PLL CB
PLL CB
Overview
This PLL circuit use a mixer and a XTAL oscillator to convert the output frequency f
OUT   to the f   IN   to the PLL Circuit.
The XTAL frequency is f         XTAL   = f   OUT   - f   IN
                                         PLL02A 
                                                  
Overview
This PLL‐circuit use a 9 bit BCD binary programmable divide‐by‐N counter.   
                 Down-converting of the frequency to the divider
                                                                                                              
This PLL Circuit use a Mixer and a X‐Tal Oscillator to convert the output frequency f OUT to the f IN 
to the PLL Circuit.   
The X‐Tal frequency is f XTAL = f OUT ‐ f IN   
Refer to the figure, which is the PLL circuit of perhaps the most common AM PLL rig ever made. 
It's been sold under dozens of brand names, and uses the ever‐popular PLL02A IC. The SSB and 
export  multimode  versions  of  this  circuit  are  very  similar;  there  are  only  minor  differences 
relating to the SSB offsets and FMing the VCO. 
A PLL design may be categorized very generally by the number of crystals it uses, and by whether 
its  VCO  is  running  on  the  low  or  high  side  of  27  MHz.  This  particular  example  is  actually  the 
second generation of the PLL02A AM circuit; the original PLL circuit used a total of 3 crystals. 
The  key  to  synthesizing  all  of  the  required  frequencies  lies  in  the  Programmable  Divider.  That's 
the  only  PLL  section  that  you  can  control  from  the  outside  world  by  means  of  the  Channel 
Selector. Which is where it all starts. 
Suppose  you  choose  Ch.,  26.965  MHz.  When  setting  Ch.1  the  Programmable  Divider  (PD) 
receives  a  very  specific  set  of  instructions  at  all  its  programming  pins,  which  are  directly 
connected  to the  Channel  Selector.  This  specific  set  which  we  have  called  its  "N‐Code",  applies 
only to Ch.l. It's just a number by which any signal appearing at the PD input pin will be divided. 
 
