0% found this document useful (0 votes)
3K views23 pages

Fox 7th - Answers Selected Problems

This document provides answers to selected problems from the first four chapters of Introduction to Fluid Mechanics 7th Edition by Fox, Pritchard, & McDonald. The problems cover topics such as fluid properties, hydrostatics, dimensional analysis, flow measurements, and basic flow concepts. Equations, values, and brief explanations are provided as answers to each problem number.

Uploaded by

b0bfath3r
Copyright
© Attribution Non-Commercial (BY-NC)
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
3K views23 pages

Fox 7th - Answers Selected Problems

This document provides answers to selected problems from the first four chapters of Introduction to Fluid Mechanics 7th Edition by Fox, Pritchard, & McDonald. The problems cover topics such as fluid properties, hydrostatics, dimensional analysis, flow measurements, and basic flow concepts. Equations, values, and brief explanations are provided as answers to each problem number.

Uploaded by

b0bfath3r
Copyright
© Attribution Non-Commercial (BY-NC)
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 23

Introduction to Fluid Mechanics 7th Edition

Fox, Pritchard, & McDonald

Answers to Selected Problems, Chapter 1

1.5 M = 5913 kg
1.7 L = 27.25 in. D = 13.75 in.
W2
1.9 y = 2.05 2
gt
1.11 d = 0.109 mm
1.15 y = 0.922 mm
1.17 a) N·m/s, lbf·ft/s b) N/m2, lbf/ft2 c) N/m2, lbf/ft2, d) 1/s, 1/s e) N·m, lbf·ft
f) N·s, lbf·s g) N/m2, lbf/ft2 h) m2/s2·K, ft2/s2·R i) 1/K, 1/R j) N·m·s, lbf·ft·s
1.19 a) 6.89 kPa b) 0.264 gal 47.9 N·s/m2
1.21 a) 0.0472 m3/s b) 0.0189 m3 c) 29.1 m/s d) 2.19 x 104 m2
1.23 101 gpm
1.25 SG = 13.6 v = 7.37 x 10−5 m3/kg γE = 847 lbf/ft3, γM = 144 lbf/ft3
1.27 2.25 kgf/cm2
At ⋅ p0
1.29 c = 0.04 K1/2·s/m m& max = 2.36 (ft2, psi, R)
T0
1.31 CD is dimensionless
1.33 c: N·s/m, lbf·s/ft k: N/m, lbf/ft f: N, lbf
3 2
1.35 H(m) = 0.457 − 3450·(Q(m /s))
1.37 ρ = 0.0765 ± 2.66 x 10−4 lbm/ft3 (± 0.348%)
1.39 ρ = 1130 ± 21.4 kg/m3 SG = 1.13 ± 0.0214
1.41 ρ = 930 ± 27.2 kg/m 3

1.43 t = 1, 5, 5 s Flow rate uncertainty = ± 5.0, 1.0, 1.0%


1.45 μ = 1.01 x 10 N·s/m
−3 2
± 0.609%
1.47 δx = ± 0.158 mm
1.49 H = 57.7 ± 0.548 ft θmin = 31.4o
Introduction to Fluid Mechanics 7th Edition
Fox, Pritchard, & McDonald

Answers to Selected Problems, Chapter 2

2.1 1) 1D, Unsteady 2) 1D, Steady 3) 2D, Unsteady 4) 2D, Unsteady


5) 1D, Unsteady 6) 3D, Steady 7) 2D, Unsteady 8) 3D, Steady
c
2.3 Streamlines: y=
x
b
− t
2.5 Streamlines: y=cx a

1
2.7 Streamlines: y=
⎛ b ⎞
2⎜⎜ + c ⎟⎟
⎝ax ⎠
2.9 Streamlines: y = 3x Δt = 0.75 s
2.11 Streamlines: x2 + y2 = c
2.13 Pathlines: y = 2/x Streamlines: y = 2/x
K
2.15 ω=
2πa
( )
1
B t + 12 At 2
2.17 Pathlines: y = y0e , x = x0e
Ct
Streamlines: y=x 1+ 0.5t

b

−b t
1
at 2
2.19 Pathlines: y = y0e , x = x0 e 2
Streamlines: y = Cx at

40 ⎛ x ⎞
Pathlines: y = 4t + 1 , x = 3e0.05t y = 1+
2
2.21 Streamlines: ln⎜ ⎟
t ⎝ 3⎠
2.23 Streamlines: y (t0 ) = v0 sin(ωt )(t − t0 ) , x (t0 ) = u0 (t − t0 )
1
(t −τ ) (t −τ )+ 0.1(t 2 −τ 2 ) (1+ 0.2 t )
2.25 Streaklines: y = e , x=e Streamlines: y=x
2
x
2.29 Streamlines: y = +4 (4 m, 8 m) (5 m, 10.25 m)
4
2.31 (2.8 m, 5 m) (3 m, 3 m)
b′T 2
3

2.33 ν= b´ = 4.13 x 10−9 m2/s·K3/2 S´ = 110.4 K


1 + S′
T
2.35 τyx = − 4.56 N/m2
2.39 a = − 0.491 ft/s2
2.41 L = 2.5 ft
2.43 t = 1.93 s
μA
Mgd sin θ ⎛ − t⎞
2.45 V= ⎜1 − e Md ⎟ V = 0.404 m/s μ = 1.08 N·s/m2
μA ⎜⎝ ⎟

2.47 F = 2.83 N
2.49 F = 0.0254 N
2.51 μ = 8.07 x 10−4 N·s/m2
Mgr 2 a
2.53 μ= μ = 0.0651 N·s/m2
2πVm R 3 H
2.55 t = 4.00 s
A⎛ − t⎞
B
2.57 ⎜
ω = ⎜1 − e ⎟ C ⎟
ωmax = 25.1 rpm t = 0.671 s
B⎝ ⎠
μωr πμωR 4
2.59 τ zθ = T=
h 2h
2.61 Dilatant k = 0.0499 n = 1.21 μ = 0.191 N·s/m2, 0.195 N·s/m2
2.63 Bingham plastic μp = 0.652 N·s/m2
2πμωR 3 H πμωR 4
2.65 T= T=
a 2b
μωR sin θ
2.69 τ= τmax = 79.2 N/m2
a + R (1 − cos θ )
2.75 a=0 b = 2U c = −U
2.77 V = 229 mph
2.79 M = 2.5 xtrans = 0.327 m
2.81 SG = 0.9 γ = 8830 N/m3 Laminar flow
2.83 V = 667 km/hr
Introduction to Fluid Mechanics 7th Edition
Fox, Pritchard, & McDonald

