0% found this document useful (0 votes)
10 views11 pages

FM Answer Key

Uploaded by

ritam96.iitd
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
10 views11 pages

FM Answer Key

Uploaded by

ritam96.iitd
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 11

Fluid Mechanics Workbook Answer Key

Chapter 1: Proper�es of Fluids


1. c 11. a 21. a 31. c 41. c
2. b 12. b 22. c 32. a 42. b
3. d 13. b 23. b 33. b 43. b
4. d 14. c 24. d 34. a 44. a
5. a 15. c 25. a 35. a 45. 250 MPa
6.b 16. a 26. b 36. d 46. 0.5 Pa.s
7. c 17. c 27. a 37. a 47. 250 MPa
8. a 18.b 28. b 38. d 48. 822.79 m/s
9. d 19. c 29. d 39. a 49. 250 MPa
10. a 20. b 30. c 40. c 50. 2.122

51. 0.43 61. 𝐹𝐹 = 134.267 𝑁𝑁 71. b


52. 11 62. 𝑉𝑉 = 5.015 𝑚𝑚/𝑠𝑠 72. d
53. 88.68% 63. 𝑦𝑦 = (
ℎ√𝜇𝜇1 73. a, b
√𝜇𝜇1 +√𝜇𝜇2 )
54. 288 64. 2.231 mm 74. c, d
55. 8.58 mm 65. d 75. a
56. (a) y = 0.6 mm, 66. d 76. b, c, d
(b) F = 1.62 N

57. 𝑇𝑇 = 𝜋𝜋𝜋𝜋𝜋𝜋𝑟𝑟0 ⁄2ℎ sin 𝜃𝜃 67. b 77. a, c

58. 𝑉𝑉1 = 0.714 𝑚𝑚/𝑠𝑠 68. c


𝐹𝐹 = 142.85 𝑁𝑁
59. 𝑉𝑉 = 0.483 𝑚𝑚/𝑠𝑠 69. b
𝑉𝑉1 = 0.333 𝑚𝑚/𝑠𝑠
𝑉𝑉2 = 0.383 𝑚𝑚/𝑠𝑠

60. 𝑘𝑘 = 9.81 × 10−9 70. d


𝑡𝑡 = 0.0235 𝑠𝑠𝑠𝑠𝑠𝑠
Chapter 2: Fluid sta�cs
1. a 11. d 21. b 31. d 41. c
2. b 12. d 22. b 32. 154.53N 42. b
3. c 13. b 23. c 33. a 43. d
4. d 14. d 24. a 34. b 44. c
5. b 15. b 25. c 35. a 45. d
6. d 16. a 26. a 36. a 46. c
7. d 17. d 27. a 37. c 47. x = 2√3
8. c 18. a 28. d 38. d 48. b
9. b 19. b 29. d 39. c 49. b
10. b 20. a 30.c 40. a 50. 7.704 N

51. 5313. 87 N 61. F = 64.198 kN 71. Botom of Cube = 4.453 cm


Liquid surface = 10.837 cm
52. 865 kg/𝑚𝑚3 62. (i) F = 69.343 kN 72. 𝐻𝐻𝑏𝑏 = 1.947 𝑐𝑐𝑐𝑐
(𝑖𝑖𝑖𝑖) ℎ𝑐𝑐𝑐𝑐 = 3.104 𝑚𝑚 𝐿𝐿 = 37.93 𝑐𝑐𝑐𝑐
53. 2.2 kPa 63. 𝐹𝐹𝑅𝑅 = 55.098 𝑘𝑘𝑘𝑘 𝐻𝐻 1
73. <
𝐷𝐷 �8𝑠𝑠(1−𝑠𝑠)
54. 65.49 kN 64. 𝐹𝐹𝑅𝑅 = 95.33 𝑘𝑘𝑘𝑘 74. NA
𝜃𝜃 = 40.170
55. F = 92.457 kN, 65. 𝐹𝐹𝑅𝑅 = 28.846 𝑘𝑘𝑘𝑘 75. NA
ℎ𝑐𝑐𝑐𝑐 = 3.083 𝑚𝑚
56. 52.222 kN, 1m 66. 38.769 kPa 76. 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 1.246 𝑘𝑘𝑘𝑘𝑘𝑘