Binary Programing 
Refer  now  to  Programming  Chart,  which  summarizes  the  important  operating  conditions  by 
specific  channel  number.  A  chart  like  this  one  is  normally  included  with  the  radio's  service 
manual.Often though certain facts not directly related to the legal 40‐channel operation are left 
out, so I`lll be filling in some missing blanks for you. 
                                     Programming Chart for PLL02A 
                                                     RX 1st
           Frequency     "N" digital    VCO freq.
Ch. No.                                             IF freq. P0 P1 P2 P3 P4 P5 P6 P7 P8
             (MHz)         codes         (MHz)
                                                     (MHz)
1         26.965        330             17.18       37.66    0   1   0   1   0   0   1   0   1
2         26.975        329             17.19       37.67    1   0   0   1   0   0   1   0   1
3         26.985        328             17.20       37.68    0   0   0   1   0   0   1   0   1
4         27.005        326             17.22       37.70    0   1   1   0   0   0   1   0   1
5         27.015        325             17.23       37.71    1   0   1   0   0   0   1   0   1
6         27.025        324             17.24       37.72    0   0   1   0   0   0   1   0   1
7         27.035        323             17.25       37.73    1   1   0   0   0   0   1   0   1
8         27.055        321             17.27       37.75    1   0   0   0   0   0   1   0   1
9         27.065        320             17.28       37.76    0   0   0   0   0   0   1   0   1
10        27.075        319             17.29       37.77    1   1   1   1   1   1   0   0   1
11        27.085        318             17.30       37.78    0   1   1   1   1   1   0   0   1
12        27.105        316             17.32       37.80    0   0   1   1   1   1   0   0   1
13        27.115        315             17.33       37.81    1   1   0   1   1   1   0   0   1
14        27.125        314             17.34       37.82    0   1   0   1   1   1   0   0   1
15        27.135        313             17.35       37.83    1   0   0   1   1   1   0   0   1
16        27.155        311             17.37       37.85    1   1   1   0   1   1   0   0   1
17        27.165        310             17.38       37.86    0   1   1   0   1   1   0   0   1
18        27.175        309             17.39       37.87    1   0   1   0   1   1   0   0   1
19        27.185        308             17.40       37.88    0   0   1   0   1   1   0   0   1
20        27.005        306             17.42       37.90    0   1   0   0   1   1   0   0   1
21        27.215        305             17.43       37.91    1   0   0   0   1   1   0   0   1
22        27.225        304             17.44       37.92    0   0   0   0   1   1   0   0   1
23        27.255        301             17.47       37.95    1   0   1   1   0   1   0   0   1
24        27.235        303             17.45       37.93    1   1   1   1   0   1   0   0   1
25        27.245        302             17.46       37.94    0   1   1   1   0   1   0   0   1
26        27.265        300             17.48       37.96    0   0   1   1   0   1   0   0   1
27        27.275        299             17.49       37.97    1   1   0   1   0   1   0   0   1
28        27.285        298             17.50       37.98    0   1   0   1   0   1   0   0   1
29        27.295        297             17.51       37.99    1   0   0   1   0   1   0   0   1
30        27.305        296             17.52       38.00    0   0   0   1   0   1   0   0   1
31         27.315         295             17.53         38.02      1    1    1    0   0    1    0    0    1
32         27.325         294             17.54         38.03      0    1    1    0   0    1    0    0    1
33         27.335         293             17.55         38.04      1    0    1    0   0    1    0    0    1
34         27.345         292             17.56         38.05      0    0    1    0   0    1    0    0    1
35         27.355         291             17.57         38.06      1    1    0    0   0    1    0    0    1
36         27.365         290             17.58         38.07      0    1    0    0   0    1    0    0    1
37         27.375         289             17.59         38.08      1    0    0    0   0    1    0    0    1
38         27.385         288             17.60         38.09      0    0    0    0   0    1    0    0    1
39         27.395         287             17.61         38.10      1    1    1    1   1    0    0    0    1
40         27.405         286             17.62         38.00      0    1    1    1   1    0    0    0    1
From this chart you see the N‐Code for Ch.l is the number "330", with the numbers progressing 
down to "286" at Ch.40. This number 330 is the direct result of applying +DC voltages of about 
5‐10 VDC to certain PLL IC pins while grounding certain others. Thus, two possible voltage choices, 
and  you'll  recall  that  the  PLL  uses  a  digital  or  binary  counting  system  instead  of  the  decimal 
system people use. 
In a binary number system each successive chip programming pin or "bit" (binary digit) is worth 
exactly double (or half) that of the pin next to it: 1, 2, 4, 8, 16, etc. Thus each pin can be defined 
by its Power‐of‐2. We can also call them "1's bit", "2's bit", "4's bit", etc. 
A series of "1"s and "0"s appears in the chart for each of the 40 channels. A "1" means +DC is 
applied to that pin, and a "0" means that pin is grounded. The pin having the highest binary value 
or  "significance"  controls  the  number  of  possible  channels  that  can  be  programmed.  In  this 
example the highest Power‐of‐2 is "256" at Pin 7, which is called the "Host Significant Bit"; the 
"Least Significant Bit" is Pin 15, which is only worth a "1" in binary. A chart like this showing the 
logic states of each PLL program pin for each channel is called a "Truth Chart" and is helpful for 
troubleshooting. 
How  exactly  was  the  number  "330"  decided?  In  Chart  you  see  the  truth  states  for  Ch.l  only. 
Above each PLL program pin are numbers I`ve labelled "P0WERS 0F 2", such as 1, 2, 4, on up to 
256 which is how a binary counter counts. By adding up the weight or significance of every pin 
showing a "1", the N‐Code is determined. The "0" or grounded pins are always ignored. In this 
example we have: 256 + 64 + 8 + 2 = 330. 
Go  back  now  to  Programming  Chart  and  notice  how  the  logic  states  for  Pin  7  and  Pin  8  never 
change at all for any of the 40 channels. Then look again at Figure 11 and you'll see that those 
pins are Dermanently hard‐wired such that Pin 7 is always tied to +DC ("1"), ana Pin 8 is always 
grounded ("0"). 
You'll often find that many service manuals won't even include these pin states in the Truth Chart 
because they never change when programming for the legal 40 channels only. This is a case of 
those  missing  blanks  I'm  filling  in  for  you,  and  you  can  test  this  idea  by  checking  the  rig's 
schematic.  Compare  the  total  programming  pins  available  to  the  total  number  needed  for  40 
N‐Codesl it's an obvious modification source. 
The original 18‐channel Australian CB service was legally expanded recently to match the 40 FCC 
channels. Hany of the older Aussie rigs, especially those with the Cybernet type PLL02A chassis, 
are simply American rigs with a limited Channel Selector switch. These can be easily expanded by 
replacing the 18‐position switch and wiring up the unused binary bits on the PLL chip. 
For example, the original Australian Ch.1 was 27.015 HHz, which corresponds to U.S. Ch.5. The 
N‐Code here is "325". The N‐Code for their old Ch.18 (27‐225 HHz) is "304". Reprogramming an 
old PLL02A rig for N‐Codes greater than "325" or less than "304" expands the channels. 
This  particular  IC,  the  PLLO2A.,  has  a  total  of  9  binary  programming  pins,  pins  7‐15.  So  it  has 
what's called a "9‐bit" binary programmer. Some quick math should tell you that the chip has a 
potential channel capacity of  29 ‐ 1, or 511 channelsl (1+2+4+8+16+32+64+128+256 = 511). 0nly 
40  channels  are  used  for  CB  purposes  but  by  proper  connection  and  switching  of  unused  pins, 
many more frequencies are possible. 
 