Answers to Selected Problems, Chapter 3

3.1 M = 62.4 kg t = 22.3 mm


3.3 z = 9303 ft Δz = 5337 ft
3.5 F = 45.6 N
3.9 Δp = 972 Pa ρ = 991 kg/m3
3.11 D = 0.477 in
3.13 Δρ/ρ0 = 4.34% Δp/p0 = 2.15%
3.15 p = − 0.217 psig
3.17 p = 6.39 kPa (gage) h = 39.3 mm
3.19 p = 128 kPa (gage)
3.21 Δp = 59.5 Pa
3.23 H = 30 mm
3.25 SG = 0.900
3.27 Δp = 1.64 psi
Δp
3.29 L=
[ ]
ρ oil 1 + ( Dd )
2
L = 27.2 mm

3.31 h = 1.11 in
3.33 θ = 11.1o S = 5/SG
3.35 patm = 14.4 psi Shorter column at higher temperature
3.37 Δh = 38.1 mm Δh = 67.8 mm
3.39 Δh = 0.389 cm
3.43 Δz = 587 ft Δz = 3062 ft
3.45 p = 57.5 kPa p = 60.2 kPa
3.49 pA = 1.96 kPa pB = 8.64 kPa pC = 21.9 kPa pair = − 11.3 kPa pair = 1.99 kPa
3.51 FA = 79,600 lbf
3.53 W = 68 kN
3.55 FR = 0.407 lbf
3.57 FR = 8.63 MN R = (8.34 MN, 14.4 MN)
3.59 F = 600 lbf
3.63 D = 8.66 ft
3.65 d = 2.66 m
3.67 SG = 0.542
3.69 F = − 137 kN
3.71 FV = 7.62 kN x´FV = 3.76 kN·m FA = − 5.71 kN
3.73 FV = − ρgwR π/4 2
x´ = 4R/3π
6
3.75 FV = 1.05 x 10 N x´ = 1.61 m
3.77 FV = 1.83 x 107 N α = 19.9o
3.79 FV = 416 kN FH = 370 kN α = 48.3o F = 557 kN
3.81 FV = 2.47 kN x´ = 0.645 m FH = 7.35 kN y´ = 0.217 m
4 ρL ( H − d ) 2
3

3.83 M= M = 583 kg
3 a
⎡ ⎛θ sin(2θ max ) ⎞⎤
3.85 M = 2 ρLR ⎢(d − R ) sin(θ max ) + R⎜ max + ⎟⎥ M = 631 kg
⎣ ⎝ 2 4 ⎠⎦
3.87 γ = 8829 N/m3 h = 0.292 m
3.89 VNot submerged/ VSubmerged = 10.5%
3.91 SG = Wa/(Wa − Ww)
3.93 FB = 1.89 x 10−11 lbf V = 1.15 x 10−3 ft/s (0.825 in/min)
3.95 L/VHe = 0.0659 lbf/ft3 L/VH2 = 0.0712 lbf/ft3 L/Vair = 0.0172 lbf/ft3/0.0249 lbf/ft3
3.97 D = 116 m M = 703 kg
3.99 θ = 9.1o (with A = 25 cm2 not A = 20 cm2)
3.101 x = 0.257 m f = 6.1 N
3.103 D = 2.57 ft
3.105 f = 0.288 cycle/s (ω = 1.81 rad/s)
3.107 F = 34.2 lbf
3.113 a = g(h/L)
3.115 ω = 185 rad/s (1764 rpm)
3.117 Δp = ρω2R2/2 ω = 7.16 rad/s
3.119 dy/dx = − 0.25 p = 105 − 1.96x (p: kPa, x: m)
3.121 α = 30o dy/dx = 0.346
3.123 T = 47.6 lbf p = 55.3 lbf/ft2 (gage)
Introduction to Fluid Mechanics 7th Edition
Fox, Pritchard, & McDonald

Answers to Selected Problems, Chapter 4

4.1 x = 0.934 m
4.3 x = 747 m t = 23.9 mm
4.5 V0 = 87.5 km/hr
4.7 τ = 1.50 hr
3.47h 2 + 2400
4.9 yc = (yc, h: mm) h = 21.2 mm μs ≥ 0.604
6.94h + 40
4.11 Q = − 90 ft3/s
r r r
( )
ρ ∫ V V ⋅ dA = −450ρiˆ + 360ρˆj (slug·ft/s/s; ρ: slug/ft3)
4.13
r r
∫ V ⋅ dA = −24 m s
3
r r r
( ) (
∫ V V ⋅ dA = 64iˆ − 96 ˆj − 60kˆ m s
4
)
2

4.15 Q = 12 umaxπR 2 m.f. = 13 umax


2
πR 2iˆ
4.17 V = 1.56 ft/s Q = 3.82 gpm
4.19 Qcool = 489 gpm m& cool = 2.45 × 105 lb hr m& moist = 19404 lb hr m& air = 14331 lb hr
4.21 V3 = (4.33 ft/s, − 2.50 ft/s)
4.23 Eight pipes
4.25 1400 units/hr 4220 units/hr Outflow = 9 units/s
4.27 ρ = 10.7 lb/ft 3

m& ρ 2 g sin (θ )h 3
4.29 =
w 3μ
4.31 U = 1.5 m/s
4.33 Q = 1.05 x 10−5 m3/s (10.45 mL/s) Vave = 0.139 m/s umax = 0.213 m/s
4.35 vmin = 5.0 m/s
4.37 ∂Voil/∂t = − 2.43 x 10−2 ft3/s (0.18 gal/s)
4.39 dh/dt = − 8.61 mm/s
4.41 dh/dt = − 0.289 mm/s
4.43 Q = 1.5 x 104 gal/s A = 4.92 x 107 ft2
4.45 t = 22.2 s
4.47 dy/dt = − 9.01 mm/s
4.49 Qcd = 4.50 x 10−3 m3/s Qad = 6.0 x 10−4 m3/s Qbc = 1.65 x 10−3 m3/s
2 π tan 2 (θ ) y05 2 6 V0
4.51 t= t=
5 2g A 5 Q0
4.53 mf = (− 2406, 2113) lbf
4.55 mf2/mf1 = 1.33
4.57 mf = (− 320, 332) N
4.61 T = 3.12 N
4.63 F = 35.7 lbf
4.65 m& 1 = 31.2 lbm s m& 2 = 32.0 lbm s (because of weight plus momentum loss)
4.67 V = 51 m/s V = 18.0 m/s V = 67.1 m/s
4.69 F = 1.81 kN (tension)
2 πD
2 ⎡ ⎛ d ⎞2 ⎤
4.71 R x = − ρV (1 + sin θ )⎢1 − ⎜ ⎟ ⎥ Rx = − 314 N
4 ⎣⎢ ⎝ D ⎠ ⎦⎥
4.73 F = 11.6 kN
4.75 F = (− 714, 498) N
4.77 F = 1.70 lbf
4.79 F = 22.7 kN
4.81 d/D = 0.707 No-dimensional pressure = 0.5
4.83 t = 1.19 mm F = 3.63 kN
4.85 Rx = − 4.68 kN Ry = 1.66 kN
4.87 Rx = − 1040 N Ry = − 667 kN
4.89 F = 2456 N
4.91 Q = 0.141 m3/s Rx = − 1.65 kN Ry = − 1.34 kN
4.93 F = 37.9 N
⎛ 5π 2 ⎞
4.95 f = ρU 2 ⎜ − ⎟
⎝ 8 π⎠
4.97 umax = 60 ft/s Δp = 0.699 lbf/ft2
4.99 D = 0.446 N
4.101 D/w = 0.163 N/m
4.103 h2/h = (1 + sinθ)/2
4.105 h = H/2
4.107 Q = 257 L/min
4.109 V = V02 − 2 gh h = 4.28 m
4.111 V = 175 ft/s F = 2.97 lbf
4.113 p1 = 68.4 kPa (gage0 F = 209 N
A0
4.115 V = V02 − 2 gz A=
2 gz
1− 2
V0
2 2
⎛ Q ⎞ ⎛x⎞
4.117 p = p0 − ρ ⎜ ⎟ ⎜ ⎟
⎝ wh ⎠ ⎝ L ⎠
V0 r
4.119 V =
2(h0 − V0t )
4.123 Rx = − 2400 N Ry = 1386 N
ρQ ⎛ ρQ ⎞ ρQ
2