57. F = 88.29 kN, 67. 9.565 kPa 77. (i) 𝑊𝑊 = 𝐹𝐹𝑣𝑣 = 4444.77 𝑁𝑁
ℎ𝑐𝑐𝑐𝑐 = 2 𝑚𝑚 (ii) 𝐹𝐹𝐴𝐴 = 𝐹𝐹𝐻𝐻 = 662.17 𝑁𝑁
(iii) zero
58. F = 29.314 kN, 68. -1.119 kN 78. 𝐹𝐹𝐻𝐻 = 82.404 𝑘𝑘𝑘𝑘
ℎ𝑐𝑐𝑐𝑐 = 1.512 𝑚𝑚 𝐹𝐹𝑣𝑣 = 75.68 𝑘𝑘𝑘𝑘
59. (𝑅𝑅𝐵𝐵 )𝑥𝑥 = 353.16 𝑘𝑘𝑘𝑘 69. 60.67 kN 79. 𝐹𝐹 = 7.236 𝑘𝑘𝑘𝑘
(𝑅𝑅𝐵𝐵 )𝑦𝑦 = 1109.485 𝑘𝑘𝑘𝑘
𝐹𝐹𝐴𝐴 = 353.16 𝑘𝑘𝑘𝑘
60. 𝐹𝐹𝑣𝑣 = 0.463 𝑁𝑁 70. 𝐹𝐹𝑅𝑅 = 79.25 𝑘𝑘𝑘𝑘; 𝜃𝜃 = 7.9860 80. 𝐹𝐹𝑣𝑣 = 59.028 𝑘𝑘𝑘𝑘

81. (a) 𝐹𝐹𝑅𝑅 = 441.45 𝑘𝑘𝑘𝑘 90. a 99. a, b, d


(b) 𝐹𝐹𝐻𝐻 = 264.87 𝑘𝑘𝑘𝑘; 𝐹𝐹𝑉𝑉 = 353.16 𝑘𝑘𝑘𝑘
82. ℎ = 15.17 𝑐𝑐𝑐𝑐; 𝐻𝐻 = 2.043 𝑚𝑚 91. b 100. c
83. ℎ = 1.346 𝑚𝑚 92. d 101. c, d
84. c 93. b 102. b, d
85. b 94. b 103. a, b, c
86. d 95. a, b, d 104. a, b, c, d
87. c 96. b, c
88. b 97. a, b, c, d
89. a 98. a, b, d
Chapter 3: Fluid kinema�cs
1. d 11. d 21. d 31. b 41. a
2. c 12. b 22. b 32. b 42. b
3. b 13. a 23. a 33. c 43. b
4. c 14. c 24. c 34. a 44. d
5. d 15. b 25. d 35. b 45. d
6. correc�on 16. c 26. a 36. d 46. d
7. b 17. d 27. b 37. c 47. correc�on
8. d 18. a 28. c 38. d 48. a
9. d 19. a 29. b 39. c 49. d
10. c 20. d 30. d 40. a 50. d

