0% found this document useful (0 votes)
25 views6 pages

Practice Solution

Shushu

Uploaded by

jiaoxu6002
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
25 views6 pages

Practice Solution

Shushu

Uploaded by

jiaoxu6002
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 6

National Taiwan University - Calculus 2 Indefinite Integral Practice

1. ∫ sin2 x cos2 x dx

1 − cos(2x) 1 + cos(2x) 1
∫ sin x cos x dx = ∫ dx = ∫ sin2 (2x) dx
2 2
2 2 4
1 1 − cos(4x) x 1
= ∫ dx = − sin(4x) + C
4 2 8 32

x5
2. ∫ √ dx
1 − x3
3

x5 u−1

∫ 3 dx = ∫ √ du (u = 1 − x3 , du = −3x2 dx)
1−x 3 3 3
u
1 1
= ∫ u2/3 − u−1/3 du
3 3
1 1
= (1 − x3 )5/3 − (1 − x3 )2/3 + C
5 2

3. ∫ tan3 x dx

∫ tan x dx = ∫ tan x sec x dx − ∫ tan x dx (u = tan x, du = sec xdx)


3 2 2

1
= ∫ u du − ln ∣ sec x∣ = tan2 x − ln ∣ sec x∣ + C
2

x3
4. ∫ √ dx
4 + x2

x3 x 4 + x2 1
∫ √ dx = ∫ 8 tan3 θ sec θ dθ (tan θ = , sec θ = , sec2 θ dθ = dx)
4 + x2 2 2 2
= ∫ 8(u2 − 1) du (u = sec θ, du = tan θ sec θdθ)
8 8
= u3 − 8u + C = sec3 θ − 8 sec θ + C
3 3
1 √
= (4 + x2 )3/2 − 4 4 + x2 + C
3

1
−1
ecos x
5. ∫ √ dx
1 − x2

−1
−1
ecos x
∫ √ dx = ∫ −eu du (u = cos−1 x, du = √ dx)
1 − x2 1 − x2
= −eu + C = −ecos +C
−1 x

6. ∫ x3 e−x dx
2

u
∫ xe
3 −x2
dx = ∫ e−u du (u = x2 , du = 2xdx)
2
−u −u −1 −u
= e −∫ e du
2 2
−u −u 1 −u
= e − e +C
2 2
−x2 −x2 1 −x2
= e − e +C
2 2

7. ∫ tan−1 x dx

x
∫ tan x dx = x tan x − ∫ 1 + x2 dx (u = 1 + x , du = 2xdx)
−1 −1 2

1
= x tan−1 x − ∫ du
2u
1
= x tan−1 x − ln ∣1 + x2 ∣ + C
2

1
8. ∫ √ √ dx
x+ 6 x

1 6u5 √
∫ √ √ dx = ∫ u +u
du (u = 6 x, x = u6 , dx = 6u5 du)
x+ x
6 3

6u4
=∫ 2 du
u +1
6
= ∫ 6u2 − 6 + 2 du
u +1
= 2u3 − 6u + 6 tan−1 u + C
√ √ √
= 2 x − 6 6 x + 6 tan−1 ( 6 x) + C

2
9. ∫ tan4 x dx

∫ tan x dx = ∫ (sec x − 1) dx = ∫ sec x − 2 sec x + 1 dx


4 2 2 4 2

= ∫ (tan2 x + 1) sec2 x − 2 sec2 x dx + ∫ 1 dx (u = tan x, du = sec2 xdx)


1
= ∫ (u2 + 1) − 2 du + ∫ 1 dx = u3 − u + x + C
3
1
= tan3 x − tan x + x + C
3

10. ∫ x sin2 x dx

1 − cos 2x 1 1
∫ sin x dx = ∫ dx = x − sin 2x + C
2
2 2 4
1 1 1 1
∫ x sin x dx = x( 2 x − 4 sin 2x) − ∫ 2 x − 4 sin 2x dx
2

1 1 1
= x2 − x sin 2x − cos 2x + C
4 4 8

11. ∫ (9 − 4x2 )3/2 dx

3 3
∫ (9 − 4x ) dx = ∫ (3 cos θ) ⋅ 2 cos θ dθ
2 3/2


2x 9 − 4x2 2
(sin θ = , cos θ = , cos θ dθ = dx)
3 3 3
81 1 + cos 2θ 2
=∫ ( ) dθ
2 2
81 81 cos 2θ 81 cos2 2θ
=∫ ( + + ) dθ
8 4 8
81 81 cos 2θ 81 81 cos 4θ
=∫ ( + + + ) dθ
8 4 16 16
243 81 sin 2θ 81 sin 4θ
= θ+ + +C
16 8 64
243 −1 2x 81 81
= sin ( ) + cos θ sin θ + cos θ sin θ(1 − 2 sin2 θ) + C
16 3 4 16
243 −1 2x 45 √ √
= sin ( ) + x 9 − 4x2 − x3 9 − 4x2 + C
16 3 8

