0% found this document useful (0 votes)
132 views26 pages

MCQ Unit I-1

The document contains multiple choice questions and answers related to solving differential equations. It asks about determining the solution to various differential equations based on their order and coefficients. The solutions involve combinations of exponential, trigonometric, and polynomial functions with arbitrary constants.

Uploaded by

Naughty PAPA
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
132 views26 pages

MCQ Unit I-1

The document contains multiple choice questions and answers related to solving differential equations. It asks about determining the solution to various differential equations based on their order and coefficients. The solutions involve combinations of exponential, trigonometric, and polynomial functions with arbitrary constants.

Uploaded by

Naughty PAPA
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 26

UNIT I

Differential Equations
_________________________________________________________________________
𝑑2𝑦
((Q))1_// The solution of D.E. 𝑑𝑥 2 + 9𝑦 = 0 is
((A)) 𝑐1 cos2𝑥 + 𝑐2 sin2𝑥
((B)) (𝑐1 𝑥 + 𝑐2 )𝑒 −3𝑥
((C)) 𝑐1 𝑒 3𝑥 + 𝑐2 𝑒 −3𝑥
((D)) 𝑐1 cos3𝑥 + 𝑐2 sin3𝑥
((E))D
((F))

𝑑2𝑦 𝑑𝑦
((Q))1_// The solution of D.E. 𝑑𝑥 2 − 𝑑𝑥 − 2𝑦 = 0 is
((A)) 𝑐1 𝑒 2𝑥 + 𝑐2 𝑒 𝑥
((B)) 𝑐1 𝑒 2𝑥 + 𝑐2 𝑒 −𝑥
((C)) 𝑐1 𝑒 −2𝑥 + 𝑐2 𝑒 𝑥
((D)) 𝑐1 𝑒 −2𝑥 + 𝑐2 𝑒 −𝑥
((E))B
((F))

((Q))1_// If 𝑚1 = 𝛼 + 𝑖𝛽 ((A))nd 𝑚2 = 𝛼 − 𝑖𝛽 are two complex roots of auxiliary equation of second order
DE 𝜙(𝐷)𝑦 = 0 then it’s solution is
((A)) 𝑒 𝛽𝑥 [𝑐1 cos𝛼𝑥 + 𝑐2 sin𝛼𝑥]
((B)) 𝑒 𝛼𝑥 [(𝑐1 𝑥 + 𝑐2 )cos𝛽𝑥 + (𝑐3 𝑥 + 𝑐4 )sin𝛽𝑥]
((C)) 𝑐1 𝑒 𝛼𝑥 + 𝑐2 𝑒 𝛽𝑥
((D)) 𝑒 𝛼𝑥 [𝑐1 cos𝛽𝑥 + 𝑐2 sin𝛽𝑥]
((E))D
((F))

((Q))1_// If the complex roots 𝑚1 = 𝛼 + 𝑖𝛽 and 𝑚2 = 𝛼 − 𝑖𝛽 of auxillary equation of fourth order DE


𝜙(𝐷)𝑦 = 0 are repeated twice then it’s solution is
((A)) 𝑒 𝛽𝑥 [𝑐1 cos𝛼𝑥 + 𝑐2 sin𝛼𝑥]
((B)) 𝑒 𝛼𝑥 [(𝑐1 𝑥 + 𝑐2 )cos𝛽𝑥 + (𝑐3 𝑥 + 𝑐4 )sin𝛽𝑥]
((C)) (𝑐1 𝑥 + 𝑐2 )𝑒 𝛼𝑥 + (𝑐3 𝑥 + 𝑐4 )𝑒 𝛽𝑥
((D)) 𝑒 𝛼𝑥 [𝑐1 cos𝛽𝑥 + 𝑐2 sin𝛽𝑥 ]
((E))B
((F))

𝑑2𝑦 𝑑𝑦
((Q))1_// The solution of D.E.𝑑𝑥 2 − 5 𝑑𝑥 + 6𝑦 = 0 is
((A)) 𝑐1 𝑒 2𝑥 + 𝑐2 𝑒 −3𝑥
((B)) 𝑐1 𝑒 −2𝑥 + 𝑐2 𝑒 3𝑥
((C)) 𝑐1 𝑒 −2𝑥 + 𝑐2 𝑒 −3𝑥
((D)) 𝑐1 𝑒 2𝑥 + 𝑐2 𝑒 3𝑥
((E))D
((F))
𝑑2𝑦 𝑑𝑦
((Q))1_// The solution of DE − 5 𝑑𝑥 − 6𝑦 = 0 is
𝑑𝑥 2
((A)) 𝑐1 𝑒 −𝑥 + 𝑐2 𝑒 6𝑥
((B)) 𝑐1 𝑒 −2𝑥 + 𝑐2 𝑒 − 3𝑥
((C)) 𝑐1 𝑒 3𝑥 + 𝑐2 𝑒 2𝑥
((D)) 𝑐1 𝑒 −3𝑥 + 𝑐2 𝑒 − 2𝑥
((E))A
((F))

𝑑2𝑦 𝑑𝑦
((Q))1_// The solution of D.E. 2 𝑑𝑥 2 − 𝑑𝑥 − 10𝑦 = 0 is
5
((A)) 𝑐1 𝑒 −2𝑥 + 𝑐2 𝑒 ( ⁄2)𝑥
5
((B)) 𝑐1 𝑒 −2𝑥 + 𝑐2 𝑒 −( ⁄2)𝑥
5
((C)) 𝑐1 𝑒 2𝑥 + 𝑐2 𝑒 ( ⁄2)𝑥
3
((D)) 𝑐1 𝑒 −2𝑥 + 𝑐2 𝑒 ( ⁄2)𝑥
((E))A
((F))

𝑑2𝑦
((Q))1_// The solution of D.E.𝑑𝑥 2 − 4𝑦 = 0 is
((A)) (𝑐1 𝑥 + 𝑐2 )𝑒 2𝑥
((B)) 𝑐1 𝑒 4𝑥 + 𝑐2 𝑒 −4𝑥
((C)) 𝑐1 𝑒 2𝑥 + 𝑐2 𝑒 −2𝑥
((D)) 𝑐1 cos2𝑥 + 𝑐2 sin2𝑥
((E))C
((F))

𝑑2𝑦 𝑑𝑦
((Q))1_// The solution of D.E.𝑑𝑥 2 + 2 𝑑𝑥 + 𝑦 = 0 is
((A)) 𝑐1 𝑒 2𝑥 + 𝑐2 𝑒 𝑥
((B)) 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 −𝑥
((C)) (𝑐1 𝑥 + 𝑐2 )𝑒 −𝑥
((D)) (𝑐1 𝑥 + 𝑐2 )𝑒 𝑥
((E))C
((F))

