1.
2 Bisection Method
       If a function f ( x ) is continuous between a and b, and f ( a )∧f ( b ) are of
opposite signs then there exists at least one root between a and b. Let f ( a ) be
negative and f ( b ) be positive, then the root lies between a and b and the
                                        ( a+b)
approximate value is given by x 0=
                                           2
        If f ( x 0 ) =0then the x 0is the root, otherwise the root lies between x 0∧b∨a∧x 0 ,
depending on whether f (x¿ ¿ 0) ¿ is negative or positive, respectively. Then as
before, we bisect the interval and repeat the process until the root is known to the
desired accuracy.
Examples:
Find the root of the given functions of x. Use 1 x 10−5 as the tolerance.
         1. f(x) = x 3+ 3 x −11
                 a                  b                   x0             f (x¿ ¿ 0) ¿
                         1.7                 1.8                1.75        -0.390625
                        1.75                 1.8               1.775     -0.082640625
                       1.775                 1.8              1.7875      0.073841797
                       1.775              1.7875             1.78125     -0.004608154
                     1.78125              1.7875         1.784375         0.034564545
                     1.78125            1.784375        1.7828125         0.014965137
                     1.78125        1.7828125          1.78203125         0.005175229
                     1.78125       1.78203125         1.781640625         0.000282722
                     1.78125      1.781640625         1.781445313         -0.00216292
               1.781445313        1.781640625         1.781542969        -0.000940147
               1.781542969        1.781640625         1.781591797        -0.000328726
               1.781591797        1.781640625         1.781616211      -2.30052 x 10−5
               1.781616211        1.781640625         1.781628418         0.000129857
               1.781616211        1.781628418         1.781622315      5.34259 x 10−5
               1.781616211        1.781622315         1.781619263      1.52135 x 10−5
               1.781616211        1.781619263       1.781617737        -3.89586 x 10−6
         2. f(x) = 10 x 5−3 x3 −11 x2 −5
                 a                  b                   x0             f (x¿ ¿ 0) ¿
                         1.2                 1.3                1.25      2.470703125
                         1.2                1.25               1.225       0.56380166
                         1.2               1.225              1.2125     -0.312929391
                      1.2125               1.225             1.21875       0.11922282
                      1.2125             1.21875         1.215625        -0.098393308
           1.215625              1.21875      1.2171875         0.010028093
           1.215625         1.2171875        1.21640625        -0.044279066
      1.21640625            1.2171875       1.216796875        -0.017149627
     1.216796875            1.2171875       1.216992188        -0.003566806
     1.216992188            1.2171875       1.217089844         0.003229151
     1.216992188           1.21789844       1.217445314         0.027991966
     1.216992188          1.217445314       1.217218751         0.012204467
     1.216992188          1.217218751        1.21710547         0.004316816
     1.216992188           1.21710547       1.217048829         0.000374532
     1.216992188          1.217048829       1.217020509        -0.001596246
     1.217020509          1.217048829       1.217034669        -0.000610871
     1.217034669          1.217048829       1.217041749        -0.000118177
     1.217041749          1.217048829       1.217045289         0.000128175
     1.217041749          1.217045289      1.217043519       4.99846 x 10−6
3. f(x) = x 2−5 sinx−11
       a                    b                 x0             f (x¿ ¿ 0) ¿
                3.2                  3.3              3.25      0.103475673
                3.2                 3.25             3.225     -0.182821639
              3.225                 3.25            3.2375     -0.039791827
             3.2375                 3.25           3.24375      0.031812819
             3.2375              3.24375       3.240625        -0.003996856
           3.240625              3.24375      3.2421875         0.013906153
           3.240625             3.241875           3.24125      0.003163908
           3.240625              3.24125      3.2409375        -0.000416548
       3.2409375                 3.24125     3.24109375         0.001373662
       3.2409375           3.24109375       3.241015625         0.000478553
       3.2409375          3.241015625       3.240976563      3.10014 x 10−5
       3.2409375          3.240976563       3.240957032         -0.00019277
     3.240957032          3.240976563       3.240966798      -8.08789 x 10−5
     3.240966798          3.240976563       3.240971681      -2.49331 x 10−5
     3.240971681          3.240976563      3.240974122       3.03988 x 10−6