Introduction to Digital Signal
Processing (DSP)
    Mata Kuliah: Pengolahan Sinyal Digital
               Nanang Ismail
           What is Digital Signal Processing?
Digital: operating by the use of discrete signals to
  represent data in the form of numbers
Signal: a parameter (electrical quantity or effect) that can
  be varied in such a way as to convey information
Processing: a series operations performed according to
  programmed instructions
                     changing or analysing information
                     which is measured as discrete
                     sequences of numbers
               The Journey
“Learning digital signal processing is not something
you accomplish; it’s a journey you take”.
                  R.G Lyons, Understanding Digital Signal processing
        Applications of DSP - Radar
Radar and Sonar:
          Examples
            1)target detection – position and
            velocity estimation
                             2) tracking
          Applications of DSP - Biomedical
Biomedical: analysis of biomedical signals,
            diagnosis, patient monitoring,
            preventive health care, artificial
            organs
                  Examples:
                  1)electrocardiogram (ECG) signal – provides
                  doctor with information about the condition of
                  the patient’s heart
2)electroencephalogram (EEG) signal – provides
Information about the activity of the brain
              Applications of DSP - Speech
Speech applications:
Examples
1) noise reduction – reducing background noise
  in the sequence produced by a sensing device (microphone)
                        2)speech recognition – differentiating
                        between various speech sounds
  3) synthesis of artificial speech – text to speech
  systems for blind
       Applications of DSP - Communications
Communications:
Examples
 1) telephony – transmission of information in digital form via
               telephone lines, modem technology, mobile phones
   2) encoding and decoding of the information
   sent over a physical channel (to optimise
   transmission or to detect or correct errors in
   transmission)
      Applications of DSP – Image Processing
Image Processing:
Examples
 1)content based image retrieval – browsing,
  searching and retrieving images from database
                     2) image enhancement
  2) compression - reducing the redundancy in
  the image data to optimise transmission /
  storage
             Applications of DSP – Music
Music Applications:
                            Examples:
                                   1) Recording
   2) Playback
                     3) Manipulation (mixing, special effects)
     Applications of DSP - Multimedia
Multimedia:
                   generation storage and
                   transmission of sound, still
                   images, motion pictures
                Examples:
                1) digital TV
         2) video conferencing
             DSP Implementation - Operations
To implement DSP we must be able to:
     Input      Digital             Digital
                Signal              Signal
                          DSP
                                              Output
1) perform numerical operations including, for
   example, additions, multiplications, data transfers
   and logical operations
either using computer or special-purpose hardware
                            DSP chips
• Introduction of the microprocessor in the late 1970's and
  early 1980's meant DSP techniques could be used in a
  much wider range of applications.
                                           DSP chip – a programmable
                                           device, with its own native
                                           instruction code
                                           designed specifically to meet
                                           numerically-intensive
                                           requirements of DSP
                                           capable of carrying out
                                           millions of floating point
   Bluetooth   Household    Home theatre
   headset     appliances   system         operations per second
 DSP Implementation – Digital/Analog Conversion
To implement DSP we must be able to:
                  Digital                      Digital                      Analog
                  Signal                       Signal                       Signal
                                DSP                      Reconstruction
2) convert the digital information, after being processed
   back to an analog signal
        - involves digital-to-analog conversion & reconstruction
                                    (recall from 1B Signal and Data Analysis)
e.g. text-to-speech signal (characters are used to generate artificial
     sound)
     DSP Implementation –Analog/Digital Conversion
To implement DSP we must be able to:
Analog                Digital                     Digital
Signal                Signal                      Signal
         Sampling                   DSP
3) convert analog signals into the digital information
          - sampling & involves analog-to-digital conversion
                                    (recall from 1B Signal and Data Analysis)
e.g. Touch-Tone system of telephone dialling (when button is
     pushed two sinusoid signals are generated (tones) and
     transmitted, a digital system determines the frequences and
     uniquely identifies the button – digital (1 to 12) output
                          DSP Implementation
To implement DSP we must be able to:
Analog              Digital                 Digital                    Analog
Signal              Signal                  Signal                     Signal
         Sampling              DSP                    Reconstruction
    perform both A/D and D/A conversions
e.g. digital recording and playback of music (signal is sensed by
    microphones, amplified, converted to digital, processed, and
    converted back to analog to be played
                                                                       17
                               Limitations of DSP - Aliasing
Most signals are analog in nature, and have to be sampled
           loss of information
• we only take samples of the signals at intervals and
  don’t know what happens in between
                                        aliasing
                                                                                    cannot distinguish between
                                                                                    higher and lower frequencies
                                                                                           (recall from 1B Signal
                                                                                           and Data Analysis)
                                                                                    Sampling theorem: to avoid
                                                                                    aliasing, sampling rate must be
                                                                                    at least twice the maximum
                                                                                    frequency component
                                                                                    (`bandwidth’) of the signa1l8
   Gjendemsjø, A. Aliasing Applet, Connexions, http://cnx.org/content/m11448/1.14
                   Limitations of DSP - Antialias Filter
          • Sampling theorem says there is enough information to
            reconstruct the signal, which does not mean sampled signal looks
            like original one
                                                  correct reconstruction is not just connecting
                                              samples with straight lines
                                              needs antialias filter (to filter out all high frequency
                                              components before sampling) and the same for
                                              reconstruction – it does remove information though
Each sample
is taken at a
slightly earlier          (recall from 1B Signal
part of a cycle           and Data Analysis)
                                                                            19
   Limitations of DSP – Frequency Resolution
Most signals are analog in nature, and have to be sampled
           loss of information
• we only take samples for a limited period of time
                                   limited frequency
                                   resolution
                                   does not pick up “relatively”
                                   slow changes
    (recall from 1B Signal
    and Data Analysis)                                      20
     Limitations of DSP – Quantisation Error
Most signals are analog in nature, and have to be sampled
            loss of information
• limited (by the number of bits available) precision in data
  storage and arithmetic
                                     quantisation error
                                     smoothly varying signal
                                     represented by “stepped”
                                     waveform
                                      (recall from 1B Signal
                                      and Data Analysis)       21
 Advantages of Digital over Analog Signal Processing
Why still do it?