𝑑2𝑦 𝑑𝑦
((Q))1_// The solution of D.E.𝑑𝑥 2 − 4 𝑑𝑥 + 4𝑦 = 0 is
((A)) (𝑐1 𝑥 + 𝑐2 )𝑒 2𝑥
((B)) (𝑐1 𝑥 + 𝑐2 )𝑒 −2𝑥
((C)) 𝑐1 𝑒 4𝑥 + 𝑐2 𝑒 −4𝑥
((D)) 𝑐1 𝑒 2𝑥 + 𝑐2 𝑒 −2𝑥
((E))A
((F))
𝑑3𝑦 𝑑𝑦
((Q))1_// The solution of D.E.𝑑𝑥 3 − 4 𝑑𝑥 = 0 is
((A)) 𝑐1 𝑒 2𝑥 + 𝑐2 𝑒 −2𝑥
((B)) 𝑐1 + 𝑐2 cos2𝑥 + 𝑐3 sin2𝑥
((C)) 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 −2𝑥 + 𝑐3 𝑒 −3𝑥
((D)) 𝑐1 + 𝑐2 𝑒 2𝑥 + 𝑐3 𝑒 −2𝑥
((E))D
((F))

((Q))1_// The roots 𝑚1 , 𝑚2 , 𝑚3 ⋯ ⋯ , 𝑚𝑛 of auxiliary equation 𝜙(𝐷) = 0 are real. If three of these roots are
repeated, s((A))y, 𝑚1 = 𝑚2 = 𝑚3 and the remaining roots 𝑚4 , 𝑚5 ⋯ ⋯ 𝑚𝑛 are distinct then solution of
𝜙(𝐷)𝑦 = 0 is
((A)) 𝑐1 𝑒 𝑚1𝑥 + 𝑐2 𝑒 𝑚2𝑥 + ⋯ ⋯ + 𝑐𝑛 𝑒 𝑚𝑛𝑥
((B)) (𝑐1 𝑥 2 + 𝑐2 𝑥 + 𝑐3 )𝑒 𝑚1𝑥 + 𝑐4 𝑒 𝑚4𝑥 + ⋯ ⋯ + 𝑐𝑛 𝑒 𝑚𝑛𝑥
((C)) (𝑐1 𝑥 2 + 𝑐2 𝑥 + 𝑐3 )cos𝑚1 𝑥 + 𝑐4 cos𝑚4 𝑥 + ⋯ ⋯ + 𝑐𝑛 cos𝑚𝑛 𝑥
((D)) (𝑐1 𝑥 2 + 𝑐2 𝑥 + 𝑐3 )sin𝑚1 𝑥 + 𝑐4 sin𝑚4 𝑥 + ⋯ ⋯ + 𝑐𝑛 sin𝑚𝑛 𝑥
((E))B
((F))

𝑑2𝑦 𝑑𝑦
((Q))1_// The solution of D.E.𝑑𝑥 2 + 6 𝑑𝑥 + 9𝑦 = 0 is
((A)) 𝑐1 𝑒 −6𝑥 + 𝑐2 𝑒 −9𝑥
((B)) (𝑐1 𝑥 + 𝑐2 )𝑒 −3𝑥
((C)) (𝑐1 𝑥 + 𝑐2 )𝑒 3𝑥
((D)) 𝑐1 𝑒 3𝑥 + 𝑐2 𝑒 2𝑥
((E))B
((F))

𝑑2𝑦
((Q))1_// The solution of D.E.𝑑𝑥 2 + 𝑦 = 0 is
((A)) 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 −𝑥
((B)) 𝑐1 cos𝑥 + 𝑐2 sin𝑥
((C)) (𝑐1 𝑥 + 𝑐2 )𝑒 −𝑥
((D)) 𝑒 𝑥 (𝑐1 cos𝑥 + 𝑐2 sin𝑥)
((E))B
((F))

𝑑2𝑦 𝑑𝑦
((Q))1_// The solution of D.E.𝑑𝑥 2 + 6 𝑑𝑥 + 10𝑦 = 0 is
((A)) 𝑒 𝑥 (𝑐1 cos𝑥 + 𝑐2 sin𝑥)
((B)) 𝑒 𝑥 (𝑐1 cos3𝑥 + 𝑐2 sin3𝑥)
((C)) 𝑐1 𝑒 5𝑥 + 𝑐2 𝑒 2𝑥
((D)) 𝑒 −3𝑥 (𝑐1cos𝑥 + 𝑐2 sin𝑥)
((E))D
((F))
𝑑2𝑦 𝑑𝑦
((Q))1_// The solution of D.E.𝑑𝑥 2 + 𝑑𝑥 + 𝑦 = 0 is
((A)) 𝑒 𝑥 (𝑐1 cos𝑥 + 𝑐2 sin𝑥)
x⁄ 3 3
((B)) 𝑒 2 [𝑐1 cos ( ) 𝑥 + 𝑐2 sin ( ) 𝑥]
2 2
−𝑥⁄2 √3 √3
((C)) 𝑒 [𝑐1 cos ( 2 ) 𝑥 + 𝑐2 sin ( 2 ) 𝑥]
((D)) 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 −𝑥
((E))C
((F))

𝑑3𝑦 𝑑2𝑦 𝑑𝑦
((Q))1_// A solution of D.E. 𝑑𝑥 3 − 2 𝑑𝑥 2 + 4 𝑑𝑥 − 8y = 0 is
((A)) 𝑦 = 𝑐1 𝑒 𝑥 + 𝑐2 cos(2x) + 𝑐3 sin(2x)
((B)) 𝑦 = 𝑐1 𝑒 −2x + 𝑐2 cos(2x) + 𝑐3 sin(2x)
((C)) 𝑦 = (𝑐1 + 𝑐2 𝑥)𝑒 2x + 𝑐3 𝑒 −2x
((D)) 𝑦 = (𝑐1 + 𝑐2 𝑥)𝑒 −2x + 𝑐3 𝑒 2x
((E))A
((F))

𝑑3𝑦 𝑑𝑦
((Q))1_// A solution of D.E. 𝑑𝑥 3 − 2 𝑑𝑥 + 4y = 0 is
((A)) 𝑦 = 𝑐1 𝑒 2x + 𝑒 𝑥 [𝑐2 cos(𝑥) + 𝑐3 sin(𝑥)]
((B)) 𝑦 = 𝑐1 𝑒 2x + 𝑒 −𝑥 [𝑐2 cos(𝑥) + 𝑐3 sin(𝑥)]
((C)) 𝑦 = 𝑐1 𝑒 2x + 𝑐2 𝑒 −2x + 𝑐3 𝑒 𝑥
((D)) 𝑦 = 𝑐1 𝑒 2x + 𝑐2 𝑒 −𝑥 + 𝑐3 𝑒 𝑥
((E))B
((F))

𝑑4𝑦 𝑑2𝑦
((Q))1_// A solution of D.E. 𝑑𝑥 4 + 5 𝑑𝑥 2 + 4y = 0 is
((A)) 𝑦 = 𝑐1 cos(𝑥) + 𝑐2 sin(𝑥) + 𝑐3 𝑒 2x + 𝑐4 𝑒 −2x
((B)) 𝑦 = 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 −𝑥 + 𝑐3 𝑒 2x + 𝑐4 𝑒 −2x
((C)) 𝑦 = 𝑐1 cos(𝑥) + 𝑐2 sin(𝑥) + 𝑐3 cos(2x) + 𝑐4 sin(2x)
((D)) 𝑦 = 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 −𝑥 + 𝑐3 cos(2x) + 𝑐4 sin(2x)
((E))C
((F))