51. b 61. 2√2 71. (i) Not possible


(ii) Not possible
52. a 62. 3 72. 𝑢𝑢 =
−4𝑥𝑥 3 𝑦𝑦

9𝑦𝑦 2 𝑥𝑥 3
3 2
3 2
−2𝑥𝑥 𝑦𝑦 3
𝜓𝜓 = − 𝑦𝑦 3 𝑥𝑥 2 + 𝐶𝐶
3 2
53. a 63. (0.508, -2.08) 73. 𝐴𝐴 + 𝐸𝐸 + 𝐽𝐽 = 0
54. 23 64. 1.2 m/s 3
74. 𝑈𝑈 = 2 𝐴𝐴𝑥𝑥 2 𝑦𝑦 2 −
𝐴𝐴𝑥𝑥 4
4
55. 260 65. 0.453 m/𝑠𝑠 2 75.
Face Discharges (Q)
0abc 0
0ade 0
0cgd 0
abfe -80 (in)
bcgf 40 (out)
defg 40 (out)
56. -0.0566 66. 𝜔𝜔̇ 𝑥𝑥 = 𝜔𝜔̇ 𝑦𝑦 = 0, 𝜔𝜔̇ 𝑧𝑧 = −𝑤𝑤0 ; Ω𝑥𝑥 = Ω𝑦𝑦 = 76. 𝑎𝑎 = 420.59 𝑚𝑚/𝑠𝑠 2
0, Ω𝑧𝑧 = −2𝑤𝑤0
𝜀𝜀̇𝑥𝑥𝑥𝑥 = 𝑐𝑐, 𝜀𝜀̇𝑦𝑦𝑦𝑦 = 𝑐𝑐, 𝜀𝜀̇𝑧𝑧𝑧𝑧 = −2𝑐𝑐; 𝛾𝛾̇𝑥𝑥𝑥𝑥 = 2𝑤𝑤0 , 𝛾𝛾̇𝑦𝑦𝑦𝑦
= 𝛾𝛾̇𝑥𝑥𝑥𝑥 = 0
57. 800 2𝑢𝑢0𝑥𝑥 2𝑢𝑢0 𝑡𝑡 𝐿𝐿 77. -3 unit
67. (i) 𝑎𝑎𝑓𝑓 = 𝜌𝜌 ; (ii) 𝑡𝑡 = ln 3
𝐿𝐿 𝐿𝐿 2𝑢𝑢0
58. 0.233 𝑚𝑚3 /s 68. 𝑉𝑉𝑟𝑟 =
𝑉𝑉0 𝑟𝑟 3𝑣𝑣 2 𝑟𝑟
; 𝑎𝑎𝑟𝑟 = 02 78. (i) valid
2ℎ 4ℎ (ii) Not valid
59. 12 69. (i) -12.01 ; (ii) -24.896 79. 𝜙𝜙 = 10𝑥𝑥 2 𝑦𝑦 3 − 5𝑥𝑥 4 𝑦𝑦 − 𝑦𝑦 5 + 𝐶𝐶
60. 92 70. 𝑥𝑥 2 𝑦𝑦 = 8, 𝑦𝑦(5 − 𝑧𝑧)2 = 32 80. 𝜓𝜓 = 2𝐴𝐴𝐴𝐴𝐴𝐴 +
𝐵𝐵�𝑦𝑦 2 −𝑥𝑥 2 �
+ 𝐶𝐶
2
𝑦𝑦 4 𝑥𝑥 4
81. 𝜓𝜓 = 12 + 12 + 2𝑥𝑥𝑥𝑥 −
𝑥𝑥 2 𝑦𝑦 2
+ 𝐶𝐶 91. 2.4 unit 101. d 111. b, c
2
82. 𝑑𝑑𝑑𝑑
92. 𝑑𝑑𝑑𝑑 =1.204 mm/s 102. c 112. a, b
83. 93. 103. 113.
84. 94. (a) =
𝑑𝑑ℎ 𝑄𝑄1 +𝑄𝑄2 +𝑄𝑄3 104. 114.
𝑑𝑑𝑑𝑑 𝐴𝐴
(b) 4.13 m/s
85. 95. 105. 115.
86. 96. ℎ =
3𝑑𝑑 2 𝑘𝑘
�8𝑡𝑡𝑡𝑡𝑡𝑡2 𝜃𝜃� . 𝑡𝑡 2/3 106. 116. a
87. 97. b 107. 117.
88. 98. d 108. 118.
89. 99. d 109. a, b, c, d 119.
90. 𝜓𝜓 = −2𝑥𝑥𝑥𝑥 + 𝐶𝐶; Discharge = zero 100. 110.
Chapter 4: Fluid Dynamics and flow Measurements
1. a 11. b 21. d 31. a 41. 13.58 cm
2. d 12. c 22. d 32. c 42. 1003 Pa
3. b 13. 16.59 23. c 33. c 43. 𝑃𝑃𝑀𝑀 = 𝑃𝑃𝑁𝑁 = 3.06 𝑘𝑘𝑘𝑘𝑘𝑘
𝑃𝑃𝑆𝑆 = 0.844 𝑘𝑘𝑘𝑘𝑘𝑘
4. b 14. a 24. a 34. b 44. 𝑃𝑃𝑀𝑀 = 𝑃𝑃𝑁𝑁 = 3.06 𝑘𝑘𝑘𝑘𝑘𝑘
𝑃𝑃𝑆𝑆 = −5.80𝑘𝑘𝑘𝑘𝑘𝑘
5. c 15. a 25. b 35. c 45. 𝑄𝑄 = 4.91 × 10−4 𝑚𝑚2 /𝑠𝑠
6. c 16. d 26. b 36. 46. 𝐶𝐶𝑑𝑑 = 0.982
7. c 17.b 27. b 37. 1.21 47. 4.22 cm
8. d 18. c 28. b 38. 73.18 kPa 48. (a) 44.114 kPa
(b) 𝑥𝑥 = 0.337 𝑚𝑚
9. 19. d 29. a 39. 1.91 49. B → A
10. 20. c 30. a 40. 161.45 kW 50. 0.96