• Digital system can be simply reprogrammed for other
  applications / ported to different hardware / duplicated
  (Reconfiguring analog system means hadware redesign, testing, verification)
• DSP provides better control of accuracy requirements
  (Analog system depends on strict components tolerance, response may drift with
  temperature)
• Digital signals can be easily stored without deterioration
  (Analog signals are not easily transportable and often can’t be processed off-line)
• More sophisticated signal processing algorithms can be
  implemented
   (Difficult to perform precise mathematical operations in analog form)
                                                                               22
Keuntungan Pemrosesan sinyal secara digital
 Untuk menyimpan hasil pengolahan, sinyal digital lebih mudah dibandingkan sinyal analog.
 Untuk media penyimpan digital dapat digunakan elemen memori: flash memory, CD/DVD, hard disk.
 Untuk menyimpan sinyal analog dapat digunakan pita tape magnetik.
 Sinyal digital kebal terhadap noise, karena bekerja pada level tegangan logika “1” dan “0”
 Lebih kebal terhadap perubahan temperatur.
 Lebih mudah memprosesnya, secara teori tidak ada batasannya, tergantung dari kreativitas dan inovasi
   perancang.
Kelemahan sinyal digital
 Dapat Terjadi kehilangan informasi akibat pembulatan saat kuantisasi dan filtering saat pembalikan kembali
   ke sinyal analog.
 Diperlukan waktu proses yang lebih lama dibandingkan sinyal analog, perlu waktu sampling dan rekonstruksi
   ulang
Perbandingan pengolahan sinyal
       SINYAL, SISTEM DAN PEMROSESAN SINYAL
 Sinyal
   Besaran-besaran yang tergantung pada waktu dan ruang
   Besaran fisis/non fisis (variabel tak bebas)
   Waktu dan ruang (variabel bebas)
                  s1 (t )  5 t
                  s2 (t )  20 t   2
                  s3 ( x, y )  3 x  2 xy  10 y   2
         Sinyal-sinyal dengan hubungan matematis yang jelas
 Suara pembicaraan (speech signals)
      Sinyal –sinyal dengan hubungan matematis yang tidak jelas
 Suatu segmen dari suara pembicaraan dapat
  direpresentasikan sebagai :
    Sejumlah sinyal sinusoidal dengan amplituda,
     frekuensi dan fasa yang berbeda
                N
      s( t )   A i ( t ) sin [2 Fi ( t ) t  i ( t )]
               i 1
 Informasi yang terkandung di dalam suatu sinyal
  ditentukan dengan mengukur :
    Amplituda(A)
    Frekuensi(F)
    Fasa()
 Sinyal electrocardiogram (ECG)
    Sinyal elektronik yang berasal dari aktivitas jantung
    Informasi mengenai kondisi dari jantung pasien
 Sinyal electroencephalogram (EEG)
    Sinyal elektronik yang berasal dar aktivitas otak
    Sinyal-sinyal , ,  dan 
 Sinyal-sinyal dengan satu variabel bebas (waktu)
    Suara pembicaraan, ECG dan EEG
 Sinyal dengan dua variabel bebas (ruang)
    Gambar (image signal)
 Sistem
     Alat fisik yang melakukan suatu operasi pada suatu sinyal
          Filter
          Mereduksi (mengurangi) derau (noise)
     Alat non fisik
          Software (perangkat lunak)
          Melakukan sejumlah operasi-operasi matematik
          Algoritma
 Pemrosesan sinyal (Signal processing)
   Operasi-operasi yang dilakukan pada suatu sinyal
         ELEMEN-ELEMEN DASAR DARI Pemrosesan Sinyal
  Sistem pemrosesan sinyal analog
           Sinyal          Pemroses         Sinyal
           input           sinyal           output
           analog          analog           analog
  Sistem pemrosesan sinyal digital
Sinyal          A/D        Pemroses      D/A            Sinyal
input                      sinyal                       output
analog       Converter     digital    Converter         analog
    Sinyal input digital              Sinyal output digital
SIMBOL OPERASI
PENGOLAHAN SINYAL
Pembagian Sinyal
 Sinyal dibagi berdasarkan beberapa kriteria:
 1.   Kanal dan Dimensi
 2.   Periodisitas
