = 111 mm2
3ρ (V − at )
2
4.143 h = 17.9 mm
2 ρ (V − U ) A − kU 2
2
4.145 a = a = 5.99 m/s2 U/Ut = 0.667
M
4.147 a = 14.2 m/s2 t = 15.2 m/s
ρ (V + U )2 A M
4.149 a = − t=
M ⎛ V ⎞
ρVA⎜⎜1 + ⎟⎟
⎝ U0 ⎠
4.151 V = 5 m/s xmax = 1.93 m t = 2.51 s
4.153 a = 2.28 m/s2
⎛ m& t ⎞
4.155 U = U 0 + Ve ln⎜⎜1 − ⎟ U = 227 m/s
⎝ M 0 ⎟⎠
4.157 Vmax = 834 m/s amax = 96.7 m/s2
4.159 mf = 82.7 kg
4.161 a = 83.3 m/s2 U = 719 m/s
4.163 V = 3860 ft/s Y = 33,500 ft
4.165 V = 641 m/s
4.167 θ = 19o
U0
4.169 U =
2 ρU 0 A
1+ t
M0
4.171 Vmax = 138 m/s ymax = 1085 m
4.175 h = 10.7 m
4.181 M = − 192 N·m
4.183 T = 0.193 N·m ω& = 2610 rad/s 2
4.185 ω& =
3
2 ρAR 3
(T − ρQRV − 2ωρVAR 2 ) ωmax = − 20.2 rad/s (− 193 rpm)
Δmef
4.207 = −1.88 J/kg Δt = 4.49 x 10−4 K (oC)
m&
Introduction to Fluid Mechanics 7th Edition
Fox, Pritchard, & McDonald
5.61 ar = −
⎢1 ⎜ ⎟ ⎥⎜ ⎟ aθ = 0 r = 1.29R (max a)
R ⎣⎢ ⎝ r ⎠ ⎦⎥⎝ r ⎠
4U 2 2 4U 2
ar = − sin θ aθ = sin θ cos θ θ = ±π/2 (max a)
R2 R2
Di L ⎢1 + o x⎥
⎣ Di L ⎦
6.19 Fz = − 1.56 N (Acts downwards)
2V 2 x ∂p 2 ρV 2 x
6.21 ax = 2 =−
b ∂x b2
ρV 2 L2 ⎡ ⎛ x ⎞ ⎤ 4 ρV 2 L3W
2
p = patm + ⎢1 − ⎜ ⎟ ⎥ Fy =
b 2 ⎢⎣ ⎝ L ⎠ ⎥⎦ 3b 2
q2 x ∂p ρq 2 x
6.23 ax = 2 =− 2
h ∂x h
2Λ2 ρ
6.25 ∇p = 5 eˆr + 0eˆθ
r
6.27 Δp = − 30.6 Pa
r
6.31 B = − 0.6 m−2·s−1 a = 6iˆ + 3 ˆj m/s2 an = 6.45 m/s2
r
6.33 a = 4iˆ + 2 ˆj ft/s 2 R = 5.84 ft
r
6.35 a = 0.5iˆ + ˆj m/s2 R = 5.84 ft
6.37 Δh = 1.37 in
6.39 F = 0.379 lbf F = 1.52 lbf
6.41 h = 628 mm
6.47 p2 = 291 kPa (gage)
6.49 p = 9.53 psig
6.51 h = 17.0 ft
1
A = A1
2 g (z1 − z )
6.53
1+
V12
6.55 V = 262 m/s
6.57 Q = 304 gpm (0.676 ft3/s)
p = p∞ + ρU 2 (1 − 4 sin 2 θ )
1
6.59 θ = 30o, 150o, 210o, 330o
2
6.61 F = − 278 N/m
6.63 Q = 2.55 x 10−3 m3/s
6.65 p1 = 7.11 psig Kx = 12.9 lbf
6.67 p2 = 13.2 kPa (gage) (98.9 mm Hg) p3 = 706 Pa (gage) (5.29 mm Hg)
Rx = 0.375 N Ry = 0.533 N
6.69 p1 = 1.35 psig p0 = 1.79 psig
6.73 Δh = 6.60 in F = 0.105 lbf F = 18.5 lbf
6.75 F = 83.3 kN
6.77 p1 = 11.4 psig F = 14.1 lbf
dM dV
6.79 m& = A 2 pρ = − ρ w air
dt dt
⎧⎪ V ⎡ 2 p0 At ⎤ ⎫⎪
0.588
M w = ρ wV0 ⎨ − ⎢1 + 1.70
t
⎥ ⎬
⎪⎩V0 ⎣ ρ w V0 ⎦ ⎪
⎭