51. 0.0538 𝑚𝑚2 /𝑠𝑠 61. 289.01 rpm


52. N=445.86 rpm 62. (i) 32.855 kPa; (ii) 0.2124 m
53. 𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐵𝐵 = 28.125 𝑘𝑘𝑘𝑘𝑘𝑘 63. 91.605 HP
54. (a) inner wall: 64. 36.19 kW
𝑎𝑎𝑛𝑛 = −240 𝑚𝑚/𝑠𝑠 2 ; 𝑎𝑎𝑡𝑡 = 0 𝑚𝑚/𝑠𝑠 2
Outer wall:
𝑎𝑎𝑛𝑛 = −8.89 𝑚𝑚/𝑠𝑠 2 ; 𝑎𝑎𝑡𝑡 = 0 𝑚𝑚/𝑠𝑠 2
(b) Pressure gradient normal to streamline:
𝜕𝜕𝜕𝜕
� � = 240 𝑘𝑘𝑘𝑘𝑘𝑘/𝑚𝑚
𝜕𝜕𝜕𝜕 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕
� � = 8.89 𝑘𝑘𝑘𝑘𝑘𝑘/𝑚𝑚
𝜕𝜕𝜕𝜕 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
(c) 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 16 𝑘𝑘𝑘𝑘𝑘𝑘

55. 𝑉𝑉2 ≥
�2𝑔𝑔ℎ 65. 0.0658 𝑚𝑚3 /𝑠𝑠
4
��𝐷𝐷2 � −1
𝐷𝐷1

56. (a) 𝜓𝜓 = 2
𝐵𝐵𝑥𝑥 2 𝑦𝑦 3 66. (𝑖𝑖) 𝑃𝑃1 − 𝑃𝑃2 = 34.534 𝑘𝑘𝑘𝑘𝑘𝑘
(𝑖𝑖𝑖𝑖) 𝑥𝑥 = 0.2656 𝑚𝑚
(b) 𝜉𝜉 = −𝐵𝐵𝑦𝑦 3 − 2𝐴𝐴𝑥𝑥 2 𝑦𝑦
(c)
57. 48 kPa 67.
58. (a) 29.91 rpm 68.
(b) 36.63 rpm
(c) 5.82 𝑚𝑚2
(d) 6.28 𝑚𝑚2
59. (i) 21.78 kPa 69.
(ii) -7.157 kPa
60. (i) 0.503 m; (b) 0.1153 𝑚𝑚2 70.
Chapter 5: Boundary Layer Theory
1. a 11. c 21. c 31. c 41. c
2. c 12. 22. c 32. b 42. c
3. b 13. d 23. b 33. b 43. 0.0159 N
4. d 14. d 24.d 34. a 44. 13.856 mm
5. a 15. d 25. c 35. c 45. 1/3
6. c 16. a 26. c 36. b 46. 1.75 N
7. b 17.b 27. d 37. a 47. 2.59 mm
8. b 18. c 28. a 38. d 48. 1.741
9. c 19. c 29. Typing error 39. 49. L/4
10. a 20. d 30. a 40. 50. 𝑃𝑃1 − 𝑃𝑃2 = 5.40 Pa
Frac�on = 0.0159

51. 𝑃𝑃1 − 𝑃𝑃2 = 13.087 Pa 61. c


𝑢𝑢2 = 25.518 𝑚𝑚/𝑠𝑠
𝑑𝑑𝑑𝑑 𝜇𝜇 62. d
52. (a) = 2.4�
𝑑𝑑𝑑𝑑 𝜌𝜌𝜇𝜇∞ 𝑥𝑥
𝜇𝜇𝜇𝜇
(b) 𝛿𝛿 ∗ = 12.024�
𝜌𝜌𝜇𝜇∞
2 𝐿𝐿𝐿𝐿
0.65 𝜌𝜌𝜇𝜇∞
(c) 𝐹𝐹𝐷𝐷 =
𝑅𝑅𝑒𝑒𝐿𝐿
53. (a) 𝛿𝛿 = 1.694 𝑚𝑚𝑚𝑚 63. a, c
𝑑𝑑𝑑𝑑 −3
(b) = 5.648 × 10
𝑑𝑑𝑑𝑑
(c) ����
𝐶𝐶𝑓𝑓𝐿𝐿 = 2.128 × 10−3
54. 𝑚𝑚𝑎𝑎𝑎𝑎 = 0.01476 kg/sec 64. b, d
𝐹𝐹 = 0.177 𝑁𝑁
55. (i) adheres 65. a, b, c
(ii) adheres
(iii) at verge of separa�on