4.125 V =− + ⎜ ⎟ + Vj Vj = 80 m/s
2k ⎝ 2k ⎠ k
4.127 F = 3840 lbf
4.129 F = 4.24 kN t = 4.17 s
4.131 α = 30 o
F = 10.3 kN
4.133 a = 13.5 m/s2
4.135 t = 0.680 s
U ⎛ M0 ⎞
4.137 = ln⎜⎜ ⎟⎟ V = 0.61 m/s
V ⎝ M 0 − ρVAt ⎠
4.139 amax at t = 0 θ = 90o U→V
2aM
4.141 A = A = 111 mm2
3ρ (V − at )
2

4.143 h = 17.9 mm
2 ρ (V − U ) A − kU 2
2
4.145 a = a = 5.99 m/s2 U/Ut = 0.667
M
4.147 a = 14.2 m/s2 t = 15.2 m/s
ρ (V + U )2 A M
4.149 a = − t=
M ⎛ V ⎞
ρVA⎜⎜1 + ⎟⎟
⎝ U0 ⎠
4.151 V = 5 m/s xmax = 1.93 m t = 2.51 s
4.153 a = 2.28 m/s2
⎛ m& t ⎞
4.155 U = U 0 + Ve ln⎜⎜1 − ⎟ U = 227 m/s
⎝ M 0 ⎟⎠
4.157 Vmax = 834 m/s amax = 96.7 m/s2
4.159 mf = 82.7 kg
4.161 a = 83.3 m/s2 U = 719 m/s
4.163 V = 3860 ft/s Y = 33,500 ft
4.165 V = 641 m/s
4.167 θ = 19o
U0
4.169 U =
2 ρU 0 A
1+ t
M0
4.171 Vmax = 138 m/s ymax = 1085 m
4.175 h = 10.7 m
4.181 M = − 192 N·m
4.183 T = 0.193 N·m ω& = 2610 rad/s 2
4.185 ω& =
3
2 ρAR 3
(T − ρQRV − 2ωρVAR 2 ) ωmax = − 20.2 rad/s (− 193 rpm)

4.187 T = 30 N·m ω = 1434 rpm


4.189 ω = 78.3sin(θ) rad/s ω = 39.1 rad/s
4.191 ω& = 0.161 rad/s 2

4.195 T = ρωQL2 sin 2 α ΔT = 23 ρω& AL3 sin 2 α


4.197 α = 0o α ≈ 42o
o
4.199 dT/dt = − 0.064 K/s ( C/s)
4.201 Δp = 75.4 kPa
4.203 W& s = −96.0 kW
4.205 W& = −3.41 kW
s , actual

Δmef
4.207 = −1.88 J/kg Δt = 4.49 x 10−4 K (oC)
m&
Introduction to Fluid Mechanics 7th Edition
Fox, Pritchard, & McDonald

Answers to Selected Problems, Chapter 5

5.1 a) ρ ≠ const b) Possible c) Possible d) Possible


5.3 A + E + J = 0 (Others arbitrary)
5.5 v = − 3x2y + y3 + f(x)
5.7 u = x4/2 − 3x2y3
v⎞
5.11 ⎟ = 0.00167 (0.167%)
U ⎠ max
3 δ ⎡⎛ y ⎞ 1 ⎛ y ⎞ ⎤ 3 δ ⎡⎛ y ⎞ 1 ⎛ y ⎞ ⎤
2 4 2 4
v⎞ y v⎞
5.13 ⎟ = ⎢⎜ ⎟ − ⎜ ⎟ ⎥ =1 ⎟ = ⎢⎜ ⎟ − ⎜ ⎟ ⎥
U ⎠ max 8 x ⎣⎢⎝ δ ⎠ 2 ⎝ δ ⎠ ⎦⎥ δ U ⎠ max 8 x ⎣⎢⎝ δ ⎠ 2 ⎝ δ ⎠ ⎦⎥
5.15 v = − 2Axy3/3 +f(x) ψ = xy3/2
Λ sin θ
5.19 Vθ = − + f (r )
r2
Uy 2 h
5.23 ψ= y=
2h 2
r ⎛
5.25 V = ⎜ − U cosθ +
q ⎞ˆ
⎟ir + U sin θiˆθ (r, θ ) = ⎛⎜
q ⎞
,0 ⎟
⎝ 2π r ⎠ ⎝ 2πU ⎠
5.27 2D Incompressible ψ = zy3 − z3y
Uy 2
5.29 ψ= hhalf = 1.06 m
2h
⎡⎛ y ⎞ 2 1 ⎛ y ⎞ 3 ⎤ y y
5.31 ψ = Uδ ⎢⎜ ⎟ − ⎜ ⎟ ⎥ = 0.442 (1/4 flow) = 0.652 (1/2 flow)
⎣⎢⎝ δ ⎠ 3 ⎝ δ ⎠ ⎦⎥ δ δ
⎡ 3 ⎛ y ⎞2 1 ⎛ y ⎞4 ⎤ y y
5.33 ψ = Uδ ⎢ ⎜ ⎟ − ⎜ ⎟ ⎥ = 0.465 (1/4 flow) = 0.671 (1/2 flow)
⎢⎣ 4 ⎝ δ ⎠ 8 ⎝ δ ⎠ ⎥⎦ δ δ
5.35 ψ = − Cln(r) + C1 Q/b = 0.0912 m3/s/m
r 16 32 ˆ 16 ˆ
5.37 2D Incompressible a = iˆ + j + k m/s2
3 3 3
5.39
r
(
a = −2.86 10−2 iˆ + 10−4 ˆj ) m/s2 dy/dx = 0.0025
Λ2 x Λ2 y 100
5.41 Incompressible ax = − ay = − a=−
(x 2
+y )
2 2
(x 2
+y )
2 2 r3
U ⎛
2
x ⎞
5.43 ax = − ⎜1 − ⎟
2L ⎝ 2L ⎠
2
⎛ Q ⎞ 1
5.45 a = −⎜ ⎟ 3 (Radial)
⎝ 2πh ⎠ r
Dc UA ⎛ 1 − 2 a ⎞
Ut Ut
− Dc ppm
5.47 = ⎜ e −e a ⎟ x = 2.77 m = 1.25 × 10− 5
Dt a ⎜⎝ 2 ⎟
⎠ Dt max s
5.49 ∂T/∂x = − 0.0873 oF/mile
5.53
r
(
a = A2 xiˆ + yˆj ) r 1
a = iˆ + 2 ˆj
2
r
a = iˆ + ˆj
r 1
a = 2iˆ + ˆj
2
r
5.55 xy = 8 V = 12iˆ − 24 ˆj
r r r
V = 6πiˆ − 12πˆj (Local) V = 72iˆ + 144 ˆj (Convective) V = 9.8iˆ + 106 ˆj (Total)
U2 ⎡ ⎛ y ⎞2 4 ⎛ y ⎞2 1 ⎛ y ⎞2 ⎤
5.57 ax = ⎢− ⎜ ⎟ + ⎜ ⎟ − ⎜ ⎟ ⎥ ax(max) = − 5.22 m/s2
x ⎢⎣ ⎝ δ ⎠ 3 ⎝ δ ⎠ 3 ⎝ δ ⎠ ⎥⎦
⎛ y⎞ r v2 x v2 ⎛ y ⎞
5.59 v = v0 ⎜ 1 − ⎟ a = 02 iˆ + 0 ⎜ − 1⎟ ˆj
⎝ h⎠ h h ⎝h ⎠
2U 2 ⎡ ⎛ R ⎞ ⎤⎛ R ⎞
2 3

