Q.
Ans.
Q.1
Ans.
Q.2
Ans.
Fundamental Integration Formulae .:
(1)
𝒙𝒏+𝟏 𝒅 𝒙𝒏+𝟏
(i) ∫ 𝒙𝒏 𝒅𝒙 = + 𝒄, 𝒏 ≠ −𝟏 ∵ ( 𝒏+𝟏 ) = 𝒙𝒏
𝒏+𝟏 𝒅𝒙
(ii) ∫ 𝒅𝒙 = 𝒙 + 𝒄
𝟏
(iii) ∫ 𝒅𝒙 = 𝟐√𝒙 + 𝒄,
√𝒙
𝟏 (𝒂𝒙+𝒃)𝒏+𝟏
(iv) ∫(𝒂𝒙 + 𝒃)𝒏 𝒅𝒙 = . +𝒄
𝒂 𝒏+𝟏
𝟏 𝒅 𝟏
(2) (i) ∫ 𝒅𝒙 = 𝒍𝒏 | 𝒙| + 𝒄 ∵ (𝒍𝒏 | 𝒙|) =
𝒙 𝒅𝒙 𝒙
𝟏 𝟏
(ii) ∫ 𝒅𝒙 = (𝒍𝒐𝒈 | 𝒂𝒙 + 𝒃| + 𝒄
𝒂𝒙+𝒃 𝒂
𝒅
(3) ∫ 𝒆𝒙 𝒅𝒙 = 𝒆𝒙 + 𝒄 ∵ (𝒆𝒙 ) = 𝒆𝒙
𝒅𝒙
𝒂𝒙 𝒅 𝒂𝒙
(4) ∫ 𝒂𝒙 𝒅𝒙 = +𝒄 ∵ ( ) = 𝒂𝒙
𝒍𝒏 𝒂 𝒅𝒙 𝒍𝒏 𝒂
𝒅
(5) ∫ 𝒔𝒊𝒏 𝒙 𝒅𝒙 = − 𝒄𝒐𝒔 𝒙 + 𝒄 ∵ (− 𝒄𝒐𝒔 𝒙) = 𝒔𝒊𝒏 𝒙
𝒅𝒙
𝒅
(6) ∫ 𝒄𝒐𝒔 𝒙 𝒅𝒙 = 𝒔𝒊𝒏 𝒙 + 𝒄 ∵ (𝒔𝒊𝒏 𝒙) = 𝒄𝒐𝒔 𝒙
𝒅𝒙
𝒅
(7) 𝒔𝒆𝒄𝟐 𝒙 𝒅𝒙 = 𝒕𝒂𝒏 𝒙 + 𝒄 ∵ (𝒕𝒂𝒏 𝒙) = 𝒔𝒆𝒄𝟐 𝒙
𝒅𝒙
𝒅
(8) ∫ 𝒄𝒐𝒔𝒆𝒄𝟐 𝒙 𝒅𝒙 = − 𝒄𝒐𝒕 𝒙 + 𝒄 ∵ (− 𝒄𝒐𝒕 𝒙) = 𝒄𝒐𝒔𝒆𝒄𝟐 𝒙
𝒅𝒙
𝒅
(9) ∫ 𝒔𝒆𝒄 𝒙 𝒕𝒂𝒏 𝒙 𝒅𝒙 = 𝒔𝒆𝒄 𝒙 + 𝒄 ∵ (𝒔𝒆𝒄 𝒙) = 𝒔𝒆𝒄 𝒙 𝒕𝒂𝒏 𝒙
𝒅𝒙
(10) ∫ 𝒄osec𝒙 𝒄𝒐𝒕 𝒙 𝒅𝒙 = −cosec𝒙 + 𝒄
𝒅
∵ (− 𝒄𝒐𝒔 𝒆 𝒄𝒙) = 𝒄𝒐𝒔 𝒆 𝒄𝒙 𝒄𝒐𝒕 𝒙
𝒅𝒙
(11) ∫ 𝒕𝒂𝒏 𝒙 𝒅𝒙 = − 𝒍𝒏 | 𝒄𝒐𝒔 𝒙 | + 𝒄 = 𝒍𝒏 𝒔𝒆𝒄 𝒙 | + 𝒄
𝒅
∵ (𝒍𝒏𝒄𝒐𝒔 𝒙) = − 𝒕𝒂𝒏 𝒙
𝒅𝒙
(12) ∫ 𝒄𝒐𝒕 𝒙 𝒅𝒙 = 𝒍𝒏 | 𝒔𝒊𝒏 𝒙 | + 𝒄 = − 𝒍𝒏 | cosec𝒙| + 𝒄
𝒅
∵ (𝒍𝒏𝒔𝒊𝒏 𝒙) = 𝒄𝒐𝒕 𝒙
𝒅𝒙
𝝅 𝒙
(13) ∫ 𝒔𝒆𝒄 𝒙 𝒅𝒙 = 𝒍𝒏 | 𝒔𝒆𝒄 𝒙 + 𝒕𝒂𝒏 𝒙 | + 𝒄 = 𝒍𝒏 𝒕𝒂𝒏 ( + ) + 𝒄
𝟒 𝟐
𝒅
∵ 𝒍𝒏 𝒔𝒆𝒄 𝒙 + 𝒕𝒂𝒏 𝒙) = 𝒔𝒆𝒄 𝒙
𝒅𝒙
𝒙
(14) cosec𝒙 𝒅𝒙 = 𝒍𝒏 | cosec𝒙 − 𝒄𝒐𝒕 𝒙 | + 𝒄 = 𝒍𝒏 𝒕𝒂𝒏 + 𝒄
𝟐
𝒅
∵ (𝒍𝒏 | cosec𝒙 − 𝒄𝒐𝒕 𝒙 |) = cosec𝒙
𝒅𝒙
𝒅𝒙