56. F = 0.3578 N 66. a, b, c, d


𝛿𝛿= 12.17 cm
57. d
58. b
59. b
60. c
Chapter 6: Laminar Flow
1. b 11. a 21. d 31. (i) 𝑄𝑄 = 0.1 𝑚𝑚3 ⁄𝑠𝑠 41. b, c, d
(ii) 𝜏𝜏 = 120 𝑁𝑁/𝑚𝑚2
𝑑𝑑𝑑𝑑
(iii) = −2400 𝑃𝑃𝑃𝑃/𝑚𝑚
𝑑𝑑𝑑𝑑
2. d 12. d 22. b 32. (a) 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 = 0.675 𝑚𝑚/𝑠𝑠 42. a, b, c
(b) 𝑢𝑢 = 0.3375
(c) 𝑄𝑄 = 3.817 × 10−3 𝑚𝑚3 ⁄𝑠𝑠
3. a 13. b 23. 6840 33. (a) 𝜏𝜏𝑤𝑤 = 8.32 𝑃𝑃𝑃𝑃
(b) 𝜏𝜏 = 5.548 𝑃𝑃𝑃𝑃
(c) 𝑓𝑓 = 0.03627
4. c 14. a 24. 1.82 34. c
5. b 15. b 25. 100 35. b
6. c 16. a 26. 4.68 × 10−4 𝑚𝑚3 ⁄𝑠𝑠 36. c
7. c 17. a 27. 2 37. b
8. c 18. a 28. 0.293 R 38. c
9. c 19. d 29. t=
128 𝜇𝜇𝜇𝜇𝜇𝜇 𝐻𝐻
ln �𝐻𝐻1 � 39. a, c, d
𝜋𝜋𝐷𝐷 4 𝑟𝑟 2
10. b 20. c 30. (a) 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 = 2.1 𝑚𝑚/𝑠𝑠 40. a, b, d
(b) 𝜏𝜏 = 73.5 𝑃𝑃𝑃𝑃
(c) 𝑣𝑣 = 1.167 𝑚𝑚/𝑠𝑠
𝜏𝜏 = 49 𝑃𝑃𝑃𝑃
(d) ℎ𝐿𝐿 = 34 𝑚𝑚
Chapter 7: Pipe Flow
1. d 11. d 21. d 31. 11.67 cm 41. Q = 0.055 𝑚𝑚3 ⁄𝑠𝑠
(ℎ𝐿𝐿 )𝐴𝐴𝐴𝐴 = 24.87 m
2. a 12. a 22. c 32. 0.376 𝑚𝑚3 ⁄𝑠𝑠 42. 𝑄𝑄 = 0.0475 𝑚𝑚3 ⁄𝑠𝑠
3. d 13. incomplete ques�on 23. d 33. (i) 0.404 𝑚𝑚3 ⁄𝑠𝑠 43. (a) 𝑄𝑄1 = 0.023 𝑚𝑚3 ⁄𝑠𝑠
(ii) 0.482 m 𝑄𝑄2 = 0.0133 𝑚𝑚3 ⁄𝑠𝑠
(b) 2.17 MPa
4. d 14. incomplete ques�on 24.d 34. (i) 𝐿𝐿𝑒𝑒𝑒𝑒 = 4318.22 m 44. 26.5%
(ii) 𝐷𝐷𝑒𝑒𝑒𝑒 = 38.57 cm
5. d 15. a 25. b 35. 26.48% 45. 0.14 𝑚𝑚3 ⁄𝑠𝑠
6. a 16. b 26. c 36. 0.182 𝑚𝑚3 ⁄𝑠𝑠 46. 𝑉𝑉1⁄𝑉𝑉2 = 0.5
7. d 17. c 27. d 37. d = 0.168 m 47. A → B
4.314 kW
8. b 18. b 28. 0.0438 38. same as Q36 48. 𝑄𝑄 = 97.25 𝑚𝑚3 ⁄ℎ𝑟𝑟
𝑚𝑚3 ⁄𝑠𝑠
9. a 19. c 29. 0.968 m 39. same as Q37 49. 7.75%
10. c 20. c 30. 0.131 40. L = 483.291 m 50. c
𝑚𝑚3 ⁄𝑠𝑠 Q = 0.119 𝑚𝑚3 ⁄𝑠𝑠