The VCO Circuit 
Refer back to Figure. This VC0 runs in the 17 MHz range, from 17.180 MHz on Ch.1 to 17.62 MHz 
on  Ch.40.  The  VC0  is  controlled  by  an  error  voltage  received  from  the  PD,  which  is  constantly 
lookingfor a match at the output of the Reference Divider and Programmable Divider. 
The Reference Divider is accurately controlled by a 10.240 MHz crystal oscillator whose signal is 
divided  down  digitally  by  1,024  to  produce  the  required  10  kHz  channel  spacings.  If  the 
Programmable Divider should also happen to output the exact same 10 kHz the result would be 
perfect; no correction from the PD, and the loop would be locked. 
What would it take to produce a perfect 10 kHz output from the Programmable Divider? We've 
alredy seen that the Programmable Divider is set to divide any signal it sees by the number 330. 
For example if it should see a signal of exactly 3.30 MHz at its input, the resulting output would 
be 3.30 MHz + 330 = 10 kHz. So if we can somehow get an input signal of 3.30 MHz, everythirig 
will fall perfectly into place. 
 
Loop Mixing 
It so happens there's a very easy way to do this by cleverly borrowing a bit of existing circuitry. If 
some  10.240  MHz  energy  from  the  Reference  Divider  is  taken  off  and  passed  through  a  tuned 
Doubler stage, the result would be 2 x 10.240 = 20.480 MHz. Here's where that very important 
loop mixing principle enters; by mixing the 20.480 MHz signal with the Ch.1 VC0 signal of 17.180 
MHz, sum and difference frequencies are generated. The sum is 20.480 + 17.180 = 37.660 MHz. 
The difference is 20.480 ‐ 17.180 = 3.30 MHz. Just what's needed to lock the loop. And the 37.660 
MHz energy isn't wasted either; it's used as the high‐side mixer injection signal that produces the 
first‐ RX IF: 37.660 ‐ incoming 26.965 = 10.695 MHz IF. 
 
Phase Detector Correction 
What happens if the mixing product to the Programmable Divider isn't exactly 3.30 MHz? Let's 
find  out.  Since  the  N‐Code  is  330,  a  signal  of  other  than  precisely  3.30  MHz  would  produce  a 
slightly different output to the PD. For example a signal of say, 3.10 MHz results in 3.10 MHz + 
330 = 9.39393 KHz. The PD will sense this error and try to correct it by applying a DC voltage to 
the VC0. This correction voltage will drive the VC0 up or down slightly in frequency, with the PD 
always comparing its two inputs, until an exact match occurs again. While this appears to be just 
a trial‐and‐error process, the whole thing happens in the time it takes you to change from Ch.1 to 
Ch.2 ! 
 