(15) ∫ = 𝒔𝒊𝒏−𝟏 𝒙 + 𝒄 = − 𝒄𝒐𝒔−𝟏 𝒙 + 𝒄
√𝟏−𝒙𝟐
𝒅 𝟏 𝒅 −𝟏
∵ (𝒔𝒊𝒏−𝟏 𝒙) = , (𝒄𝒐𝒔−𝟏 𝒙) =
𝒅𝒙 √𝟏−𝒙𝟐 𝒅𝒙 √𝟏−𝒙𝟐
𝒅𝒙 𝒙 𝒙
(16) ∫ = 𝒔𝒊𝒏−𝟏 + 𝒄 = − 𝒄𝒐𝒔−𝟏 + 𝒄
√𝒂𝟐 −𝒙𝟐 𝒂 𝒂
𝒅 𝒙 𝟏 𝒅 𝒙 −𝟏
∵
𝒅𝒙
(𝒔𝒊𝒏−𝟏 𝒂) = ,
𝒅𝒙
(𝒄𝒐𝒔−𝟏 ) =
𝒂
√𝒂𝟐 −𝒙𝟐 √𝒂𝟐 −𝒙𝟐
𝒅𝒙
(17) ∫ = 𝒕𝒂𝒏−𝟏 𝒙 + 𝒄 = − 𝒄𝒐𝒕−𝟏 𝒙 + 𝒄
𝟏+𝒙𝟐
𝒅 𝟏 𝒅 −𝟏
∵ (𝒕𝒂𝒏−𝟏 𝒙) = , (𝒄𝒐𝒕−𝟏 𝒙) =
𝒅𝒙 𝟏+𝒙𝟐 𝒅𝒙 𝟏+𝒙𝟐
𝒅𝒙 𝟏 −𝟏 𝒙 −𝟏 𝒙
(18) ∫ = 𝒕𝒂𝒏 +𝒄= 𝒄𝒐𝒕−𝟏 + 𝒄
𝒂𝟐 +𝒙𝟐 𝒂 𝒂 𝒂 𝒂
𝒅 −𝟏 𝒙 𝒂 𝒅 𝒙 −𝒂
∵
𝒅𝒙
(𝒕𝒂𝒏 𝒂
) =
𝒂𝟐 +𝒙𝟐 𝒅𝒙
(𝒄𝒐𝒕−𝟏 𝒂) = 𝒂𝟐+𝒙𝟐
𝒅𝒙
(19) ∫ = 𝒔𝒆𝒄−𝟏 𝒙 + 𝒄 = − 𝒄𝒐𝒔 ⥂ 𝒆𝒄−𝟏 𝒙 + 𝒄
𝒙√𝒙𝟐 −𝟏
𝒅 𝟏 𝒅 −𝟏
∵ (𝒔𝒆𝒄−𝟏 𝒙) = (cosec𝒙) =
𝒅𝒙 𝒙√𝒙𝟐 −𝟏 𝒅𝒙 𝒙√𝒙𝟐 −𝟏
𝒅𝒙 𝟏 𝒙 −𝟏 −𝟏 𝒙
(20) ∫ = 𝒔𝒆𝒄−𝟏 + 𝒄 = 𝒄𝒐𝒔𝒆𝒄 +𝒄
𝒙√𝒙𝟐 −𝒂𝟐 𝒂 𝒂 𝒂 𝒂
𝒅 𝒙 𝒂 𝒅 𝒙 −𝒂
∵
𝒅𝒙
(𝒔𝒆𝒄−𝟏 𝒂) = 𝒅𝒙
(𝒄𝒐𝒔𝒆𝒄−𝟏 ) =
𝒂
𝒙√𝒙𝟐 −𝒂𝟐 𝒙√𝒙𝟐 −𝒂𝟐
NOTE: In any of the fundamental integration formulae, if x is replaced
by ax + b, then the same formulae is applicable but we must
divide by coefficient of x or derivative of (ax + b) i.e., a. In
general,
𝟏
if ∫ 𝒇(𝒙)𝒅𝒙 = 𝝋(𝒙) + 𝒄, then∫ 𝒇(𝒂𝒙 + 𝒃)𝒅𝒙 = 𝝋(𝒂𝒙 + 𝒃) + 𝒄
𝒂
−𝟏
∫ 𝒔𝒊𝒏( 𝒂𝒙 + 𝒃)𝒅𝒙 = 𝒂
𝒄𝒐𝒔( 𝒂𝒙 + 𝒃) + 𝒄,
𝟏
∫ 𝒔𝒆𝒄( 𝒂𝒙 + 𝒃)𝒅𝒙 = 𝒂 𝒍𝒐𝒈 | 𝒔𝒆𝒄( 𝒂𝒙 + 𝒃) + 𝒕𝒂𝒏( 𝒂𝒙 + 𝒃)| + 𝒄 etc.
Q.1
Ans.
Q.2.
Ans.
Q.3
Ans.
Q.4
Ans.
Q.5
Ans.
Q.1
Ans.
Q.2
Q.1
Ans.
Q.2
Q.3
Ans.
Q.4
Ans.