5.61 ar = −
⎢1 ⎜ ⎟ ⎥⎜ ⎟ aθ = 0 r = 1.29R (max a)
R ⎣⎢ ⎝ r ⎠ ⎦⎥⎝ r ⎠
4U 2 2 4U 2
ar = − sin θ aθ = sin θ cos θ θ = ±π/2 (max a)
R2 R2

5.63 a x = 32[20 + 2 sin(ωt )] + 2.4 cos(ωt )


2
(m/s ) at x = L
2

5.67 Not incompressible Not irrotational


5.69 Γ=0
5.71 Incompressible Irrotational
5.73 Incompressible Not irrotational
r
5.75 V = −2 yiˆ − 2 xˆj
r
5.77 ω = −k̂ ( rad/s)
u
5.79 ω=− ω = − 0.5 s−1
2h
h⎛ h⎞
5.81 Γ = −UL ⎜1 − ⎟ Γ = − UL/4 (h = b/2) Γ = 0 (h = b)
b⎝ b⎠
2 yU max r 2 yU max ˆ
5.83 γ =− ζ = k
b2 b2
⎛π ⎞
2
dFmax dFmax kN
5.85 = − μU ⎜ ⎟ = −1.85 3
dV ⎝ 2δ ⎠ dV m
Introduction to Fluid Mechanics 7th Edition
Fox, Pritchard, & McDonald

Answers to Selected Problems, Chapter 6


r
6.1 a = 9iˆ + 7 ˆj ft/s2 ∇p = −0.125iˆ − 0.544 ˆj psi/ft
6.3
r
( )
alocal = 10 iˆ + ˆj ft/s2
r
aconv = A( Ax + Bt )iˆ − A(− Ay + Bt ) ˆj
r
aconv = 300iˆ − 200 ˆj ft/s2 ∇p = −4.17iˆ + 2.56 ˆj − 0.43kˆ psi/ft
r
6.5 a = 1iˆ + 7 ˆj ft/s2 ∇p = −0.0139iˆ − 0.544 ˆj psi/ft
r
6.7 v = − Ay a = 8iˆ + 4 ˆj m/s2
∇p = −12iˆ − 6 ˆj − 14.7kˆ Pa/m p(x) = 190 − 3x2/1000 (p in Pa, x in m)
6.9 Incompressible Stagnation point: (2.5, 1.5)
[
∇p = − ρ (4 x − 10)iˆ + (4 y − 6) ˆj + gkˆ ] Δp = 9.6 Pa
U2 ⎛ x ⎞ dp U2 ⎛ x ⎞
6.11 ax = − ⎜1 − ⎟ =ρ ⎜1 − ⎟ pout = 43.3 kPa (gage)
2L ⎝ 2L ⎠ dx 2L ⎝ 2L ⎠
r r
6.13 a = −0.101eˆr + 0.0507eˆθ m/s2 a = −0.101eˆr + 0.0507eˆθ m/s2
r
a = −0.0127eˆr + 0.00633eˆθ m/s2 ∇p = 101eˆr − 50.5eˆθ Pa/m
∇p = 101eˆr − 50.5eˆθ Pa/m ∇p = 12.7eˆr − 6.33eˆθ Pa/m
⎧ ⎡ ⎤ ⎫
2

∂p ρAi2 L2ui2 ( Ae − Ai ) ρui2 ⎪⎪ ⎢ Ai ⎥ ⎪⎪


=− p = pi + ⎨1 − ⎢ ⎬
2 ⎪ ⎢ A − ( Ai − Ae ) x ⎥⎥ ⎪
6.15
∂x ( Ai L + Ae x − Ai x )3
⎩⎪ ⎣ ⎦ ⎭⎪
i
L
2Vi 2 (Do − Di ) ∂p
6.17 ax = − = −10 MPa/m L≥1m
⎡ (D − Di ) ⎤ ∂x max
5

Di L ⎢1 + o x⎥
⎣ Di L ⎦
6.19 Fz = − 1.56 N (Acts downwards)
2V 2 x ∂p 2 ρV 2 x
6.21 ax = 2 =−
b ∂x b2
ρV 2 L2 ⎡ ⎛ x ⎞ ⎤ 4 ρV 2 L3W
2

p = patm + ⎢1 − ⎜ ⎟ ⎥ Fy =
b 2 ⎢⎣ ⎝ L ⎠ ⎥⎦ 3b 2
q2 x ∂p ρq 2 x
6.23 ax = 2 =− 2
h ∂x h
2Λ2 ρ
6.25 ∇p = 5 eˆr + 0eˆθ
r
6.27 Δp = − 30.6 Pa
r
6.31 B = − 0.6 m−2·s−1 a = 6iˆ + 3 ˆj m/s2 an = 6.45 m/s2
r
6.33 a = 4iˆ + 2 ˆj ft/s 2 R = 5.84 ft
r
6.35 a = 0.5iˆ + ˆj m/s2 R = 5.84 ft
6.37 Δh = 1.37 in
6.39 F = 0.379 lbf F = 1.52 lbf
6.41 h = 628 mm
6.47 p2 = 291 kPa (gage)
6.49 p = 9.53 psig
6.51 h = 17.0 ft
1
A = A1
2 g (z1 − z )
6.53
1+
V12
6.55 V = 262 m/s
6.57 Q = 304 gpm (0.676 ft3/s)
p = p∞ + ρU 2 (1 − 4 sin 2 θ )
1
6.59 θ = 30o, 150o, 210o, 330o
2
6.61 F = − 278 N/m
6.63 Q = 2.55 x 10−3 m3/s
6.65 p1 = 7.11 psig Kx = 12.9 lbf
6.67 p2 = 13.2 kPa (gage) (98.9 mm Hg) p3 = 706 Pa (gage) (5.29 mm Hg)
Rx = 0.375 N Ry = 0.533 N
6.69 p1 = 1.35 psig p0 = 1.79 psig
6.73 Δh = 6.60 in F = 0.105 lbf F = 18.5 lbf
6.75 F = 83.3 kN
6.77 p1 = 11.4 psig F = 14.1 lbf
dM dV
6.79 m& = A 2 pρ = − ρ w air
dt dt
⎧⎪ V ⎡ 2 p0 At ⎤ ⎫⎪
0.588