Receiver IF`s 
We've now seen how the Ch.1 PLL mixer signal of 37.660 MHZ provides the RX first IF injection. 
Now  note  from  Figure  that  we  can  make  even  a  third  clever  use  of  the  10.240  MHz  Reference 
Oscillator. By mixing that with the 10.695 MHz first IF, the result will be 10.695 ‐ 10.240 = 455 kHz, 
the second RX IF. (The sum product is ignored.) Pretty smart these engineers... 
Almost  all  AM  or  FM  CBs  use  this  method  of  dual‐conversion  for  their  receivers.  It's  also 
commonly  used  in  car  radios,  scanners,  FM  stereos,  etc.  where  a  lot  of  the  circuit  hardware 
already existed. 
 
Transmitter Section 
In this example the TX carrier frequency is produced very simply. A local oscillator of 10.695 MHz 
is  also  mixed  with  the  37.660  MHz  Ch.1 PLL  output.  The  difference  is  37.660 ‐  10.695  ‐  26.965 
MHz, which is then coupled through various tuned circuits and the standard RF amplifier chain. 
The Truth Chart is the most important first step in determining how a modification can be made. 
or if it can be made. Let's examine it in greater detail now. 
The  exemple  just  described  was  a  very  easy  PLL  circuit  using  the  binary  type  of  programming 
code. It's quite possible for the same chip to heve different N‐Codes depending upon how many 
crystals are used, or if it's AM or AM/SSB. The preceeding circuit is one of severel used with the 
PLL02A;  this  is  the  "2‐crystel  AM"  loop.  It  used  N‐Codes  from  330  Ch.1  to  286  Ch.40,  because 
those  were  the  numbers  needed  for  exact  division,  correct  IFs,  etc.  An  earlier  AM  loop  used  3 
crystels and N‐Codes which went up, from 224 Ch.1 to 268 Ch‐40. And in the ever‐populer SSB 
chassis the N‐Codes were 255 down to 211. 
Notice that these N‐Codes can go up or down with increasing channel numbers. It depends on 
the VCO design. 
 
Those Infamous Channel "Skips" 
Meanwhile, let's return to a portion of Programming Chart to study some of its other feetures. 
Programming Chart is e eimplificetion ehowing only the channel number, frequency, end N‐Codes 
from the original full chart. 
Notice anything unusual in the N‐Code sequence going from Ch.1 to Ch.40? The codes aren't all 
consecutive  and  skip  some  points  that  aren't  legal  CB  frequencies.  For  example, Ch.3  is  26.985 
MHz, end Ch.4 is 27.005 MHz. So what the heck heppened to 26.995 MHz? Gee, it's not e legel 
FCC channel. This is known to CB`ers as en "A" channel, in this case, Ch.3A. There are also skips et 
Chennels 7, 11, 15, end 19. And Ch.23, Ch.24, end Ch.25 of the FCC CB band are essigned out of 
sequence. (Thet's left over from the old 23‐chennel deys.) 
What  this  means  is  that  all  the  N‐Codes  es  well  as  VCO  end  mixer  frequencies  ere  also  out  of 
order  in  the  chart.  Meny  Europeen  countriesthat  originelly  ellowed  only  22  channels  simply 
adopted  the  Americen  scheme  exectly  for  those  first  22  channels.  Australian  had  18  channels 
whose numbers didn't correspond to American/EEC numbers, but meny of the actual frequencies 
were  the  same.  And  the  UK  originelly  assigned  40  consecutive  channels  with  no  skips  at  all. 
Remember these points when studying en older model's Truth Chart, or you mey think your math 
is wrong when it really isn't. 
 
LOOP MIXER MODIFICATIONS 
Now  let's  examine  the  second  possible  conversion  method,  that  of  changing  the  Loop  Mixer 
frequency itself. This is one of the easiest ways to modify a PLL circuit having a downmix signal. A 
few chips like the PLL02A can be modified by either of the programming pin change or downmix 
chang methods. The choice depends upon the total number of extra channels desired, and how 
much modification work you're willing to do. 
Changing the mixer crystal is most commonly done when jumping up to the 10‐Meter HAM band. 
Since there's no intention of ever using the rig again for CB, it can be permanently retune at the 
higher frequency. But many of you are still expanding from the CB band and adding an extra 40 or 
80 channels. The European models like those from HAM International, Major, and SuperStar were 
basically just American model with the extra mixing crystals already there. 
                              Add‐on Sales page   
                                                                                                      