𝑑3𝑦
((Q))1_// A solution of D.E. 𝑑𝑥 3 + 𝑦 = 0 is
((A)) 𝑦 = 𝑐1 𝑒 −𝑥 + 𝑒 𝑥 [𝑐2 cos(√3𝑥) + 𝑐3 sin(√3𝑥)]
((B)) 𝑦 = 𝑐1 𝑒 −𝑥 + 𝑐2 𝑒 𝑥/2 + 𝑐3 𝑒 √3𝑥/2
√3𝑥 √3𝑥
((C)) 𝑦 = 𝑐1 𝑒 −𝑥 + 𝑒 −𝑥/2 [𝑐2 cos(
) + 𝑐3 sin( )]
2 2
−𝑥 𝑥/2 √3𝑥 √3𝑥
((D)) 𝑦 = 𝑐1 𝑒 + 𝑒 [𝑐2cos( 2 ) + 𝑐3 sin( 2 )]
((E))D
((F))
𝑑3𝑦 𝑑𝑦
((Q))1_// A solution of D.E.4 𝑑𝑥 3 − 7 𝑑𝑥 + 3y = 0 is
((A)) 𝑦 = 𝑐1 𝑒 2x + 𝑐2 𝑒 𝑥/2 + 𝑐3 𝑒 −𝑥/2
((B)) 𝑦 = 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 𝑥/2 + 𝑐3 𝑒 −3x/2
((C)) 𝑦 = 𝑐1 + 𝑐2 𝑒 −𝑥 + 𝑐3 𝑒 −3x/4
((D)) 𝑦 = 𝑐1 𝑒 −𝑥 + 𝑐2 𝑒 𝑥/2 + 𝑐3 𝑒 −3x/2
((E))B
((F))

((Q))1_// If the roots 𝑚1 , 𝑚2 , 𝑚3 ⋯ ⋯ , 𝑚𝑛 of Auxiliary equation 𝜙(𝐷) = 0 Are real And distinct, then solution
of 𝜙(𝐷)𝑦 = 0 is
((A)) 𝑐1 𝑒 𝑚1𝑥 + 𝑐2 𝑒 𝑚2𝑥 + ⋯ ⋯ + 𝑐𝑛 𝑒 𝑚𝑛𝑥
((B)) 𝑐1 cos𝑚1 𝑥 + 𝑐2 cos𝑚2 𝑥 + ⋯ ⋯ + 𝑐𝑛 cos𝑚𝑛 𝑥
((C)) 𝑚1 𝑒 𝑐1𝑥 + 𝑚2 𝑒 𝑐2𝑥 + ⋯ ⋯ + 𝑚𝑛 𝑒 𝑐𝑛𝑥
((D)) 𝑐1 sin𝑚1 𝑥 + 𝑐2 sin𝑚2 𝑥 + ⋯ ⋯ + 𝑐𝑛 sin𝑚𝑛 𝑥
((E))A
((F))

𝑑3𝑦 𝑑𝑦
((Q))1_// A solution of D.E. 𝑑𝑥 3 − 3 𝑑𝑥 + 2y = 0 is
((A)) 𝑦 = (𝑐1 + 𝑐2 𝑥)𝑒 𝑥 + 𝑐3 𝑒 −2x
((B)) 𝑦 = (𝑐1 + 𝑐2 𝑥)𝑒 −𝑥 + 𝑐3 𝑒 2x
((C)) 𝑦 = (𝑐1 + 𝑐2 𝑥)𝑒 2x + 𝑐3 𝑒 −2x
((D)) 𝑦 = 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 2x + 𝑐3 𝑒 3x
((E))A
((F))

𝑑3𝑦 𝑑2𝑦 𝑑𝑦
((Q))1_// A solution of D.E. 𝑑𝑥 3 − 𝑑𝑥 2 + 3 𝑑𝑥 + 5y = 0 is
((A)) 𝑦 = 𝑐1 𝑒 −𝑥 + 𝑒 𝑥 [𝑐2 cos(2x) + 𝑐3 sin(2x)]
((B)) 𝑦 = 𝑐1 𝑒 𝑥 + 𝑒 −𝑥 [𝑐2 cos(2x) + 𝑐3 sin(2x)]
((C)) 𝑦 = 𝑐1 𝑒 −𝑥 + 𝑒 −𝑥 [𝑐2 cos(2x) + 𝑐3 sin(2x)]
((D)) 𝑦 = 𝑐1 𝑒 𝑥 + 𝑒 𝑥 [𝑐2 cos(2x) + 𝑐3 sin(2x)]
((E))A
((F))

𝑑3𝑦 𝑑2𝑦 𝑑𝑦
((Q))2_// A solution of D.E. 𝑑𝑥 3 − 5 𝑑𝑥 2 + 7 𝑑𝑥 − 3y = 0 is
((A)) 𝑦 = 𝑐1 𝑒 𝑥 + 𝑐2 cos(2x) + 𝑐3 sin(2x)
((B)) 𝑦 = (𝑐1 + 𝑐2 𝑥)𝑒 𝑥 + 𝑐3 𝑒 3x
((C)) 𝑦 = (𝑐1 + 𝑐2 𝑥)𝑒 −𝑥 + 𝑐3 𝑒 −3x
((D)) 𝑦 = (𝑐1 + 𝑐2 𝑥)𝑒 −3x + 𝑐3 𝑒 𝑥
((E)) B
((F))
𝑑3𝑦 𝑑2𝑦 𝑑𝑦
((Q))2_// A solution of D.E. 𝑑𝑥 3 − 6 𝑑𝑥 2 + 12 𝑑𝑥 − 8y = 0 is
((A)) 𝑦 = (𝑐1 + 𝑐2 𝑥 + 𝑐3 𝑥 2 )𝑒 2x
((B)) 𝑦 = 𝑐1 𝑒 −2x + 𝑐2 cos(2x) + 𝑐3 sin(2x)
((C)) 𝑦 = (𝑐1 + 𝑐2 𝑥)𝑒 2x + 𝑐3 𝑒 −2x
((D)) 𝑦 = (𝑐1 + 𝑐2 𝑥 + 𝑐3 𝑥 2 )𝑒 −2x
((E)) A
((F))

𝑑4𝑦 𝑑2𝑦
((Q))2_// A solution of D.E. 𝑑𝑥 4 + 18 𝑑𝑥 2 + 81y = 0 is
((A)) 𝑦 = 𝑐1 𝑒 3x + 𝑐2 𝑒 −3x + 𝑐3 cos(3x) + 𝑐4 sin(3x)
((B)) 𝑦 = (𝑐1 + 𝑐2 𝑥)𝑒 −3x + 𝑐3 cos(2x) + 𝑐4 sin(2x)
((C)) 𝑦 = (𝑐1 + 𝑐2 𝑥)𝑒 3x + (𝑐3 + 𝑐4 𝑥)𝑒 −3x
((D)) 𝑦 = (𝑐1 + 𝑐2 𝑥)cos(3x) + (𝑐3 + 𝑐4 𝑥)sin(3x)
((E)) D
((F))