M w = ρ wV0 ⎨ − ⎢1 + 1.70
t
⎥ ⎬
⎪⎩V0 ⎣ ρ w V0 ⎦ ⎪

6.83 Cc = ½
6.87 ax = 10.5 ft/s2
6.89 dQ/dt = 0.516 m3/s/s
6.91 Dj/D1 = 0.32
6.93 Bernoulli can be applied
6.95 Incompressible Unsteady Irrotational φ=⎢ (
⎡A 2
y − x 2 ) + Bxy ⎥t

⎣2 ⎦

6.97 ψ=
q

⎡ −1 ⎛ y − h ⎞ −1 ⎛ y + h ⎞ ⎤
⎢ tan ⎜ x ⎟ + tan ⎜ x ⎟⎥ φ=−
q

{[ 2
][
ln x 2 + ( y − h ) x 2 + ( y + h )
2
]}
⎣ ⎝ ⎠ ⎝ ⎠⎦
A
6.99 NOTE: Error – function is ψ = Ax2y − By3 φ = 3Bxy 2 − x 3
3
6.101 ψ = (x 2 − y 2 ) − 2 Axy
B
2
r
6.105 V = −( A + 2 Bx )iˆ + 2 Byˆj ψ = − (Ay + 2Bxy) Δp = 12 kPa
B 3
6.107 V = x2 + y2 ψ = 3 Ax 2 y − x
3
6.109 Incompressible Irrotational Stagnation point: (− 2, 4/3)
φ = ( y − x 2 ) − Bx − Cy
A 2
Δp = 55.8 kPa
2
q ⎛ r2 ⎞
6.113 ψ =
q
(θ1 − θ 2 ) + Ur sin θ φ= ln⎜ ⎟ − Ur cos θ
2π 2π ⎜⎝ r1 ⎟⎠
r ⎡ q ⎛ cos θ1 cos θ 2 ⎞ ⎤ q ⎛ sin θ1 sin θ 2 ⎞ ˆ
V = ⎢ ⎜⎜ − ⎟⎟ + U ⎥iˆ + ⎜⎜ − ⎟j
⎣ 2π ⎝ r1 r2 ⎠ ⎦ 2π ⎝ r1 r2 ⎟⎠
Stagnations points: θ = 0, π r = 0.367 m ψstag = 0
K K
6.115 ψ = Ur sin θ − ln r φ = −Ur cos θ − θ
2π 2π
r ⎛ K ⎞
V = U cos θeˆr + ⎜ − U sin θ ⎟eˆθ
⎝ 2πr ⎠
K
Stagnations point: θ = π/2 r=
2πU
6.117 Stagnations points: θ = 63o, 297o r = 1.82 m Δp = 317 Pa
Introduction to Fluid Mechanics 7th Edition
Fox, Pritchard, & McDonald

Answers to Selected Problems, Chapter 7

V02
7.1
gL
E
7.3
ρL2ω 2
ν ⎛ 1 ⎞
7.5 ⎜= ⎟
V0 L ⎝ Re ⎠
Δp ν L
7.7 , ,
ρV 2 DV D
7.9 F ∝ μVD
Δp ⎛ μ d⎞
7.11 = f ⎜⎜ , ⎟⎟
ρV 2
⎝ ρVD D ⎠
τw ⎛ μ ⎞
7.13 = f ⎜⎜ ⎟⎟
ρU 2
⎝ ρUL ⎠
W σ
7.15 ,
gρp gρp 3
3

⎛λ⎞
7.17 V = gD f ⎜ ⎟
⎝D⎠
⎛b⎞
7.19 Q = h 2 gh f ⎜ ⎟
⎝h⎠
W ⎛L c⎞
7.21 = f⎜ , ⎟
D ωμ
2
⎝D D⎠
P Δp d d d
7.23 , , , i, o
ρ D ω ρD ω D D D
5 3 2 2

μ
7.25 Four parameters Π1 =
ρd g 1 2
32

Q ⎛ ρVh V 2 ⎞
7.27 = f ⎜⎜ , ⎟⎟
Vh 2 ⎝ μ gh ⎠
d μ σ
7.29 , ,
D ρVD ρDV 2
W μ h D
7.31 , , ,
ρV d ρVd d d
2 2

d μ2 σ
7.33 , ,
D ρΔpD DΔp
2

δ L μωD 3 Iω 2
7.35 , , ,
D D T T
Δp μ ρ g
7.37 , , cD 3 , N , p ,
ρD ω ρD ω
2 2 2
ρ Dω 2
P ⎛ ρω c l ⎞
7.39 = f ⎜⎜ , , ⎟⎟
pωD 3
⎝ p D D⎠
⎛c Θ μ ⎞
7.41 Four primary dimensions Q& = ρV 3 L2 f ⎜⎜ p 2 , ⎟⎟
⎝ V ρVL ⎠
dT Lc p ⎛ c k μ ⎞⎟
7.43 = f⎜ , 2 ,
dt V 3 ⎜ c ρL c ρLV ⎟
⎝ p p ⎠
7.45 Π1 =
u
Π2 =
y
Π3 =
(dU dy )δ Π4 =
ν
U δ U δU
7.47 Vw = 6.90 m/s Fair = 522 N
7.49 Vair > Vwater Vair = 15.1· Vwater
7.51 ωm = 395 rpm ωm = 12500 rpm Froude number modeling is most likely
7.53 Vm = 40.3 m/s Vp = 40.3 m/s
7.55 Vm = 5.07 m/s Fm/Fp = 3.77
7.57 Qm = 0.125 m3/s Pp = 127 kW
7.59 pm = 2.96 psia
fd ⎛ ρVd ⎞ V1 1 f1 1
7.61 = F ⎜⎜ ⎟⎟ = =
V ⎝ μ ⎠ V2 2 f2 4
7.63 Vm = 0.618 m/s – 1.03 m/s
FD ⎛ μ ⎞
7.65 = f ⎜⎜ ⎟
12 ⎟
FD p = 2.46 kN P =55.1 kW (73.9 hp)
ρV A2 12
⎝ ρVA ⎠
7.67 τp = 1070 hr (~ 45 days)
7.69 Vm = 1.88 m/s Vp = 7.36 m/s Fp/Fm = 1.13 (submerged), = 2.77 x 104 (surface)
7.71 CD = 1.028 FDp = 3.89 kN Vm = 250 m/s (model is impractical, compressible flow)
1
7.73 Model = x Prototype Adequate Reynolds number not achievable
50
7.77 DTotal = 1305 N DTotal = 2316 N (Wave drag negligible)
7.79 hm = 13.8 J/kg Qm = 0.166 m3/s Dm = 0.120 m
Ft ⎛ V g ⎞ T ⎛ V g ⎞ P ⎛ V g ⎞
7.81 = f1 ⎜ , 2 ⎟ = f2 ⎜ , 2 ⎟ = f3 ⎜ , 2 ⎟
ρω D2 4
⎝ ωD ω D ⎠ ρω D
2 5
⎝ ωD ω D ⎠ ρω D
3 5
⎝ ωD ω D ⎠
7.83 K.E. ratio = 7.22
7.85 FB ≈ 0.273 N (to right) CD m = 0.443 FD p = 1.64 kN
Introduction to Fluid Mechanics 7th Edition
Fox, Pritchard, & McDonald