This page contains the online version of the manual that comes
Introduction
    •   Down band ‐ This will go down 1 band (45 channels).   
    •   Up band ‐ This will go up 1 band (45 channels).   
    •   NZ band ‐ This gives the New Zealand band, which is 63 channels below the FCC band 
        (63.5 to be precise, clarify to 26.330).   
    •   UK band ‐ This gives the UK 40 band which is 64 channels above the FCC band and is 40 
        consecutive channels without the Alpha channel hops (clarified to 27.60125, FM radio 
        needed).   
   •   10kHz shift ‐ All radios will have a 10kHz shift, for most it is +10kHz, for one type it is a 
       ‐10kHz shift.   
If the board is installed on a 40 channel radio you will get low, mid (FCC),
high, NZ, UK and a 10kHz shift on all bands ! (assuming that the radio
is broad band enough to be able to produce the full range), that is an
extra 4 bands !
If the board is installed on a Export type 200 channel radio you will get
L-L-low, L-low, low, mid (FCC), high, H-high, H-H-high (not on all models),
NZ (down 63 channels), UK (up 64 channels) and a 10kHz shift on all bands !
Of course you do not need to enable every option on the board, you can
choose which ones you wish to use, if you only want the UK band that is
fine, or if you only want to have the down 1 band and up 1 band with +(-)10
kHz shift that is fine too, it is up to you.
I have built as much data into the EPROM as I could fit on it so that there
are lots of options that can be used. This board is not suitable for some
radios, please read further in this manual to see if your radio can use
this version of the board, (I can make custom boards at an additional
cost).
General Information
This board was designed to convert radios with these PCB numbers:
   •   PCBM121D4X   
   •   PCBM125A4X   
   •   PCBM131A4X   
   •   PCBM133A4X   
   •   PCMA001S   
   •   PTBM027AOX   
   •   PTBM033AOX   
   •   PTBM036AOX   
   •   PTBM038AOX   
   •   PTBM039AOX   
And others as long as the binary codes are correct (see below).
For the board to function correctly the PLL must be using one or more of
these binary code ranges:
300-256 (CH1-CH40)
210-166 (CH1-CH40)
To work out the binary code just measure the voltage on pins 15 through
to 7 of the PLL with the radio on channel 1 mid (FCC) band.
For a code of 300 pins 13,12,10 and 7 will be at 5 V. Pins 15,14,11,9 and
8 will be at 0 V.
Some radios use two sets of codes depending on the band, check the codes
again on one of these bands, either: 255-211 on bands A,C,E and 210-166
on bands B,D,F. or 255-211 on bands C,D,E and 300-256 on bands A,B.
The NZ and UK bands are operated from the mid (FCC) band (with the exception
of radios that use the PTBM133A4X board, the NZ band is operated from the
low band).
Exceptions to this are radios that use the code range of : 224-268, they
will get a -10kHz step instead 210-166, they will not get the Up band.
Detailed Information
Here is a list of radios that I designed this board for, I got the binary
code information from the great books written by Lou Franklin
(http://www.cbcintl.com), the list is probably much bigger than this as
the only critical factors are that the radio uses the correct binary codes
and that the board will physically fit inside the radio.
PTBM125A4X / PTBM131A4X
Colt 1600DX, 2000DX, Hygain 8795 (V), Layayette 1800, Midland 7001 Export,
Pacific 160, Superstar 2000, Tristar 777, 790.
PCMA001S
Alan 88S, Argus 5000, Cobra 148GTL DX (fake),CTE 88S, Colt 2400, Falcon
2000, Lafayette 2400FM, Mongoose 2000, Nato 2000, Palomar 2400, 5000,
Starfire DX, Superstar 2200, Thunder 2000, Tristar 797, 848.
PTBM 133A4X
Ham International Concorde III, Jumbo III, Multimode III, Major M788.
PTBM121D4X
Delco (GM) CBD-10, 1977/78 series, GE 3-5810B, Hygain 681, 682, 2679,
2679A, 2680, 2681, 2682, 2683, 2701, 2710X, 2716, 2720, 3084B, Kraco
KCB2310B, 2320B, 2330B, Lafayette Com-Phone 23A, HB650, HB750, HB950,
LM400, Micro 223A, Telsat 1050, Midland 13-830, 13-857B, 13-882C, 13-888B,
13-955, Pearce Simpson Tiger 40A, Tiger MKII, RCA 14T300, 14T301, Robyn
GT410D, SX401, SX402D,Sears 242.3816, 60000, Truetone MCC4434B-67,
CYJ4732A-77.
Please note that I am not able to test this unit in every make and model,
but as long as the binary codes match the ones I listed you will have no
problems.
OK, now on to the nuts and bolts (or is the resistors and capacitors ?)....
Installation Procedure
   1. Check for the correct binary code at the PLL pins, see note earlier in manual.   
   2. Decide what bands you require the board to produce (see note below), set the jumpers 
       and cut the tracks on the EPROM board and to match. 
   3. Decide how you are going to control the new bands, existing panel switches, new toggle 
       switches, replacing the rotary band switch (only for pros !) etc.   
   4. Cut the tracks that go to pins 15 through to 8 (or 7, see note on next page first !) to 
       isolate them from the channel selector and jumper connections.   
   5. Solder the ribbon cable to the PLL pins (D0‐D7, see picture later) and to the channel 
       selector side of the cut tracks (A0‐A6, see picture later).   
   6. Solder the EPROM board earth (0V) to pin 16 of the PLL of the any other good earth 
       point on the main board.   
   7. Solder the +12V wire to the main radio supply, make sure that it is from after the on/off 
       switch so that the board is not powered when the radio is turned off., On the 
       PTBM131A4X board there is a PCB pin on the right hand side about half way back, it is 
       marked as ?0?and it is next to Q26.   
   8. Connect the board to the switches to select the required bands and functions.   
   9. Go back to step 1 and double check everything on each step.   
   10. Triple check everything, I mean it !   
After doing this you should have the board connected to +12V, earth, 8
outputs from the EPROM to the PLL (D0-D7), 7 inputs from the cut tracks
on the channel selector side to the inputs of the EPROM (A0-A6), the EPROM
control lines connected to your switches:
A7 = DOWN band,
A8 = UP band,
A9 (+A7/A8) = NZ/UK,
Some radios may have slightly different programming, for radios with
codes of 224-268 here are the differences:
A7 = UP band ,
A8 = DOWN band,
A10 = -10kHz
11. Turn the radio on and test everything thoroughly, all bands, both
existing and new, Down band, Up band, NZ/UK and 10K shift on each.
Radios that use the PTBM133A4X board will need to activate the NZ band
from band B (low band) and the UK band from band C (mid, FCC band) instead
of NZ and UK being from the mid (C, FCC) band
Radios that have a code range of 255-211 and 210-166 (usually six band
models) will not get any UP bands when using the 210-166 codes (bands
B,D,F) , this is due to running out of programming options, also when on
bands B,D and F EPROM pins A7 and A8 need to be pulled high at all times,
this can easily be done using diode steering:
Attach a diode to each of the band positions for B,D and F, so that when
the radio is in any of those bands the diodes will pass a voltage through
a resistor to drop the voltage to the EPROM pins down to about 5 Volts
(this is very important !), see the diagram for more information.
12. Tune or broad band anything that needs adjusting (see tips later in
manual).
13. If all is OK and you did not make any mistakes, CAREFULLY heat shrink
the EPROM board with the tube supplied, do not apply too much heat.
This picture shows the EPROM board wiring diagram with its inputs (A0-A6)
its programming/switch inputs (A7-A10, (or A l l if fitted with a 2732
EPROM) and the 5V, 0V rails), its outputs (D0-D7) and its power supply
connections (+12V and 0V).
This diagram shows the diode steering that is required for use with radios
with codes of 210-166 on bands B,D and F.
This picture shows the PCB jumpers that are on the board, as you can see
the tracks narrow at a point where they are normally tied to ground, if
you are not going to use 1 of the control lines leave the track intact,
but if you are going to use 1 or more lines cut the track for the pin you
are going to control.
For example, the top one is A8, which is used for the UP band, if you did
not want to use the UP band (or UK band as it uses that pin also) you would
not have to do anything.
But if you wanted to use the UP (or UK) band you would need to cut the
track that goes between the pin and the earth track (the big thick vertical
one on the right), then you can solder the control wire into the provided
hole and attach the 0V and 5V control wires for it as well, the 5V rail
is the one going down the left side, the 0V is the one that is horizontal
above D7 and connects to the main earth track, you can also see the pads
that allow the pins to be tied high without having to attach jumper wires
if a pin needs to be programmed to be high all of the time, you will notice
that for boards using a 2716 EPROM (most of them) the A11 track is cut
and the pin is pulled high.
The picture below shows the pin-outs of the PLL as viewed from the
track-side of the PCB, pin 1 of the PLL is at the top left corner and has
a 5V supply going to it.
These pictures show various methods of band selection, any one of the
switches can be omitted, the NZ/UK switch can be used without an Up / Down
band switch, also you can have it set up so that it automatically turns
on the Up (for UK) / Down (for NZ) band when you activate it (required
for it to work), as longs as diode steering is used to select either the
A7 (for NZ) or A8 (for UK) lines when activated.
                                                                           