6.83 Cc = ½
6.87 ax = 10.5 ft/s2
6.89 dQ/dt = 0.516 m3/s/s
6.91 Dj/D1 = 0.32
6.93 Bernoulli can be applied
6.95 Incompressible Unsteady Irrotational φ=⎢ (
⎡A 2
y − x 2 ) + Bxy ⎥t
⎤
⎣2 ⎦
6.97 ψ=
q
2π
⎡ −1 ⎛ y − h ⎞ −1 ⎛ y + h ⎞ ⎤
⎢ tan ⎜ x ⎟ + tan ⎜ x ⎟⎥ φ=−
q
2π
{[ 2
][
ln x 2 + ( y − h ) x 2 + ( y + h )
2
]}
⎣ ⎝ ⎠ ⎝ ⎠⎦
A
6.99 NOTE: Error – function is ψ = Ax2y − By3 φ = 3Bxy 2 − x 3
3
6.101 ψ = (x 2 − y 2 ) − 2 Axy
B
2
r
6.105 V = −( A + 2 Bx )iˆ + 2 Byˆj ψ = − (Ay + 2Bxy) Δp = 12 kPa
B 3
6.107 V = x2 + y2 ψ = 3 Ax 2 y − x
3
6.109 Incompressible Irrotational Stagnation point: (− 2, 4/3)
φ = ( y − x 2 ) − Bx − Cy
A 2
Δp = 55.8 kPa
2
q ⎛ r2 ⎞
6.113 ψ =
q
(θ1 − θ 2 ) + Ur sin θ φ= ln⎜ ⎟ − Ur cos θ
2π 2π ⎜⎝ r1 ⎟⎠
r ⎡ q ⎛ cos θ1 cos θ 2 ⎞ ⎤ q ⎛ sin θ1 sin θ 2 ⎞ ˆ
V = ⎢ ⎜⎜ − ⎟⎟ + U ⎥iˆ + ⎜⎜ − ⎟j
⎣ 2π ⎝ r1 r2 ⎠ ⎦ 2π ⎝ r1 r2 ⎟⎠
Stagnations points: θ = 0, π r = 0.367 m ψstag = 0
K K
6.115 ψ = Ur sin θ − ln r φ = −Ur cos θ − θ
2π 2π
r ⎛ K ⎞
V = U cos θeˆr + ⎜ − U sin θ ⎟eˆθ
⎝ 2πr ⎠
K
Stagnations point: θ = π/2 r=
2πU
6.117 Stagnations points: θ = 63o, 297o r = 1.82 m Δp = 317 Pa
Introduction to Fluid Mechanics 7th Edition
Fox, Pritchard, & McDonald
V02
7.1
gL
E
7.3
ρL2ω 2
ν ⎛ 1 ⎞
7.5 ⎜= ⎟
V0 L ⎝ Re ⎠
Δp ν L
7.7 , ,
ρV 2 DV D
7.9 F ∝ μVD
Δp ⎛ μ d⎞
7.11 = f ⎜⎜ , ⎟⎟
ρV 2
⎝ ρVD D ⎠
τw ⎛ μ ⎞
7.13 = f ⎜⎜ ⎟⎟
ρU 2
⎝ ρUL ⎠
W σ
7.15 ,
gρp gρp 3
3
⎛λ⎞
7.17 V = gD f ⎜ ⎟
⎝D⎠
⎛b⎞
7.19 Q = h 2 gh f ⎜ ⎟
⎝h⎠
W ⎛L c⎞
7.21 = f⎜ , ⎟
D ωμ
2
⎝D D⎠
P Δp d d d
7.23 , , , i, o
ρ D ω ρD ω D D D
5 3 2 2
μ
7.25 Four parameters Π1 =
ρd g 1 2
32
Q ⎛ ρVh V 2 ⎞
7.27 = f ⎜⎜ , ⎟⎟
Vh 2 ⎝ μ gh ⎠
d μ σ
7.29 , ,
D ρVD ρDV 2
W μ h D
7.31 , , ,
ρV d ρVd d d
2 2
d μ2 σ
7.33 , ,
D ρΔpD DΔp
2
δ L μωD 3 Iω 2
7.35 , , ,
D D T T
Δp μ ρ g
7.37 , , cD 3 , N , p ,
ρD ω ρD ω
2 2 2
ρ Dω 2
P ⎛ ρω c l ⎞
7.39 = f ⎜⎜ , , ⎟⎟
pωD 3
⎝ p D D⎠
⎛c Θ μ ⎞
7.41 Four primary dimensions Q& = ρV 3 L2 f ⎜⎜ p 2 , ⎟⎟
⎝ V ρVL ⎠
dT Lc p ⎛ c k μ ⎞⎟
7.43 = f⎜ , 2 ,
dt V 3 ⎜ c ρL c ρLV ⎟
⎝ p p ⎠
7.45 Π1 =
u
Π2 =
y
Π3 =
(dU dy )δ Π4 =
ν
U δ U δU
7.47 Vw = 6.90 m/s Fair = 522 N
7.49 Vair > Vwater Vair = 15.1· Vwater
