𝑑𝑦
2. = (𝑥 + 1)2
𝑑𝑥
𝑑𝑦 = (𝑥 + 1)2 𝑑𝑥
∫ 𝑑𝑦 = ∫(𝑥 + 1)2 𝑑𝑥
(𝑥 + 1)3
𝑦= +𝑐
3
4. 𝑑𝑦 − (𝑦 − 1)2 𝑑𝑥 = 0
𝑑𝑦 = (𝑦 − 1)2 𝑑𝑥
1
∫ 𝑑𝑦 = ∫ 𝑑𝑥
(𝑦 − 1)2
𝑦−1=𝑚 𝑑𝑦 = 𝑑𝑚
1
∫ 𝑑𝑦 = ∫ 𝑑𝑥
𝑚2
1 1
−𝑚−1 = 𝑥 + 𝑐 − =𝑥+𝑐 𝑦 =1−
𝑦−1 𝑥+𝑐
𝑑𝑦
6. + 2𝑥𝑦 2 = 0
𝑑𝑥
1
∫ 𝑑𝑦 = ∫ −2𝑥 𝑑𝑥
𝑦2
𝑥2 1
−𝑦 −1 = −2 +𝑐 𝑦=
2 𝑥2 + 𝑐1
𝑑𝑦
8.𝑒 𝑥 𝑦 𝑑𝑥 = 𝑒 −𝑦 + 𝑒 −2𝑥−𝑦
𝑑𝑦
𝑒𝑥𝑦 = 𝑒 −𝑦 + 𝑒 −2𝑥 𝑒 −𝑦
𝑑𝑥
𝑑𝑦
𝑒𝑦𝑒 𝑥𝑦 = 𝑒 𝑦 𝑒 −𝑦 + 𝑒 −2𝑥 𝑒 −𝑦 𝑒 𝑦
𝑑𝑥
1 + 𝑒 −2𝑥
𝑒 𝑦 𝑦 𝑑𝑦 = 𝑑𝑥 ∫ 𝑒 𝑦 𝑦 𝑑𝑦 = ∫(𝑒 −𝑥 + 𝑒 −3𝑥 )𝑑𝑥
𝑒𝑥
∫ 𝑒 𝑦 𝑦 𝑑𝑦 = 𝑦𝑒 𝑦 − ∫ 𝑒 𝑦 𝑑𝑦 = 𝑦𝑒 𝑦 − 𝑒 𝑦 = 𝑒 𝑦 (𝑦 − 1) + 𝑐
𝑒 −3𝑥
𝑒 𝑦 (𝑦 − 1) = −𝑒 −𝑥 − +𝑐
3
𝑑𝑦 2𝑦+3
10. 𝑑𝑥 = (4𝑥+5)2
𝑑𝑦 𝑑𝑥
∫ 2
=∫
(2𝑦 + 3) (4𝑥 + 5)2
2𝑦 + 3 = 𝑚 2𝑑𝑦 = 𝑑𝑚
4𝑥 + 5 = 𝑛 4𝑑𝑥 = 𝑑𝑛
1 1
∫ 𝑚−2 𝑑𝑚 = ∫ 𝑛−2 𝑑𝑛
2 4
1 1
− 𝑚−1 = − 𝑛−1 + 𝑐
2 4
2 1
= +𝑐
(2𝑦 + 3) (4𝑥 + 5)
12. sin 3𝑥 𝑑𝑥 + 2𝑦 cos 3 3𝑥𝑑𝑦 = 0
− sin 3𝑥
∫ 2𝑦 𝑑𝑦 = ∫ 𝑑𝑥
cos 3 3𝑥
𝑦2
2 = − ∫ tan 3𝑥 sec 2 3𝑥 𝑑𝑥
2
sec 3𝑥 = 𝑚 3𝑠𝑒𝑐3𝑥 𝑡𝑎𝑛3𝑥 𝑑𝑥 = 𝑑𝑚
1 1 𝑚2 1
− ∫ tan 3𝑥 𝑠𝑒𝑐3𝑥 𝑠𝑒𝑐3𝑥 𝑑𝑥 = − ∫ 𝑚𝑑𝑚 = − + 𝑐 = − sec 2 3𝑥 + 𝑐
3 3 2 6
1
𝑦 2 = − sec 2 3𝑥 + 𝑐
6
14.𝑥(1 + 𝑦 2 )1/2 𝑑𝑥 = 𝑦(1 + 𝑥 2 )1/2 𝑑𝑦
𝑦 𝑥
∫ 2 1/2
𝑑𝑦 = ∫ 𝑑𝑥
(1 + 𝑦 ) (1 + 𝑥 2 )1/2
1 + 𝑦2 = 𝑛 2𝑦𝑑𝑦 = 𝑑𝑛
1 + 𝑥2 = 𝑚 2𝑥𝑑𝑥 = 𝑑𝑚
1 1