51. d
52. c
53. b
54. a, c, d
55. a, b
56. b, d
57. a, b, c
Chapter 8 Dimensional Analysis
1. a 11. a 21. Proof 31. b, c, d
2. a 12. b 22. 250 N; 4.167 kW
3. d 13. b 23. 5.659 m/s; 0.1 𝑚𝑚3 ⁄𝑠𝑠
4. c 14. 7.5 m/s 24. 8.103 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 ; 1.053 kN
5. c 15. 7.95 m/s 25. b
6. a 16. 0.96 𝑚𝑚3 ⁄𝑠𝑠 26. b
7. b 17. 39.22 rev/s; 27. c
0.933 Nm
8. d 18. 7.82 m/s; 28. d
322 N
9. d 𝑙𝑙 29. a, b, c, d
19. 𝜏𝜏 = 𝐴𝐴�
𝑔𝑔
𝑎𝑎
10. b ℎ 𝜌𝜌𝜌𝜌𝐷𝐷 2 30. a, c, d
20. 𝐷𝐷 = 𝐴𝐴 � 𝜎𝜎
� 𝜙𝜙

Chapter 9
1. a 11. c 21. d 31. 5.57% 41. (a) 1.556 kW
(b) 63.16 km/h
2. d 12. a 22. b 32. 0.54 𝐷𝐷 2 �𝛾𝛾𝑠𝑠 −𝛾𝛾𝑓𝑓 �
42. (a) 𝑉𝑉0𝑡𝑡 = 18𝜇𝜇
1/2
4 𝑔𝑔𝑔𝑔 𝜌𝜌𝑠𝑠
(b) 𝑉𝑉0𝑡𝑡 = � � − 1��
3 𝐶𝐶𝐷𝐷 𝜌𝜌𝑓𝑓
3. d 13. b 23. a 33. 65.74 kN 43. b
4. a 14. a 24. d 34. (a) -4.493 Pa 44. c
(b) 0.141 mm
(c) 25.3 L/s;
0.0192
5. b 15. d 25. a 35. (a) 1.14 mm 45. b
(b) 42. 79 Pa
(c)14.26 Pa;
5.177 𝑠𝑠 −1
6. d 16. a 26. c 36. 7.585 m/s 46. b
7. d 17. c 27. 0.212 𝑚𝑚3 /𝑠𝑠 37. (a) 1.20223 V
(b) 1.14297
8. b 18. b 28. 4.762m; 3.30 kW 38. 1.406 N; 0.717
9. a 19. c 29. 0.0234 39. 680 ; 0.3725 N
10. b 20. c 30. 8.42 40. (a) D = 3 m
(b) 7.6 N
Chapter 10
1. c 11. 595 N 21. 1.18 kN
2. d 12. 0.772 m 22. 136 N
3. b 13. incomplete data 23. 𝐹𝐹𝑅𝑅𝑅𝑅 = -733 N; 𝐹𝐹𝑅𝑅𝑅𝑅 = 93.1 N
4. a 14. 5564 N 24. -668 N
5. b 15. 24.844 kN 25. (a) 171 rpm; (b) 2.145 Nm
6. d 16. 483.8 rpm 26. (i) 35.81 rpm; (ii) 0.702 Nm
7. a 17. F = 111 N
8. a 18. 33.1 KN
9. c 19. 732 m/s
10. d 20. 74.2 kN; 50.2%

Chapter 11
1. 11. 21. 31. 41.
2. 12. 22. 32. 42.
3. 13. 23. 33. 43.
4. 14. 24. 34. 44.
5. 15. 25. 35. 45.
6. 16. 26. 36. 46.
7. 17. 27. 37. 47.
8. 18. 28. 38. 48.
9. 19. 29. 39. 49.
10. 20. 30. 40. 50.

51. 61. 71. 81. 91.


52. 62. 72. 82. 92.
53. 63. 73. 83. 93.
54. 64. 74. 84. 94.
55. 65. 75. 85. 95.
56. 66. 76. 86. 96.
57. 67. 77. 87. 97.
58. 68. 78. 88. 98.
59. 69. 79. 89. 99.
60. 70. 80. 90. 100.

You might also like