Answers to Selected Problems, Chapter 8

8.1 Q = 0.146 ft3/s L = 12.5 – 20 ft (turbulent) L = 69.0 ft (laminar)


8.3 Smallest turbulent first Qlarge = 0.0244 ft3/s Non are fully developed
Qmid = 0.0122 ft3/s Smallest fully developed
Qsmall = 0.00610 ft3/s Smallest fully developed
8.7 V umax = 2 3
8.9 τyx = – 1.88 Pa Q/b = – 5.63 x 10– 6 m2/s
8.11 Q = 1.25 x 10– 5 ft3/s (0.0216 in3/s)
8.13 Q = 3.97 x 10– 9 m3/s (3.97 x 10– 6 L/s)
π ΔpD 3
8.15 M = 4.32 kg Q= a a = 1.28 x 10– 5 m (12.8 μm)
12 μL
Q dp 6μQ 6μQ ⎛ r ⎞
8.17 V = =− p = patm − ln⎜ ⎟ (p = p0, r < R0)
2πrh dr πrh 3
πrh 3 ⎝ R ⎠
8.19 n = 1.48 (dilatant)
8.21 ∂p/∂x = – 92.6 Pa/m
8.23 uinterface = 15 ft/s
8.25 ∂p/∂x = – 2Uμ/a2 ∂p/∂x = 2Uμ/a2
8.27 ν = 1.00 x 10– 4 m2/s
8.29 τ = ρgsin(θ)(h – y) Q/w = 217 mm3/s/mm Re = 0.163
8.31 Q/w = 0.0208 ft3/s/ft τ = 1.58 x 10– 6 psi ∂p/∂x = 7.58 x 10– 4 psi/ft
8.33 ∂p/∂x = 34.4 Pa/m
ρg ⎛ y 2 ⎞
8.35 B.C.: y = 0, u = U0; y = h, τ = 0 u= ⎜⎜ − hy ⎟⎟ + U 0
μ ⎝ 2 ⎠
dV πwL
8.37 =− V t = 1.06 s
dt mh
⎛ 2Q ⎞
⎜1 − ⎟
6 μLRω ⎛ 2Q ⎞ μLb(Rω ) ⎛
2
6Q ⎞ 6Q ⎝ abRω ⎠
8.39 Δp = ⎜1 − ⎟ P= ⎜4 − ⎟ η=
a 2
⎝ abRω ⎠ a ⎝ abRω ⎠ abRω ⎛ 6Q ⎞
⎜4 − ⎟
⎝ abRω ⎠
πμω 2 D 3 L πDa 3Δp 2
8.41 Pv = Pp = Pv = 3Pp
4a 12 μL
8.45 r = 0.707R
8.47 Q = 1.43 x 10– 3 in3/s (0.0857 in3/min)
c μV0 V0 ln ro
8.49 τ = c1/r u = 1 ln r + c2 c1 = c2 = −
μ ln(ri ro ) ln(ri ro )
⎡ 1 (1 − k 2 )⎤
12

8.51 r = R⎢ ⎥
⎣ 2 ln (1 k ) ⎦
8.53 % change = – 100/(1 + lnk)
8.55 τw = – 131 Pa
8.57 τw = – 0.195 lbf/ft2 τw = – 1.35 x 10– 3 psi
8.59 Q = 4.52 x 10– 7 m3/s Δp = 235 kPa τw = 294 Pa
8.61 n = 6.21 n = 8.55
8.63 βlam = 4/3 βturb = 1.02
8.65 α=2
8.67 HlT = 1.33 m hlT = 13.0 J/kg
8.69 V1 = 3.70 m/s
8.71 Q = 411 gpm
8.73 V1 = 2 m s
8.75 hlT = 913 ft2/s2 (HlT = 28.4 ft)
du
8.77 = 963 s −1 τw = 3.58 x 10– 4 lbf/ft2 τw = 4.13 x 10– 4 lbf/ft2
dy
8.79 f = 0.0390 Re = 3183 Turbulent
8.81 Maximum = 2.12% at Re = 10000 and e/D = 0.01
8.85 p2 = 177 kPa p2 = 175 kPa
8.87 Q = 0.0406 ft3/s (2.44 ft3/min, 18.2 gpm)
8.91 K = 9.38 x 10– 4
8.93 Q = 12.7 gpm Q = 11.6 gpm (ΔQ = – 1.1 gpm) Q = 13.7 gpm (ΔQ = 1.0 gpm)
8.95 Δp = 23.7 psi K = 0.293
2
hl m = (1 − AR ) 1
2V
8.97
2
2Δp
V1 = Inviscid assumption: Lower indicated flow/larger Δp
ρ (1 − AR 2 − K )
8.99