𝑑3𝑦 𝑑𝑦
((Q))2_// A solution of D.E. 𝑑𝑥 3 − 12 𝑑𝑥 + 16y = 0 is
((A)) 𝑦 = 𝑐1 𝑒 4x + 𝑐2 cos(2x) + 𝑐3 sin(2x)
((B)) 𝑦 = 𝑐1 𝑒 −2x + 𝑐2 cos(2x) + 𝑐3 sin(2x)
((C)) 𝑦 = (𝑐1 + 𝑐2 𝑥)𝑒 2x + 𝑐3 𝑒 −4x
((D)) 𝑦 = (𝑐1 + 𝑐2 𝑥)𝑒 −4x + 𝑐3 𝑒 2x
((E)) C
((F))

𝑑4𝑦 𝑑3𝑦 𝑑2𝑦


((Q))1_// A solution of D.E. 𝑑𝑥 4 + 𝑑𝑥 3 + 𝑑𝑥 2 = 0 is
√3 √3
((A)) 𝑦 = 𝑐1 + 𝑐2 𝑥 + 𝑒 −𝑥/2 [𝑐3 cos( 2 𝑥) + 𝑐4 sin( 2 𝑥)]
((B)) 𝑦 = 𝑐1 + 𝑐2 𝑥 + 𝑐3 𝑒 𝑥 + 𝑐4 𝑒 −𝑥
((C)) 𝑦 = (𝑐1 + 𝑐2 𝑥)𝑒 𝑥 + (𝑐3 + 𝑐4 𝑥)𝑒 −𝑥
((D)) 𝑦 = 𝑐1 + 𝑐2 𝑥 + 𝑒 −𝑥 [𝑐3cos(√3𝑥) + 𝑐4 sin(√3𝑥)]
((E)) A
((F))

𝑑3𝑦 𝑑2𝑦 𝑑𝑦
((Q))1_// Solution of D.E.𝑑𝑥 3 + 6 𝑑𝑥 2 + 11 𝑑𝑥 + 6𝑦 = 0 is
((A)) 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 2𝑥 + 𝑐3 𝑒 3𝑥
((B)) 𝑐1 𝑒 −𝑥 + 𝑐2 𝑒 2𝑥 + 𝑐3 𝑒 −3𝑥
((C)) 𝑐1 𝑒 −𝑥 + 𝑐2 𝑒 −2𝑥 + 𝑐3 𝑒 −3𝑥
((D)) 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 −2𝑥 + 𝑐3 𝑒 3𝑥
((E)) C
((F))
𝑑3𝑦 𝑑𝑦
((Q))1_// Solution of D.E.𝑑𝑥 3 − 7 𝑑𝑥 − 6𝑦 = 0 is
((A)) 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 2𝑥 + 𝑐3 𝑒 3𝑥
((B)) 𝑐1 𝑒 −𝑥 + 𝑐2 𝑒 −2𝑥 + 𝑐3 𝑒 6𝑥
((C)) 𝑐1 𝑒 −𝑥 + 𝑐2 𝑒 2𝑥 + 𝑐3 𝑒 𝑥
((D)) 𝑐1 𝑒 −𝑥 + 𝑐2 𝑒 −2𝑥 + 𝑐3 𝑒 3𝑥
((E)) D
((F))

𝑑3𝑦 𝑑2𝑦 𝑑𝑦
((Q))1_// Solution of D.E.𝑑𝑥 3 + 2 𝑑𝑥 2 + 𝑑𝑥 = 0 is
((A)) 𝑐1 + 𝑐2 𝑒 𝑥 + 𝑐3 𝑒 −𝑥
((B)) 𝑐1 + 𝑒 𝑥 (𝑐2 𝑥 + 𝑐3 )
((C)) 𝑒 −𝑥 (𝑐2 𝑥 + 𝑐3 )
((D)) 𝑐1 + 𝑒 −𝑥 (𝑐2 𝑥 + 𝑐3 )
((E)) D
((F))

𝑑3𝑦 𝑑2𝑦 𝑑𝑦
((Q))1_// Solution of D.E.𝑑𝑥 3 − 5 𝑑𝑥 2 + 8 𝑑𝑥 − 4𝑦 = 0 is
((A)) 𝑐1 𝑒 𝑥 + (𝑐2 𝑥 + 𝑐3 )𝑒 2𝑥
((B)) 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 2𝑥 + 𝑐3 𝑒 3𝑥
((C)) (𝑐2 𝑥 + 𝑐3 )𝑒 2𝑥
((D)) 𝑐1 𝑒 −𝑥 + (𝑐2 𝑥 + 𝑐3 )𝑒 −2𝑥
((E)) A
((F))

𝑑3𝑦
((Q))2_// The solution of D.E.𝑑𝑥 3 + 𝑦 = 0 is
√3 √3
((A)) 𝑐1 𝑒 𝑥 + 𝑒 𝑥 (𝑐2 cos 𝑥 + 𝑐3 sin 𝑥)
2 2
1
1 1
((B)) 𝑐1 𝑒 − 𝑥 + 𝑒 2 𝑥 (𝑐2 cos 2 𝑥 + 𝑐3 sin 2 𝑥)
1
√3 √3
((C)) 𝑐1 𝑒 − 𝑥 + 𝑒 2 𝑥 (𝑐2 cos 2 𝑥 + 𝑐3 sin 2
𝑥)
((D)) (𝑐1 + 𝑐2 𝑥 + 𝑐3 𝑥 2 )𝑒 − 𝑥
((E)) C
((F))

𝑑3𝑦 𝑑𝑦
((Q))1_// The solution of D.E.𝑑𝑥 3 + 3 𝑑𝑥 = 0 is
((A)) 𝑐1 + 𝑐2 cos𝑥 + 𝑐3 sin𝑥
((B)) 𝑐1 cos𝑥 + 𝑐2 sin𝑥
((C)) 𝑐1 + 𝑐2 𝑒 √3 𝑥 + 𝑐3 𝑒 −√3 𝑥
((D)) 𝑐1 + 𝑐2 cos√3𝑥 + 𝑐3 sin√3𝑥
((E)) D
((F))
𝑑3𝑦 𝑑2𝑦 𝑑𝑦
((Q))1_// Solution of D.E.𝑑𝑥 3 + 𝑑𝑥 2 − 2 𝑑𝑥 + 12𝑦 = 0 is
((A)) 𝑐1 𝑒 −3𝑥 + 𝑒 𝑥 (𝑐2 cos√3𝑥 + 𝑐3 sin√3𝑥)
((B)) 𝑐1 𝑒 −3𝑥 + (𝑐2 cos3𝑥 + 𝑐3 sin3𝑥)
((C)) 𝑐1 𝑒 3𝑥 + 𝑒 −𝑥 (𝑐2cos√3𝑥 + 𝑐3 sin√3𝑥)
((D)) 𝑐1 𝑒 −𝑥 + 𝑐2 𝑒 −√3 𝑥 + 𝑐3 𝑒 √3 𝑥
((E)) A
((F))

((Q))1_// Solution of D.E.(𝐷3 − 𝐷2 + 3𝐷 + 5)𝑦 = 0 is


((A)) 𝑐1 𝑒 −𝑥 + 𝑒 𝑥 (𝑐2 cos2𝑥 + 𝑐3 sin2𝑥)
((B)) 𝑐1 𝑒 −𝑥 + (𝑐2 cos3𝑥 + 𝑐3 sin3𝑥)
((C)) 𝑐1 𝑒 𝑥 + 𝑒 −𝑥 (𝑐2 cos2𝑥 + 𝑐3 sin2𝑥)
((D)) 𝑐1 𝑒 −𝑥 + 𝑐2 𝑒 −2𝑥 + 𝑐3 𝑒 −3𝑥
((E)) A
((F))