Notes
For radios with a code range of 255-211 ONLY on all bands you can just
attach pin 7 directly to the switch wire that goes to the EPROM for the
Low band, this pin must be high on the Low and NZ bands and low on all
others, this does it nicely on these radios !
For radios with codes of both 300-256 (L-Low and Low bands) and 255-211
(Mid,High and H-High bands) just leave the track alone do not cut it as
it will give the correct voltage when needed anyway !
For radios with a code of 224-268 you must do a little extra work, when
in normal bands (all extras turned off) pin 7 must be connected as normal
as it changes from high to low in the normal range of codes, when the DOWN
or NZ band is activated the pin must be low all of the time, so it must
be disconnected from the track and pulled low, but when in the UP or UK
bands it must be pulled high instead.
Radios that have a code range of 224-253 can just cut the track and control
it by pulling it low in the DOWN,NZ bands and high in the UP,UK bands.
Broad banding
Most radios will not need it to be done, but you may need to, an easy way
is to tune the radio for the upper frequencies (but as low as you can
without problems) and then add the circuit below to the low bands to extend
the tuning range of a problem tuning can, the PTBM131A4X board uses this
type of circuit on its TX mixers !
The clarifier on most of the SSB radios gives about 5kHz of slide, which
is enough for most purposes, but if you want to add a little more slide
then add a 4.7 uH RF coil to the varactor diode, on the PTBM125A4X,
PTBM131A4X and PCMA001S it is D6, on the PTBM133A4X it is D7, on the
PTBM121D4X it is D1 on the crystal oscillator board (PTOS110AOX)
The NATO 2000 already has the UK40 as part of its own band structure,the
binary code range of the UK FM band is 255-216 so it will work without
any problems make sure that the EPROM is placed between the PLL and the
two proms (IC601 and IC602), then just have the EPROM selected with normal
mode (no extra bands enabled) to use the UK band, it will be unaffected
by the presence of the EPROM board, but you will still gain a 10K shift,
of course you can still use the UP and DOWN bands as well if you like.
                              +10kHz shift
                                                                           