7.51 ωm = 395 rpm ωm = 12500 rpm Froude number modeling is most likely
7.53 Vm = 40.3 m/s Vp = 40.3 m/s
7.55 Vm = 5.07 m/s Fm/Fp = 3.77
7.57 Qm = 0.125 m3/s Pp = 127 kW
7.59 pm = 2.96 psia
fd ⎛ ρVd ⎞ V1 1 f1 1
7.61 = F ⎜⎜ ⎟⎟ = =
V ⎝ μ ⎠ V2 2 f2 4
7.63 Vm = 0.618 m/s – 1.03 m/s
FD ⎛ μ ⎞
7.65 = f ⎜⎜ ⎟
12 ⎟
FD p = 2.46 kN P =55.1 kW (73.9 hp)
ρV A2 12
⎝ ρVA ⎠
7.67 τp = 1070 hr (~ 45 days)
7.69 Vm = 1.88 m/s Vp = 7.36 m/s Fp/Fm = 1.13 (submerged), = 2.77 x 104 (surface)
7.71 CD = 1.028 FDp = 3.89 kN Vm = 250 m/s (model is impractical, compressible flow)
1
7.73 Model = x Prototype Adequate Reynolds number not achievable
50
7.77 DTotal = 1305 N DTotal = 2316 N (Wave drag negligible)
7.79 hm = 13.8 J/kg Qm = 0.166 m3/s Dm = 0.120 m
Ft ⎛ V g ⎞ T ⎛ V g ⎞ P ⎛ V g ⎞
7.81 = f1 ⎜ , 2 ⎟ = f2 ⎜ , 2 ⎟ = f3 ⎜ , 2 ⎟
ρω D2 4
⎝ ωD ω D ⎠ ρω D
2 5
⎝ ωD ω D ⎠ ρω D
3 5
⎝ ωD ω D ⎠
7.83 K.E. ratio = 7.22
7.85 FB ≈ 0.273 N (to right) CD m = 0.443 FD p = 1.64 kN
Introduction to Fluid Mechanics 7th Edition
Fox, Pritchard, & McDonald
8.51 r = R⎢ ⎥
⎣ 2 ln (1 k ) ⎦
8.53 % change = – 100/(1 + lnk)
8.55 τw = – 131 Pa
8.57 τw = – 0.195 lbf/ft2 τw = – 1.35 x 10– 3 psi
8.59 Q = 4.52 x 10– 7 m3/s Δp = 235 kPa τw = 294 Pa
8.61 n = 6.21 n = 8.55
8.63 βlam = 4/3 βturb = 1.02
8.65 α=2
8.67 HlT = 1.33 m hlT = 13.0 J/kg
8.69 V1 = 3.70 m/s
8.71 Q = 411 gpm
8.73 V1 = 2 m s
8.75 hlT = 913 ft2/s2 (HlT = 28.4 ft)
du
8.77 = 963 s −1 τw = 3.58 x 10– 4 lbf/ft2 τw = 4.13 x 10– 4 lbf/ft2
dy
8.79 f = 0.0390 Re = 3183 Turbulent
8.81 Maximum = 2.12% at Re = 10000 and e/D = 0.01
8.85 p2 = 177 kPa p2 = 175 kPa
8.87 Q = 0.0406 ft3/s (2.44 ft3/min, 18.2 gpm)
8.91 K = 9.38 x 10– 4
8.93 Q = 12.7 gpm Q = 11.6 gpm (ΔQ = – 1.1 gpm) Q = 13.7 gpm (ΔQ = 1.0 gpm)
8.95 Δp = 23.7 psi K = 0.293
2
hl m = (1 − AR ) 1
2V
8.97
2
2Δp
V1 = Inviscid assumption: Lower indicated flow/larger Δp
ρ (1 − AR 2 − K )
8.99
FD = C D A ρ (V − U ) T = CD A ρ (V − U ) R P = CD A ρ (V − U ) U
1 1 1 V
9.119
2 2 2
ωopt =
2 2 2 3R
9.121 M = 11.0 N·m
9.123 P = 3.00 kW
9.125 V = 23.3 m/s Re = 48,200 FD = 0.111 N