∫ 𝑛−1/2 𝑑𝑛 = ∫ 𝑚−1/2 𝑑𝑚 2𝑛1/2 = 2𝑚1/2 + 𝑐
2 2
(1 + 𝑦 2 )1/2 = (1 + 𝑥 2 )1/2 + 𝑐1
𝑑𝑄
16. 𝑑𝑡 = 𝑘(𝑄 − 70)
𝑑𝑄
∫ = ∫ 𝑘𝑑𝑡
𝑄 − 70
𝑙𝑛|𝑄 − 70| = 𝑘𝑡 + 𝑐
𝑄 − 70 = 𝑒 𝑘𝑡+𝑐
𝑄 = 𝑐1 𝑒 𝑘𝑡 + 70
𝑑𝑁
18. 𝑑𝑡
+ 𝑁 = 𝑁𝑡𝑒 𝑡+2
𝑑𝑁
= 𝑁(𝑡𝑒 𝑡+2 + 1)
𝑑𝑡
1
∫ 𝑑𝑁 = ∫(𝑡𝑒 𝑡+2 + 1)𝑑𝑡
𝑁
𝑙𝑛|𝑁| = 𝑡𝑒 𝑡+2 − 𝑒 𝑡+2 − 𝑡 + 𝑐
𝑑𝑦 𝑥𝑦+2𝑦−𝑥−2
20. 𝑑𝑥 = 𝑥𝑦−3𝑦+𝑥−3
𝑥𝑦 + 2𝑦 − 𝑥 − 2 (𝑦 − 1)(𝑥 + 2)
=
𝑥𝑦 − 3𝑦 + 𝑥 − 3 (𝑦 + 1)(𝑥 − 3)
𝑦+1 𝑥+2
∫ 𝑑𝑦 = ∫ 𝑑𝑥
𝑦−1 𝑥−3
2 5
∫1+ 𝑑𝑦 = ∫ 1 + 𝑑𝑥
𝑦−1 𝑥−3
𝑦 + 2𝑙𝑛|𝑦 − 1| = 𝑥 + 5𝑙𝑛|𝑥 − 3| + 𝑐
𝑒 𝑦 (𝑦 − 1)2 = 𝑒 𝑥 (𝑥 − 3)5 𝑐1
(𝑦 − 1)2
= 𝑐1 𝑒 𝑥−𝑦
(𝑥 − 3)5
𝑑𝑦
22. (𝑒 𝑥 + 𝑒 −𝑥 ) 𝑑𝑥 = 𝑦 2
1 1
∫ 2
𝑑𝑦 = ∫ 𝑥 𝑑𝑥
𝑦 𝑒 + 𝑒 −𝑥
1 1
− =∫ 𝑥 𝑑𝑥 𝑒𝑥 = 𝑚 𝑒 𝑥 𝑑𝑥 = 𝑑𝑚
𝑦 𝑒 + 𝑒 −𝑥
1 𝑑𝑚
∫ 𝑑𝑥 = ∫ = tan−1 𝑚 + 𝑐 = tan−1 𝑒 𝑥 + 𝑐
𝑒 𝑥 + 𝑒 −𝑥 1 + 𝑚2
1
𝑦 = − tan−1 𝑒 𝑥 +𝑐
𝑑𝑦 5
24. + 2𝑦 = 1 𝑦(0) =
𝑑𝑡 2
𝑑𝑦
∫ = ∫ 𝑑𝑡
1 − 2𝑦
1
− 𝑙𝑛|1 − 2𝑦| = 𝑡 + 𝑐
2
5
1 − 2𝑦 = 𝑒 −2𝑡 𝑐1 1−2 = 𝑐1 𝑐1 = 4
2
1
𝑦= − 2𝑒 −2𝑡
2
𝑑𝑦 1
30. 𝑑𝑥 = 𝑦 2 sin2 𝑥 𝑦(−2) = 3
𝑥 𝑥
1 𝑑𝑦 𝑑𝑥
∫ 2
= ∫ sin2 𝑥
−2 𝑦 𝑑𝑡 −2 𝑑𝑡
𝑥
𝑥 𝑑𝑥
−𝑦(𝑡)−1 | = ∫ sin2 𝑥
−2 −2 𝑑𝑡
𝑥
𝑑𝑥
−𝑦(𝑥)−1 + −𝑦(2)−1 = ∫ sin2 𝑥
−2 𝑑𝑡
𝑥
𝑑𝑥
−𝑦(𝑥)−1 = −𝑦(2)−1 + ∫ sin2 𝑥
−2 𝑑𝑡
𝑥
𝑑𝑥
−𝑦(𝑥)−1 = 3 − ∫ sin2 𝑥
−2 𝑑𝑡
1
𝑦=
𝑥 𝑑𝑥
3 − ∫−2 sin2 𝑥
𝑑𝑡