𝑑4𝑦
((Q))2_// The solution of D.E.𝑑𝑥 4 − 𝑦 = 0 is
((A)) (𝑐1 𝑥 + 𝑐2 )𝑒 −𝑥 + 𝑐3 cos𝑥 + 𝑐4 sin𝑥
((B)) (𝑐1 𝑥 + 𝑐2 )cos𝑥 + (𝑐3 𝑥 + 𝑐4 )sin𝑥
((C)) 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 − 𝑥 + 𝑐3 cos𝑥 + 𝑐4 sin𝑥
((D)) (𝑐1 + 𝑐2 𝑥 + 𝑐3 𝑥 2 + 𝑐4 𝑥 3 )𝑒 𝑥
((E)) C
((F))

((Q))2_// The solution of D.E.(𝐷4 + 2𝐷2 + 1)𝑦 = 0 is


((A)) (𝑐1 𝑥 + 𝑐2 )𝑒 𝑥 + (𝑐3 𝑥 + 𝑐4 )𝑒 −𝑥
((B)) 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 −𝑥 + 𝑐3 cos𝑥 + 𝑐4 sin𝑥
((C)) (𝑐1 𝑥 + 𝑐2 )cos𝑥 + (𝑐3 𝑥 + 𝑐4 )sin𝑥
((D)) (𝑐1 𝑥 + 𝑐2 )cos2𝑥 + (𝑐3 𝑥 + 𝑐4 )sin2𝑥
((E)) C
((F))

((Q))2_// The solution of D.E.(𝐷2 + 9)2 𝑦 = 0 is


((A)) (𝑐1 𝑥 + 𝑐2 )𝑒 3𝑥 + (𝑐3 𝑥 + 𝑐4 )𝑒 −3𝑥
((B)) (𝑐1 𝑥 + 𝑐2 )cos3𝑥 + (𝑐3 𝑥 + 𝑐4 )sin3𝑥
((C)) (𝑐1 𝑥 + 𝑐2 )cos9𝑥 + (𝑐3 𝑥 + 𝑐4 )sin9𝑥
((D)) (𝑐1 𝑥 + 𝑐2 )cos𝑥 + (𝑐3 𝑥 + 𝑐4 )sin𝑥
((E)) B
((F))

𝑑6𝑦 𝑑4𝑦 𝑑2𝑦


((Q))2_// The solution of D.E.𝑑𝑥 6 + 6 𝑑𝑥 4 + 9 𝑑𝑥 2 = 0 is
((A)) 𝑐1 𝑥 + 𝑐2 + (𝑐3 𝑥 + 𝑐4 )cos√3 𝑥 + (𝑐5 𝑥 + 𝑐6 )sin√3 𝑥
((B)) 𝑐1 𝑥 + 𝑐2 + (𝑐3 𝑥 + 𝑐4 )cos3 𝑥 + (𝑐5 𝑥 + 𝑐6 )sin3 𝑥
((C)) (𝑐1 𝑥 + 𝑐2 )cos√3 𝑥 + (𝑐3 𝑥 + 𝑐4 )sin√3 𝑥
((D)) 𝑐1 𝑥 + 𝑐2 + (𝑐3 𝑥 + 𝑐4 )𝑒 √3𝑥
((E)) A
((F))

1 𝑑
((Q))1_// 𝐷+𝑚 𝑓(𝑥) , where 𝐷 ≡ 𝑑𝑥 and 𝑚 is constant, is equal to
((A)) 𝑒 −𝑚𝑥 ∫ 𝑒 𝑚𝑥 𝑑𝑥
((B)) ∫ 𝑒 𝑚𝑥 𝑓(𝑥) 𝑑𝑥
((C)) 𝑒 𝑚𝑥 ∫ 𝑒 −𝑚𝑥 𝑓(𝑥) 𝑑𝑥
((D)) 𝑒 −𝑚𝑥 ∫ 𝑒 𝑚𝑥 𝑓(𝑥) 𝑑𝑥
((E)) D
((F))

1
((Q))1_//Particular Integral of 𝜙(𝐷2) sin(𝑎𝑥 + 𝑏),𝜙(−𝑎2 ) = 0 , 𝜙 ′ (−𝑎2 ) ≠ 0is
1
((A)) 𝑥 𝜙′ (−𝑎2) cos(𝑎𝑥 + 𝑏)
1
((B)) 𝑥 𝜙′(−𝑎2) sin(𝑎𝑥 + 𝑏)
1
((C)) 𝜙(−𝑎2) sin(𝑎𝑥 + 𝑏)
1
((D)) 𝜙′(−𝑎2) sin(𝑎𝑥 + 𝑏)
((E)) B
((F))

((Q))1_// Particular Integral of D.E.(𝐷2 + 1)𝑦 = sin𝑥 is


𝑥
((A)) − 2 cos𝑥
𝑥
((B)) − 4 cos𝑥
𝑥
((C)) − 2 sin𝑥
1
((D)) − 2 cos𝑥
((E)) A
((F))

1
((Q))1_// Particular Integral of 𝜙(𝐷) 𝑒 𝑎 𝑥 𝑉 where 𝑉 is any function of 𝑥 is
1
((A)) 𝑒 𝑎𝑥 𝜙(𝐷−𝑎) 𝑉
1
((B)) 𝑒 𝑎𝑥 𝜙(𝑎) 𝑉
1
((C)) 𝑒 𝑎 𝑥 𝑉
𝜙(𝐷+𝑎)
1
((D)) 𝜙(𝐷+𝑎) 𝑉
((E)) C
((F))
((Q))2_// Particular Integral of D.E.(𝐷3 + 9𝐷)𝑦 = sin3𝑥 is
𝑥
((A)) − 18 cos3𝑥
𝑥
((B)) − 18 sin3𝑥
((C)) −𝑥sin3𝑥
1
((D)) − 18 sin3𝑥
((E)) B
((F))

1
((Q))1_// Particular Integral of (𝐷−𝑎)𝑟 𝑒 𝑎 𝑥 is
1
((A)) 𝑟! 𝑒 𝑎𝑥
𝑥𝑟
((B)) 𝑒 𝑎𝑥
𝑟
𝑥𝑟
((C)) 𝑟! 𝑒 𝑎𝑥
((D)) 𝑥 𝑟 𝑒 𝑎𝑥
((E)) C
((F))

1
((Q))1_// Particular Integral of 𝜙(𝐷2) sin(𝑎𝑥 + 𝑏), 𝜙(−𝑎2 ) ≠ 0 is
1
((A)) 𝜙(−𝑎2) cos(𝑎𝑥 + 𝑏)
1
((B)) 𝜙(−𝑎2) sin(𝑎𝑥 + 𝑏)
1
((C)) 𝑥 𝜙′(−𝑎2) sin(𝑎𝑥 + 𝑏)
1
((D)) 𝜙(𝑎2) sin(𝑎𝑥 + 𝑏)
((E)) B
((F))