3
cos 2x sec x
12. ∫ dx
sin x + sec x

cos 2x sec x cos 2x


∫ sin x + sec x dx = ∫ cos x sin x + 1 dx
cos 2x 1
=∫ 1 dx (u = sin 2x + 1, du = cos 2x dx)
2 sin 2x + 1
2
1 1
=∫ du = ln ∣u∣ + C = ln ∣ sin 2x + 1∣ + C
u 2

13. ∫ (ln x)2 dx

∫ (ln x) dx = x(ln x) − ∫ 2 ln x dx
2 2

= x(ln x)2 − 2 [x ln x − ∫ 1 dx]

= x(ln x)2 − 2x ln x + 2x + C

1 + e−x
14. ∫ dx
1 + e2x

1 + e−x ex + 1 u+1
∫ 1 + e2x dx = ∫ ex (1 + e2x ) dx = ∫ u2 (1 + u2 ) du (u = e , du = e dx)
x x

1 1 u+1 1 1
=∫ + 2− 2 du = ln ∣u∣ − − ln ∣u2 + 1∣ − tan−1 u + C
u u u +1 u 2
1
= x − e−x − ln ∣e2x + 1∣ − tan−1 (ex ) + C
2

x5
15. ∫ √ dx
1 − x4

x5 sin2 θ √
∫ √ dx = ∫ cos θ dθ (sin θ = x2 , cos θ = 1 − x4 , cos θdθ = 2xdx)
1 − x4 2 cos θ
1 1 1
= ∫ 1 − cos 2θ dθ = θ − sin 2θ + C
4 4 8
1 −1 2 1 2√
= sin (x ) − x 1 − x4 + C
4 4

4
1
16. ∫ 4 dx
x +4

1 1
∫ x4 + 4 dx = ∫ (x2 + 2x + 2)(x2 − 2x + 2) dx
1
x + 14 −1
x + 14
= ∫ 28 + 28 dx
x + 2x + 2 x − 2x + 2
8 (x + 1) 8 (x − 1)
1 1 −1 1
=∫ + 8
+ + 8
dx
(x + 1)2 + 1 (x + 1)2 + 1 (x − 1)2 + 1 (x + 1)2 + 1
1 1 1
= ln ∣x2 + 2x + 2∣ + tan−1 (x + 1) − ln ∣x2 − 2x + 2∣
16 8 16
1
+ tan−1 (x − 1) + C
8

17. ∫ sec3 x dx

∫ sec x dx = ∫ sec x sec x dx = sec x tan x − ∫ sec x tan x dx


3 2 2

= sec x tan x + ∫ sec x dx − ∫ sec3 x dx

= sec x tan x + ln ∣ tan x + sec x∣ − ∫ sec3 x dx


1 1
∫ sec x dx = 2 sec x tan x + 2 ln ∣ tan x + sec x∣ + C
3

1
18. ∫ √ dx
6x − 9x2

1 1
∫ √ dx = ∫ √ dx
6x − 9x2 1 − (3x − 1)2

(sin θ = 3x − 1, cos θ = 6x − 9x2 , cos θdθ = 3dx)
cos θ
=∫ dθ
3 cos θ
θ 1
= + C = sin−1 (3x − 1) + C
3 3

5
19. ∫ ex cos 3x cos 5x dx

cos 8x + cos 2x
∫ e cos 3x cos 5x dx = ∫ e
x x
dx
2
∫ e cos 8x dx = e cos 8x + ∫ e (8 sin 8x) dx
x x x

= ex cos 8x + 8ex sin 8x − 64 ∫ ex cos 8x dx


8 x 1 x
∫ e cos 8x dx = 65 e sin 8x + 65 e cos 8x + C
x

2 x 1 x
∫ e cos 2x dx = 5 e sin 2x + 5 e cos 2x + C
x

4 x 1 x 1 x 1 x
∫ e cos 3x cos 5x dx = 65 e sin 8x + 130 e cos 8x + 5 e sin 2x + 10 e cos 2x + C
x

20. ∫ ln(x2 − x + 2) dx

∫ ln(x − x + 2) dx
2

2x2 − x
= x ln(x2 − x + 2) − ∫ dx
x2 − x + 2
x−4
= x ln(x2 − x + 2) − ∫ 2 + 2 dx
x −x+2
1 7
(x − ) −
= x ln(x2 − x + 2) − ∫ 2 +
2 2
2 dx
1 7
(x − ) +

2 4
√ √ √
⎛ 1 7 1 2 7 7 7 ⎞
x− = tan θ, (x − ) + = sec θ, dx = sec2 θ dθ
⎝ 2 2 2 4 2 2 ⎠

= x ln(x2 − x + 2) − 2x − ∫ tan θ − 7 dθ

= x ln(x2 − x + 2) − 2x − ln ∣sec θ∣ + 7θ + C
1 4(x2 − x + 2) √ 2 1
= x ln(x2 − x + 2) − 2x − ln ∣ ∣ + 7 tan−1 [ √ (x − )] + C
2 7 7 2
1 √ 2 1
= x ln(x2 − x + 2) − 2x − ln(x2 − x + 2) + 7 tan−1 [ √ (x − )] + C
2 7 2

You might also like