For The Down band (and on the L-Low and Low bands of radios using a code
of 300-256) the +10Khz shift will not work on Ch 40, this is due to the
code changing from 8 bits to 9 and it is not worth the extra effort and
expense for the sake of one channel that you can get by going to channel
1 on the next band up anyway !
This section show you all of the possible programming arrangements with
this EPROM and what input codes allow which outputs from the EPROM board,
just look up the input code range(s) that your radio uses and look at the
possible operating bands and programming information for the board.
1 1 0 0 0 300‐256 Down
1 0 1 0 0 210‐166 Up
1 1 0 1 0 319‐275 NZ
1 0 1 1 0 191‐151 UK
1 0 0 0 1 254‐210 Normal +10kHz
1 1 0 0 1 299‐256 Down +10kHz
1 0 1 0 1 209‐165 Up +10kHz
1 1 0 1 1 318‐274 NZ +10kHz
1 0 1 1 1 190‐150 UK +10kHz
1 1 0 0 0 345‐301 Down
1 1 0 1 0 319‐275 NZ
1 0 0 0 1 299‐256 Normal +10kHz
1 1 0 0 1 344‐300 Down +10kHz
1 1 0 1 1 318‐274 NZ +10kHz
* Important note !
A7 and A8 need to be pulled high at all times when in the 210-166 code
range!
*2 1/0 1 0 0 0 269‐313 Up
*2 1/0 1 1 1 0 160‐204 NZ
*2 1/0 0 0 1 0 288‐327 UK
*2 please notice the reversal of A7 and A8 and the different NZ/UK band
programming for this code range.
NOTE: the output codes may say a figure greater than 256, the EPROM can
only supply a code as high as 255, that is why we must pull the PLL pin
7 high/low as needed to give the final code of over 256, for example, a
code of 300 requires all 8 bits from the EPROM and 1 more bit (the 256
bit) to be high as well, so we pull pin 7 high as it is the pin for a code
of 256, I hope this helps to explain it for those people who know that
EPROM's only have a possible output code of 255.
                                                                                     