8.101 Q = 0.345 L/min d = 3.65 m


8.103 d = 6.13 m (or 6.16 m if α = 2, laminar)
8.105 Analogy fails at Q = 7.34 x 10– 7 m3/s
8.107 118800%! (A huge increase because V ~ 1/d2, and Δp ~ V2)
8.111 (a) Δp = 25.2 kPa (b) Δp = 32.8 kPa (c) Δp = 43.3 kPa ((a) is best)
8.113 VB = 4.04 m/s LA = 12.8 m (Not feasible!) Δp = 29.9 kPa
8.115 Δp/L = 7.51 x 10– 3 lbf/ft2/ft (round) Δp/L = 8.68 x 10– 3 lbf/ft2/ft (1:1) (+15.6%)
Δp/L = 9.32 x 10 lbf/ft /ft (2:1) (+24.1%)
–3 2
Δp/L = 0.010 lbf/ft2/ft (3:1) (+33.2%)
8.117 p1 = 179 psig
8.121 L = 26.5 m
8.123 Friction ≈ 77%, Gravity ≈ 23% (Turbulent)
8.125 Q = 0.0395 m3/s
8.127 V1 = 0.0423 m/s (down) (Falls at 42.3 mm/s)
8.129 Rate of downpour = 0.418 cm/min
8.135 Q = 6.68 x 10– 3 m3/s pmin = – 35.5 kPa (gage)
8.137 Q = 5.30 x 10– 4 m3/s Q = 5.35 x 10– 4 m3/s (diffuser)
8.139 L = 0.296 m
8.141 Your boss was wrong (which is s-w-e-e-e-e-e-t!)
8.143 D = 5.0 – 5.1 cm (corresponds to standard 2 in. pipe)
8.145 D = 6 in. (nominal)
8.149 V = 6.46 m s pF = 705 kPa (gage) P = 832 kW τw = 88.6 Pa
3
8.151 dQ/dt = – 0.524 m /s/min
8.153 P = 8.13 hp
8.155 Δp = 53.2 psi
8.157 D = 48 mm Δp = 3840 kPa Ppump = 24.3 kW (32.6 hp)
8.159 Q = 5.58 x 10– 3 m3/s (0.335 m3/min) V = 37.9 m/s P = 8.77 kW
8.161 Cost = $4980/year
8.163 Q = 0.0419 m3/s Δp = 487 kPa P = 29.1 kW
8.165 Q = 2.51 m3/s
8.167 Q0 = 0.00928 m3/s Q1 = 0.00306 m3/s Q2 = Q3 = 0.00311 m3/s Q4 = 0.00623 m3/s
Q0 = 0.00862 m3/s Q1 = 0.0 m3/s Q2 = Q3 = 0.00431 m3/s Q4 = 0.00862 m3/s
8.169 Δp = 22.2 psi Q22 ≈ 5.2 gpm Q24 ≈ 24.8 gpm
8.171 Δp = 25.8 kPa
8.173 Q = 1.49 ft3/s
8.175 Q = 0.00611 m3/s
8.177 Δt = 40.8 mm m& min = 0.0220 kg/s
8.179 Q = 1.37 ft3/s
8.183 Red = 1800 f = 0.0356 p2 = – 290 Pa (gage) (29.6 mm Hg)
8.185 Kc = $9890/in2 13
Kp = 1.81 x 10 $·in 5
Introduction to Fluid Mechanics 7th Edition
Fox, Pritchard, & McDonald

Answers to Selected Problems, Chapter 9

9.1 xp = 18.6 cm xm = 10.3 mm


9.3 xp = 10.4 cm xp = 7.47 mm
9.5 ReD = 1 (reasonable) ReD = 2.5 x 105 (not reasonable) Use water and D = 10 cm
9.7 L increases with elevation
π
9.9 A=U B= C=0

δ* θ
9.11 = 0.375 = 0.139
δ δ
δ* θ
9.13 = 0.396 = 0.152
δ δ
θ θ θ
9.15 Linear: = 0.167 Sinusoidal: = 0.137 Parabolic: = 0.133
δ δ δ
δ* θ δ* θ
9.17 Power: = 0.125 , = 0.0972 Parabolic: = 0.333 , = 0.133
δ δ δ δ
9.19 m& ab = 50.4 kg s FD = 50.4 N
9.21 dexit = 3.13 mm ΔU = 3.91%
9.23 U2 = 13.8 m/s Δp = 20.6 Pa
9.25 Δp = – 1.16 lbf/ft2
9.27 U2 = 24.6 m/s p2 = – 44.5 mm H2O
9.29 δ 2* = 2.54 mm Δp = – 107 Pa FD = 2.00 N
ρU 2 ρU 2bL
9.35 y = 0.121 in dy/dx = 0.00326 τ w = 0.3321 FD = 0.6642
Re x Re L
θL = 0.0454 in
9.39 θL = 0.0454 in FD = 0.850 N
9.41 FD = 26.3 N FD = 45.5 N
9.43 FD = 8.40 x 10–4 N (or FD = 1.68 x 10–3 N for two sides) (Higher than Problem 9.42)
9.45 FD = 3.45 x 10–3 N (or FD = 6.90 x 10–3 N for two sides) (Higher than Problem 9.44)
9.51 FD = 0.557 N
9.53 U = 1.81, 2.42, 3.63, and 7.25 m/s
ρU 2 ρU 2bL
9.55 τ w = 0.0297 1 FD = 0.0360 1
FD = 2.34 N
Re x 5 Re L5
9.57 FD = 4.57 x 10–3 N (or FD = 9.14 x 10–3 N for two sides)
9.59 FD = 55.8 N (or FD = 112 N for two sides)
δ 0.353 0.0612
9.61 = 1
cf = 1
FD = 2.41 N
x Re 5 Re 5
x x

9.63 δ L = 31.3 mm τ w = 0.798 Pa


L
FD = 0.700 N
9.65 w2 = 80.3 mm
9.67 Δp = 6.16 Pa L = 0.233 m
9.69 Petroleum used ≈ 0.089% (about 15% of pipeline use)
9.71 m& lam = 0.525ρU 2δ m& turb = 0.777 ρU 2δ
9.73 a=0 b=0 c=3 d=–2 H = 3.89
9.75 U2 = 2.50 m/s Δp = 0.00370 in H2O
4
⎡ 1

U ⎡ cf ⎤ U ⎢ ⎛ ν 4⎞ x ⎥ ( τ ≠ constant)
9.77 = ⎢1 + x ⎥ (constant τ w ) = 1 + 0.00583⎜⎜ ⎟⎟
⎣ θ (H + 2 ) ⎦ ⎢ U1δ ⎠ θ (H + 2 )⎥
w
U1 U1 ⎝
⎢⎣ ⎦⎥
9.79 FD = 5.58 N (11.2 N for both sides) One system: FD = 4.23 N (8.46 N for both sides)
9.81 FD = 1500 lbf P = 2000 hp
9.85 xlam/L = 0.0352% FD = 5.49 x 105 N P = 7.63 MW
4
9.87 FD = 3.02 x 10 N Savings = FD = 7.94 x 104 kg/yr
9.91 FD = 3610 lbf P = 77.6 hp
9.93 di = 96.5 mm
9.95 t = 9.29 s, x = 477 m (t = 7.93 s, x = 407 m for three parachutes) “g” = – 3.66
9.97 B is 20.8% better than A (H > D)
9.99 C D = 0.299
9.101 V = 24.7/35.8 km/hr New tires: V = 26.8/32.6/39.1 km/hr Plus fairing: V = 29.8/35.7/42.1 km/hr
9.105 M = 0.0451 kg
⎡ 2mg sin θ ⎤
9.107 V = ⎢ ⎥ t = 1.30 mm
⎣ C D Aρ cos θ ⎦
2