1
((Q))1_// Particular Integral of 𝜙(𝐷2) cos(𝑎𝑥 + 𝑏), 𝜙(−𝑎2 ) ≠ 0 is
1
((A)) 𝜙(−𝑎2) cos(𝑎𝑥 + 𝑏)
1
((B)) sin(𝑎𝑥 + 𝑏)
𝜙(−𝑎2 )
1
((C)) 𝑥 𝜙′(−𝑎2) cos(𝑎𝑥 + 𝑏)
1
((D)) 𝜙(𝑎2) cos(𝑎𝑥 + 𝑏)
((E)) A
((F))

((Q))2_// The Particular Integral of D.E.(𝐷4 + 10𝐷2 + 9)𝑦 = sin2𝑥 + cos4𝑥 is


1 1
((A)) − 5 sin2𝑥 − 29 cos4𝑥
1
((B)) 15 sin2𝑥 + cos4𝑥
1 1
((C)) − 15 cos4𝑥 − 87 sin2𝑥
1 1
((D)) − 15 sin2𝑥 − 87 cos4𝑥
((E)) C
((F))

𝑑2𝑦 𝑑𝑦
((Q))2_// Particular Integral of D.E.𝑑𝑥 2 − 2 𝑑𝑥 + 5𝑦 = 10sin𝑥 is
8
((A)) 3 sin𝑥
((B)) sin𝑥 − 2cos𝑥
((C)) 4sin𝑥 + 2cos𝑥
((D)) 2sin𝑥 + cos𝑥
((E)) D
((F))

1 𝑑
((Q))1_// 𝐷−𝑚 𝑓(𝑥) , where 𝐷 ≡ 𝑑𝑥 And 𝑚 is constant, is
((A)) 𝑒 𝑚𝑥 ∫ 𝑒 −𝑚𝑥 𝑑𝑥
((B)) ∫ 𝑒 −𝑚𝑥 𝑓(𝑥) 𝑑𝑥
((C)) 𝑒 𝑚𝑥 ∫ 𝑒 −𝑚𝑥 𝑓(𝑥) 𝑑𝑥
((D)) 𝑒 −𝑚𝑥 ∫ 𝑒 𝑚𝑥 𝑓(𝑥) 𝑑𝑥
((E)) C
((F))

1
((Q))1_// Particular Integral of 𝜙(𝐷) 𝑒 𝑎 𝑥 , 𝜙(𝑎) ≠ 0 is
1
((A)) 𝜙(−𝑎) 𝑒 𝑎𝑥
1
((B)) 𝑥 𝜙′(𝑎) 𝑒 𝑎𝑥
1
((C)) 𝜙(𝑎2) 𝑒 𝑎𝑥
1
((D)) 𝑒 𝑎𝑥
𝜙(𝑎)
((E)) D
((F))

1
((Q))1_// Particular Integral for 𝜙(𝐷) 𝑥𝑉 , where 𝑉 is ((A)) function of 𝑥,is
1 1
((A)) [𝑥 − ] 𝑉
𝜙(𝐷) 𝜙(𝐷)
𝜙 ′ (𝐷)
((B)) [𝑥 − ] 𝜙(𝐷)𝑉
𝜙(𝐷)
𝜙 ′ (𝐷)
((C)) [𝑥 + ] 𝑉
𝜙(𝐷)
𝜙 ′ (𝐷) 1
((D)) [𝑥 − ] 𝑉
𝜙(𝐷) 𝜙(𝐷)
((E)) D
((F))

1
((Q))1_// Particular Integral of 𝜙(𝐷2) cos(𝑎𝑥 + 𝑏), 𝜙(−𝑎2 ) = 0, 𝜙′ (−𝑎2 ) ≠ 0 is
1
((A)) 𝜙′ (−𝑎2) cos(𝑎𝑥 + 𝑏)
1
((B)) 𝜙′(−𝑎2) cos(𝑎𝑥 + 𝑏)
1
((C)) 𝑥 𝜙′(−𝑎2) sin(𝑎𝑥 + 𝑏)
1
((D)) 𝑥 𝜙′(−𝑎2) cos(𝑎𝑥 + 𝑏)
((E)) D
((F))

1
((Q))1_// Particular Integral of 𝜙(𝐷2) sinh(𝑎𝑥 + 𝑏), 𝜙(𝑎2 ) ≠ 0 is
1
((A)) 𝜙(𝑎2) cosh(𝑎𝑥 + 𝑏)
1
((B)) 𝑥 𝜙′(𝑎2) sinh(𝑎𝑥 + 𝑏)
1
((C)) 𝜙(𝑎2) sinh(𝑎𝑥 + 𝑏)
1
((D)) 𝜙(−𝑎2) sinh(𝑎𝑥 + 𝑏)
((E)) C
((F))

1
((Q))1_// Particular Integral of 𝜙(𝐷2) cosh(𝑎𝑥 + 𝑏),𝜙(𝑎2 ) ≠ 0 , is
1
((A)) 𝜙(𝑎2) cosh(𝑎𝑥 + 𝑏)
1
((B)) 𝑥 𝜙′(𝑎2) cosh(𝑎𝑥 + 𝑏)
1
((C)) 𝜙(𝑎2) sinh(𝑎𝑥 + 𝑏)
1
((D)) 𝜙(−𝑎2) cosh(𝑎𝑥 + 𝑏)
((E)) A
((F))

1 𝑥 𝑑
((Q))1_// Particular Integral𝐷+1 𝑒 𝑒 where 𝐷 ≡ 𝑑𝑥 is
𝑥
((A)) 𝑒 −𝑥 𝑒 𝑒
𝑥
((B)) 𝑒 𝑒
𝑥
((C)) 𝑒 𝑥 𝑒 𝑒
𝑥
((D)) 𝑒 − 2𝑥 𝑒 𝑒
((E)) A
((F))
1 𝑥 𝑑
((Q))2_// Particular Integral𝐷+2 𝑒 −𝑥 𝑒 𝑒 where 𝐷 ≡ 𝑑𝑥 is
𝑥
((A)) 𝑒 2𝑥 𝑒 𝑒
𝑥
((B)) 𝑒 − 2𝑥 𝑒 𝑒
𝑥
((C)) 𝑒 𝑒
𝑥
((D)) 𝑒 − 𝑥 𝑒 𝑒
((E)) B
((F))

1 𝑑
((Q))2_// Particular Integral𝐷+2 𝑒 −𝑥 cos𝑒 𝑥where 𝐷 ≡ 𝑑𝑥 is
((A)) 𝑒 −𝑥 cos𝑒 𝑥
((B)) 𝑒 −𝑥 sin𝑒 𝑥
((C)) 𝑒 −2𝑥 cos𝑒 𝑥
((D)) 𝑒 −2𝑥 sin𝑒 𝑥
((E)) D
((F))

((Q))1_// Particular Integral of D.E. (𝐷2 − 9)𝑦 = 𝑒 3𝑥 + 1 is


3𝑥 1
((A)) 2 𝑒 3𝑥 − 8
𝑒 3𝑥 3
((B)) 𝑥 +8
6
𝑒 3𝑥 1
((C)) 𝑥 −8
6
3𝑥 1
((D)) 𝑥𝑒 +8
((E)) C
((F))