9.127 x = 13.9 m
9.129 CD = 61.9 ρ s = 3720 kg/m3 V = 0.731 m/s
9.131 M = 0.0471 kg
9.133 CL = 1.01 CD = 0.0654
7 1 7 1 FD 7 M 7
9.135 FD = CD ρU 2 DH M = C D ρU 2 DH 2 = =
9 2 16 2 FDuniform 9 M uniform 8
9.137 D = 7.99 mm y = 121 mm
9.139 t = 4.69 s x = 70.9 m
9.141 xmax = 48.7 m (both methods)
9.143 CD = 0.606 V = 37.4 mph
2 FR
9.145 Vb = Vw − Vb = 4.56 m/s (16.4 km/hr)
ρ (C Du Au + C Db Ab )
9.147 x ≈ 203 m
9.151 ΔP = 16.3 kW (94%)
9.157 Vmin = 5.62 m/s (10.9 kt) Pmin = 31.0 kW Vmax = 19.9 m/s (38.7 kt)
9.159 Vmin = 144 m/s R = 431 m
9.161 M = 37.9 kg P = 1.53 kW (or 3.02 kW if treated as two wings)
9.163 T = 17,300 lbf
9.165 FD = 524 lbf P = 209 hp
9.167 θ = 3.42 o
L = 168 km
9.169 For a race car, effective; for a passenger car, not effective
9.175 FL = 0.00291 lbf
9.177 FL = 50.9 kN FD = 18.7 kN F = 54.2 kN P = 5.94 kW
9.179 ω = 14,000 – 17,000 rpm x = 3.90 ft
Introduction to Fluid Mechanics 7th Edition
Fox, Pritchard, & McDonald
12.21 x = 19.2 km
12.23 c = 299 m/s V = 987 m/s V/Vbullet = 1.41
12.29 c = 340 m/s (sea level)
12.31 V = 1471 mph α = 31.8o
12.33 V = 642 m/s (2110 ft/s)
12.35 V = 493 m/s Δt = 0.398 s
12.37 V = 515 m/s t = 6.92 s
12.39 Δx ≈ 1043 – 1064 m
12.41 Density change < 1.21%, so incompressible
12.43 M = 0.142 (1%) M = 0.322 (5%) M = 0.464 (10%)
12.45 Δρ/ρ = 48.5% (Not incompressible)
12.47 pdyn = 54.3 kPa p0 = 152 kPa
12.49 p0 = 546 kPa h0 – h = 178 kJ/kg T0 = 466 K
12.51 p0 – p = 8.67 kPa V = 195 m/s V = 205 m/s Error using Bernoulli = 5.13%
12.55 T0 = const (isoenergetic) p0 decreases (irreversible adiabatic)
12.57 V = 890 m/s T0 = 677 K p0 = 212 kPa
12.59 T0 = const = 294 K (20.6o) (isoenergetic) p01 = 1.01 MPa, p0 2 = 189 kPa (irreversible adiabatic)
Δs = 480 J/kg·K Flow accelerates even with friction due to large pressure drop
12.61 T01 = T0 2 = 344 K p01 = 223 kPa p0 2 = 145 kPa Δs = 0.124 kJ/kg·K
12.63 T01 = T0 2 = 445 K p01 = 57.5 kPa p0 2 = 46.7 kPa Δs = 59.6 J/kg·K
12.65 Δp = 48.2 kPa (inside higher)
12.67 T* = 260 K p* = 24.7 MPa V* = 252 m/s
12.69 Tt = 2730 K pt = 25.5 MPa Vt = 1030 m/s