9.109 t = 2.95 s x = 624 ft


9.111 V = 47.3 mph (1970’s car) V = 59.0 (current car)
9.113 FE = 6.72 mpg ΔQ = 1720 gal/yr (8.78%)
9.115 CD = 1.17
⎡ ⎤
⎢ ⎥
9.117 V= ⎢ 2mg 1 ⎥
⎢ ρA ⎛ ⎞ 2
A ⎛A ⎞ ⎥
⎢ ⎜⎜ 1 ⎟⎟ − 2⎜⎜ 1 ⎟⎟ + 1⎥
⎢⎣ ⎝ A2 ⎠ ⎝ A2 ⎠ ⎥⎦

FD = C D A ρ (V − U ) T = CD A ρ (V − U ) R P = CD A ρ (V − U ) U
1 1 1 V
9.119
2 2 2
ωopt =
2 2 2 3R
9.121 M = 11.0 N·m
9.123 P = 3.00 kW
9.125 V = 23.3 m/s Re = 48,200 FD = 0.111 N
9.127 x = 13.9 m
9.129 CD = 61.9 ρ s = 3720 kg/m3 V = 0.731 m/s
9.131 M = 0.0471 kg
9.133 CL = 1.01 CD = 0.0654
7 1 7 1 FD 7 M 7
9.135 FD = CD ρU 2 DH M = C D ρU 2 DH 2 = =
9 2 16 2 FDuniform 9 M uniform 8
9.137 D = 7.99 mm y = 121 mm
9.139 t = 4.69 s x = 70.9 m
9.141 xmax = 48.7 m (both methods)
9.143 CD = 0.606 V = 37.4 mph
2 FR
9.145 Vb = Vw − Vb = 4.56 m/s (16.4 km/hr)
ρ (C Du Au + C Db Ab )
9.147 x ≈ 203 m
9.151 ΔP = 16.3 kW (94%)
9.157 Vmin = 5.62 m/s (10.9 kt) Pmin = 31.0 kW Vmax = 19.9 m/s (38.7 kt)
9.159 Vmin = 144 m/s R = 431 m
9.161 M = 37.9 kg P = 1.53 kW (or 3.02 kW if treated as two wings)
9.163 T = 17,300 lbf
9.165 FD = 524 lbf P = 209 hp
9.167 θ = 3.42 o
L = 168 km
9.169 For a race car, effective; for a passenger car, not effective
9.175 FL = 0.00291 lbf
9.177 FL = 50.9 kN FD = 18.7 kN F = 54.2 kN P = 5.94 kW
9.179 ω = 14,000 – 17,000 rpm x = 3.90 ft
Introduction to Fluid Mechanics 7th Edition
Fox, Pritchard, & McDonald

Answers to Selected Problems, Chapter 11

11.1 Q = 3.18 m3/s


11.3 y = 2.61 ft
11.5 y2 = 0.507 m Fr2 = 2.51
11.7 S0 = 0.00186
11.9 S0 = 0.00160
11.11 Q = 0.194 m3/s
11.13 y = 2.47 ft
11.15 y = 0.775 m
11.19 y = 4.83 ft V = 3.69 ft/s
11.23 y = 7.38 ft
11.25 yc = 0.365 ft, Ec = 0.547 ft yc = 0.759 ft, Ec = 1.14 ft
yc = 1.067 ft, Ec = 1.60 ft yc = 1.46 ft, Ec = 2.19 ft
11.27 yc = 0.637 m
11.31 Δx = 197 ft
11.33 y = 0.645 ft y = 4.30 ft
1
⎛ 2Q 2 ⎞ 5
11.35 yc = ⎜⎜ 2 ⎟⎟
⎝z g⎠
11.37 Q = 3.24 ft3/s
11.39 y2 = 0.610 ft (– 32.2%)
11.41 y2 = 1.31 ft
11.43 Q = 49.5 ft3/s
11.45 Q = 10.6 m3/s yc = 0.894 m Hl = 0.808 m
11.47 y2 = 5.94 ft
11.49 Q = 54.0 ft3/s Hl = 1.62 ft
11.51 y2 = 4.45 m Hl = 9.31 m
3
11.53 Q = 26.6 ft /s
11.55 H = 0.514 m
11.57 Cw = 1.45
Introduction to Fluid Mechanics 7th Edition
Fox, Pritchard, & McDonald

Answers to Selected Problems, Chapter 12

12.1 T = const. p decreases ρ decreases (Irreversible adiabatic process)


12.3 Δs > 0 so it is feasible for a real (irreversible) adiabatic process
12.5 T2 = 20oF p2 = 100 kPa
12.7 Δs = – 346 kJ/kg·K (ΔS = – 1729 J/K) Δu = – 143 kJ/kg (ΔU = – 717 kJ)
Δh = – 201 kJ/k (ΔH = – 1004 kJ)
12.9 h = 57.5%
12.11 W = 176 MJ Ws = 228 MJ Ts (max) = 858 K Qs = – 317 MJ
12.13 m& = 36.7 kg/s T2 = 572 K V2 = 4.75 m/s W& = 23 MW
12.15 Δt = 828s (≈ 14 min)
12.17 Δρ = 1.70 x 10–4kg/m3 ΔT = 0.017 K ΔV = 0.049 m/s
12.19 Δt = 198 μs Ev = 12.7 GN/m 2

12.21 x = 19.2 km
12.23 c = 299 m/s V = 987 m/s V/Vbullet = 1.41
12.29 c = 340 m/s (sea level)
12.31 V = 1471 mph α = 31.8o
12.33 V = 642 m/s (2110 ft/s)
12.35 V = 493 m/s Δt = 0.398 s
12.37 V = 515 m/s t = 6.92 s
12.39 Δx ≈ 1043 – 1064 m
12.41 Density change < 1.21%, so incompressible
12.43 M = 0.142 (1%) M = 0.322 (5%) M = 0.464 (10%)
12.45 Δρ/ρ = 48.5% (Not incompressible)
12.47 pdyn = 54.3 kPa p0 = 152 kPa
12.49 p0 = 546 kPa h0 – h = 178 kJ/kg T0 = 466 K
12.51 p0 – p = 8.67 kPa V = 195 m/s V = 205 m/s Error using Bernoulli = 5.13%
12.55 T0 = const (isoenergetic) p0 decreases (irreversible adiabatic)
12.57 V = 890 m/s T0 = 677 K p0 = 212 kPa
12.59 T0 = const = 294 K (20.6o) (isoenergetic) p01 = 1.01 MPa, p0 2 = 189 kPa (irreversible adiabatic)
Δs = 480 J/kg·K Flow accelerates even with friction due to large pressure drop
12.61 T01 = T0 2 = 344 K p01 = 223 kPa p0 2 = 145 kPa Δs = 0.124 kJ/kg·K
12.63 T01 = T0 2 = 445 K p01 = 57.5 kPa p0 2 = 46.7 kPa Δs = 59.6 J/kg·K
12.65 Δp = 48.2 kPa (inside higher)
12.67 T* = 260 K p* = 24.7 MPa V* = 252 m/s
12.69 Tt = 2730 K pt = 25.5 MPa Vt = 1030 m/s

You might also like