((Q))2_// Particular Integral of D.E.(𝐷3 + 𝐷)𝑦 = cos𝑥 is


𝑥
((A)) − 2 sin𝑥
𝑥
((B)) cos𝑥
4
1
((C)) − 2 cos𝑥
𝑥
((D)) − 2 cos𝑥
((E)) D
((F))

1 𝑑
((Q))2_// Particular Integral𝐷+2 𝑒 −2𝑥 sec 2 𝑥(1 + 2t((A))n𝑥) where 𝐷 ≡ 𝑑𝑥 is
((A)) 𝑒 −2𝑥 (1 + 2t((A))n2 𝑥)
((B)) 𝑒 −2𝑥 (t((A))n𝑥 + t((A))n2 𝑥)
((C)) 𝑒 2𝑥 (t((A))n𝑥 + 2t((A))n2 𝑥)
((D)) 𝑒 −2𝑥 (t((A))n𝑥 + sec𝑥)
((E)) B
((F))
1 1 𝑑
((Q))2_// Particular Integral𝐷+1 (1+𝑒 𝑥)where 𝐷 ≡ 𝑑𝑥 is
((A)) 𝑒 𝑥 log(1 − 𝑒 𝑥 )
((B)) log(1 + 𝑒 𝑥 )
((C)) 𝑒 𝑥 log(1 + 𝑒 𝑥 )
((D)) 𝑒 −𝑥 log(1 + 𝑒 𝑥 )
((E)) D
((F))

𝑑2𝑦 𝑑𝑦
((Q))2_// The Particular Integral of D.E.𝑑𝑥 2 − 7 𝑑𝑥 + 6𝑦 = 𝑒 2𝑥 is
𝑥𝑒 2𝑥
((A)) − 3
𝑒 2𝑥
((B)) − 4
𝑒 2𝑥
((C)) 4
𝑒 2𝑥
((D))
24
((E)) B
((F))

1 𝑑
((Q))2_// Particular Integral sin𝑒 𝑥 where 𝐷 ≡ is
𝐷+1 𝑑𝑥
((A)) − 𝑒 −𝑥 sin𝑒 𝑥
((B)) 𝑒 𝑥 cos𝑒 𝑥
((C)) − 𝑒 −𝑥 cos𝑒 𝑥
((D)) 𝑒 −𝑥 cos𝑒 𝑥
((E)) C
((F))

((Q))2_// The Particular Integral of D.E.(𝐷2 − 5𝐷 + 6)𝑦 = 3𝑒 5𝑥 is


𝑒 5𝑥
((A)) 2
𝑒 5𝑥
((B)) 6
𝑒 5𝑥
((C)) − 14
𝑒 2𝑥
((D)) − 2
((E)) A
((F))

((Q))2_// The Particular Integral of D.E.(𝐷2 + 4𝐷 + 3)𝑦 = 𝑒 −3𝑥 is


((A)) 𝑥𝑒 −3𝑥
1
((B)) − 2 𝑒 −3𝑥
𝑥
((C)) − 10 𝑒 −3𝑥
𝑥
((D)) − 2 𝑒 −3𝑥
((E)) D
((F))
((Q))2_// The Particular Integral of D.E.(𝐷 − 2)3 𝑦 = 𝑒 2𝑥 + 3𝑥 is
𝑥3 1
((A)) 𝑒 2𝑥 + (log3−2)3 3𝑥
3!
𝑥3 1
((B)) 𝑒 2𝑥 + (𝑒 3 3 3𝑥
3! −2)
𝑥 1
((C)) 3! 𝑒 2𝑥 + (log3−2)3 3𝑥
𝑥3 1
((D)) 3! 𝑒 2𝑥 + (log3−2)3
((E)) A
((F))

((Q))2_// The Particular Integral of D.E.(𝐷5 − 𝐷)𝑦 = 12𝑒 𝑥 is


((A)) 3 𝑒 𝑥
12
((B)) 5 𝑥 𝑒 𝑥
((C)) 12𝑥 𝑒 𝑥
((D)) 3𝑥 𝑒 𝑥
((E)) D
((F))

((Q))2_// The Particular Integral of D.E.(𝐷2 + 1)(𝐷 − 1)𝑦 = 𝑒 𝑥 is


((A)) 𝑥 𝑒 𝑥
1
((B)) 2 𝑥 2 𝑒 𝑥
1
((C)) 2 𝑥 𝑒 𝑥
((D)) 𝑥 2 𝑒 𝑥
((E)) C
((F))

((Q))1_// The Particular Integral of D.E.(𝐷2 − 4𝐷 + 4)𝑦 = sin2𝑥is


cos2𝑥
((A)) − 8
cos2𝑥
((B)) 8
sin2𝑥
((C)) 8
cos2𝑥
((D)) 𝑥 8
((E)) B
((F))

((Q))1_// The Particular Integral of D.E.(𝐷4 − 𝑚4 )𝑦 = cos𝑚𝑥 is


−𝑥
((A)) 3 cos𝑚𝑥
4𝑚
𝑥
((B)) 𝑚3 sin𝑚𝑥
((C)) −𝑥sin𝑚𝑥
−𝑥
((D)) 4𝑚3 sin𝑚𝑥
((E)) D
((F))

𝑑3𝑦 𝑑𝑦
((Q))2_// The Particular Integral of D.E.𝑑𝑥 3 − 4 𝑑𝑥 = 2cosh2𝑥 is
1
((A)) 4 cosh2𝑥
𝑥
((B)) 8 cosh2𝑥
𝑥
((C)) 4 cosh2𝑥
𝑥
((D)) 4 sinh2𝑥
((E)) C
((F))

((Q))2_// The Particular Integral of D.E.(𝐷2 + 6𝐷 − 9)𝑦 = sinh3𝑥 is


1
((A)) 18 cosh3𝑥
1
((B)) 2 cosh3𝑥
1
((C)) 18 sinh3𝑥
1
((D)) − 18 cosh3𝑥
((E)) A
((F))

𝑑3𝑦
((Q))2_// The Particular Integral of D.E.𝑑𝑥 3 + 8𝑦 = 𝑥 4 + 2𝑥 + 1 is
1
((A)) 8 (𝑥 4 + 5𝑥 + 1)
1
((B)) 8 (𝑥 3 − 3𝑥 2 + 1)
((C)) 𝑥 4 − 𝑥 + 1
1
((D)) 8 (𝑥 4 − 𝑥 + 1)
((E)) D
((F))

((Q))2_// The Particular Integral of D.E.(𝐷4 + 𝐷2 + 1)𝑦 = 53𝑥 2 + 17 is


((A)) 53𝑥 2 + 17
((B)) 53𝑥 2 − 89
((C)) 53𝑥 2 + 113
((D)) 3𝑥 2 − 17
((E)) B
((F))

((Q))2_// The Particular Integral of D.E.(𝐷2 − 𝐷 + 1)𝑦 = 𝑥 3 − 3𝑥 2 + 1 is


((A)) 𝑥 3 + 6𝑥 + 5
((B)) 𝑥 2 − 6𝑥 + 1
((C)) 𝑥 3 − 6𝑥 − 5
((D)) 𝑥 3 − 6𝑥 2 + 18𝑥 − 11
((E)) C
((F))