 3.   Keacakan
 4.   Sinyal Ganjil dan Genap
 5.   Energi dan Daya
 6.   Amplitudo (nilai) dan Waktu
                              KLASIFIKASI SINYAL
 Single-channel        signal
   Hanya terdiri dari satu sinyal (variabel tak bebas)
   Nilainya bisa real atau kompleks
   Monitor TV monochrome : sinyal 1 kanal
           s1 ( t )  A sin(3t )
                            j3t
           s 2 ( t )  Ae           A cos(3t )  jA sin(3t )
 Multi-channel        signal
   Lebih dari satu sinyal (variabel tak bebas)
        Gelombang gempa (3 channels)
        ECG (3 channels/12 channels)
        Monitor TV color: sinyal 3 kanal, RGB
           Gelombang gempa :
            Primary wave (Longitudinal)
            Secondary wave (Transversal)
            Surface wave (Permukaan)
                                                 Vektor
                                                     S1 ( t ) 
                                            S( t )  S2 ( t )
                                                      S3 ( t ) 
3 komponen kecepatan permukaan
 Sinyal satu dimensi
   Hanya fungsi dari satu variabel bebas
 Multi-dimensional signal
   Fungsi lebih dari satu variabel bebas
                                               S  I(x, y)
                                            Sinyal dua dimensi
 Sinyal tiga dimensi
   Gambar televisi hitam-putih
     S  I(x, y, t )
 Multichannel multidimensional signal
   Gambar televisi berwarna
                     I r ( x, y, t ) 
                                     
      I( x, y, t )  I g ( x, y, t )
                     I ( x, y, t )
                      b              
  Gambar diam (still image) : sinyal 2 dimensi
  Gambar bergerak : sinyal 3 dimensi : x, y, t
 Sinyal waktu kontinu
   Speech signal
 Sinyal waktu diskrit
   Hanya ada pada waktu-waktu tertentu saja
              0,8n n  0
     x (n )  
              0    lainnya
                                       0,8
                                             0,64
 Sinyal bernilai kontinu (Continuous-valued signal)
   Dapat berharga berapa saja
            Sinyal bernilai kontinu dan waktu diskrit
 Sinyal bernilai diskrit (Discrete-valued signal)
   Bernilai pada beberapa kemungkinan saja
 Sinyal digital
   Waktu diskrit
   Harga diskrit
                                           Sinyal Analog Vs Sinyal Digital
 Sinyal deterministik
   Nilainya dapat diprediksi
 Sinyal acak (random signal)
   Nilainya tidak dapat diprediksi
   keberadaanya bersifat probabilistik
Sinyal riil dan sinyal kompleks
  Sinyal riil merupakan sinyal yang bersifat riil untuk semua variabel.
  Sinyal kompleks merupakan sinyal yang mempunyai nilai yang kompleks, ada faktor
   nilai imajiner.
    Sinyal Riil :                                            Sinyal Komplek :
    XR (n) = 2n Cost n                                             x(n) = 2n ejn
Sinyal ganjil dan sinyal genap
 • Sinyal x(t) atau sinyal x(n) dikatakan sebagai sinyal genap jika :
              x(-t) = x(t)
              x(-n) = x(n)
 • Sinyal x(t) atau sinyal x(n) dikatakan sebagai sinyal ganjil jika :
               x(-t) = -x(t)
              x(-n) = -x(n)
Sinyal Kontinu Genap dan Sinyal Diskrit Genap    Sinyal Kontinu Ganjil dan Sinyal Diskrit Ganjil
Sinyal periodik dan sinyal non-periodik
 • Sinyal periodik yaitu sinyal yang mengalami pengulangan bentuk yang
   sama pada selang waktu tertentu. Secara matematis, sinyal waktu
   kontinyu dinyatakan periodik jika dan hanya jika :
              x(t+kT) = x(t)           untuk = - < t < 
   dimana : k adalah bilangan bulat, T adalah perioda sinyal.
 • Sinyal waktu diskrit dinyatakan periodik jika dan hanya jika :
              X(n+kN) = x(n)           untuk = - < n < 
   dimana : k adalah bilangan bulat, N adalah perioda sinyal
        Sinyal Periodik                               Sinyal Non-Periodik
Terimakasih