                              Programming
Here are the general functions of the EPROM's A6,A7,A8,A9 and A10 inputs
(may vary with input code range of radio, see above chart for more
details):
A7 = Down band selector (Up band for radios using 224-268 code range).
A8 = Up band selector (Down band for radios using 224-268 code range).
A10 = + 10 kHz shift (- 10kHz shift for radios using 224+268 code range).
If you do not know how to calculate the binary number (also known as N
code) read this.
PLL pin number 15 14 13 12 11 10 9 8 7
So if pins 8,9,11,14 and 15 where high (at 5V) and the rest where low (at
0V) you would have a binary code of 211 (128+64+16+2+1=211), you just
ignore the pins that are low.
                                                                          
                         Example modification
1. I checked the PLL pins and found that it only used 1 set of codes,
255-211.
2. I decided that I only wanted to have a 10 kHz shift and the Down band.
3. I checked the programming chart and found that for a code range of
255-211 the 10 kHz step uses A10 and the Down band uses A7.
4. I cut the A7 and A10 tracks on the EPROM board (at the thin part of
the track) to disconnect them from 0V which allows me to control the inputs
on those pins.
5. I cut the tracks on the radio PCB for PLL pins 15-7.
6. I made available the switches required for the new functions and wired
them to the EPROM board as shown below, the Down band switch is also
switching the PLL pin 7 high when on, this is to increase the binary code
on the 9th bit as the EPROM only has 8 outputs:
7. I connected the EPROM inputs to the channel selector side of the cut
tracks as shown below (this is for A0-A5, A6 can be tied high at 5V on
the EPROM board):
PLL pin number 15 14 13 12 11 10 9 7
EPROM output number D0 D1 D2 D3 D4 D5 D6 D7
9. Then I connected the power wires (+12V and 0V) from the board to the
radio.
10. I double checked all of my wiring, checked that I had cut the tracks
correctly on the EPROM and radio boards and that I had got the input and
output connection the correct way around etc.
11. I slipped the EPROM board into its heat shrink tube to protect it.
12. I turned on the radio and checked for both normal operation and the
new expanded functions I set up (+10kHz step and the Down band).
13. I checked to make sure that the EPROM board was not receiving a 12V
supply after I turned the radio off.
14. All was working correctly so I applied heat to the heat shrink tube
to finish the installation.
15. I did not need to broad band the radio, so I have finished the
installation.
Trouble shooting
                                                                               
EPROM is not working at all
Check jumper on pin 21, for a EPROM marked as a 2716 the track to it should
be cut and the pin should be jumpered to the +5V rail on the board.
The radio does not use the correct binary codes required for the EPROM
to work in it, see note about binary codes that are supported earlier in
this manual.
There could be a mistake with the programming switches not giving the EPROM
either a 5v or 0V signal, or a jumper has not been cut or added correctly.
You did not notice that the radio uses more than one set of binary codes
and you have not set the switches / jumpers for the other codes.
The EPROM may have been damaged by static electricity during handling.
Note: All EPROM's are checked after I have programed them to ensure that
they have accepted the programming information correctly and that the
EPROM is not faulty.
This counter shows the number of hits since the 25th April 2001