((Q))1_// The Particular Integral of D.E.(𝐷2 − 1)𝑦 = 𝑥 3 is


((A)) −𝑥 3 + 6𝑥
((B)) 𝑥 2 + 6
((C)) 𝑥 3 + 6𝑥
((D)) −𝑥 3 − 6𝑥
((E)) D
((F))

((Q))2_// The Particular Integral of D.E.(𝐷2 + 2𝐷 + 1)𝑦 = 𝑒 −𝑥 (1 + 𝑥 2 )is


𝑥2 𝑥4
((A)) 𝑒 𝑥 ( 2 − 12)
𝑥3
((B)) 𝑒 − 𝑥 (𝑥 + )
3
𝑥2 𝑥4
((C)) 𝑒 − 𝑥 ( 2 + 12)
𝑥2 𝑥4
((D)) ( 2 + 12)
((E)) C
((F))

((Q))2_// The Particular Integral of D.E.(𝐷2 − 4𝐷 + 4)𝑦 = 𝑒 2𝑥 𝑥 4 is


𝑥6
((A)) 120 𝑒 2𝑥
𝑥6
((B)) 60 𝑒 2𝑥
𝑥6
((C)) 30 𝑒 2𝑥
𝑥5
((D)) 20 𝑒 2𝑥
((E)) B
((F))

𝑑2𝑦 𝑑𝑦
((Q))2_// The Particular Integral of D.E.𝑑𝑥 2 + 2 𝑑𝑥 + 𝑦 = 𝑒 − 𝑥 cos𝑥 is
((A)) 𝑒 𝑥 cos𝑥
((B)) −𝑒 − 𝑥 sin𝑥
((C)) −𝑒 − 𝑥 cos𝑥
((D)) (𝑐1 𝑥 + 𝑐2 )𝑒 − 𝑥
((E)) C
((F))

((Q))2_// The Particular Integral of D.E.(𝐷2 + 6𝐷 + 9)𝑦 = 𝑒 −3𝑥 𝑥 −3 is


𝑒 − 3𝑥
((A)) 2𝑥
((B)) 𝑒 − 3𝑥 𝑥
𝑒 − 3𝑥
((C)) 12𝑥
((D)) (𝑐1 𝑥 + 𝑐2 )𝑒 − 3𝑥
((E)) A
((F))

((Q))2_// The Particular Integral of D.E.(𝐷3 + 3𝐷2 − 4)𝑦 = 𝑥 2 is


1 3
((A)) − 4 (𝑥 2 + 2)
1 3
((B)) 4 (𝑥 2 + 2 𝑥)
3
((C)) (𝑥 2 + 2)
1 3
((D)) − (𝑥 2 − )
4 2
((E)) A
((F))

((Q))2_// The Particular Integral of D.E.(𝐷 − 1)3 𝑦 = 𝑒 𝑥 √𝑥 is


4
((A)) 15 𝑒 𝑥 𝑥 5/2
8
((B)) 105 𝑒 𝑥 𝑥 7/2
((C)) 𝑒 𝑥 𝑥 7/2
3
((D)) 8 𝑒 𝑥 𝑥 − 5/2
((E)) B
((F))

((Q))2_// The Particular Integral of D.E.(𝐷4 + 25)𝑦 = 𝑥 4 + 𝑥 2 + 1 is


1
((A)) (𝑥 4 + 𝑥 2 − 25)
49
((B)) (𝑥 4 + 𝑥 2 + 25)
1
((C)) 25 (𝑥 4 + 𝑥 2 + 24𝑥 + 1)
1 1
((D)) 25 (𝑥 4 + 𝑥 2 + 25)
((E)) D
((F))

𝑑2𝑦 𝑑𝑦
((Q))2_// The Particular Integral of D.E.𝑑𝑥 2 − 2 + 𝑦 = 𝑥𝑒 𝑥 sin𝑥 is
𝑑𝑥
((A)) − 𝑒 𝑥 (𝑥sin𝑥 + 2cos𝑥)
((B)) 𝑒 𝑥 (𝑥sin𝑥 − 2cos𝑥)
((C)) (𝑥sin𝑥 + 2cos𝑥)
((D)) − 𝑒 𝑥 (𝑥cos𝑥 + 2sin𝑥)
((E)) A
((F))

𝑑2𝑦 𝑑𝑦
((Q))2_// Solution of D.E.𝑑𝑥 2 + 𝑑𝑥 + 𝑦 = 𝑒 2𝑥 is
√3 √3 1
((A)) 𝑒 𝑥 (𝑐1 cos 𝑥 + 𝑐2 sin 𝑥 ) − 7 𝑒 2𝑥
2 2
1
√3 √3 1
((B)) 𝑒 2𝑥 (𝑐1 cos 𝑥 + 𝑐2 sin 𝑥 ) + 5 𝑒 2𝑥
2 2
1
1 1 1
((C)) 𝑒 − 2𝑥 (𝑐1 cos 2 𝑥 + 𝑐2 sin 2 𝑥 ) + 7 𝑒 𝑥
1
√3 √3 1
((D)) 𝑒 − 2𝑥 (𝑐1 cos 𝑥 + 𝑐2 sin 𝑥 ) + 7 𝑒 2𝑥
2 2
((E)) D
((F))

89. Solution of D.E.(𝐷2 + 1)𝑦 = 𝑥 is


((A)) 𝑐1 cos𝑥 + 𝑐2 sin𝑥 + 𝑥
((B)) 𝑐1 cos𝑥 + 𝑐2 sin𝑥 − 𝑥
((C)) 𝑐1 cos𝑥 + 𝑐2 sin𝑥 + 2𝑥
((D)) 𝑐1 cos𝑥 + 𝑐2 sin𝑥 − 2𝑥
((E)) B
((F))

((Q))1_// The general form of Cauchy’s Linear equation is


−1 −2
𝑑𝑛𝑦 𝑑𝑛 𝑦 𝑑𝑛 𝑦
((A)) 𝑎0 𝑑𝑥 𝑛 + 𝑎1 𝑑𝑥 𝑛−1 + 𝑎2 𝑑𝑥 𝑛−2 + ⋯ ⋯ + 𝑎𝑛 𝑦 = 𝑓(𝑥), where 𝑎0 , 𝑎1 , 𝑎2 ⋯ ⋯ , 𝑎𝑛 are constant
𝑑𝑥 𝑑𝑦 𝑑𝑧
((B)) = = , where 𝑃, 𝑄, 𝑅 ((A))re function of 𝑥, 𝑦, 𝑧.
𝑃 𝑄 𝑅
𝑛𝑦 −1 −2
𝑛 𝑑 𝑛−1 𝑑𝑛 𝑦 𝑛−2 𝑑𝑛 𝑦
((C)) 𝑎0 𝑥 𝑛 + 𝑎1 𝑥 𝑛−1 + 𝑎2 𝑥 + ⋯ ⋯ + 𝑎𝑛 𝑦 = 𝑓(𝑥),where 𝑎0 , 𝑎1 , 𝑎2 ⋯ ⋯ , 𝑎𝑛 Are constant
𝑑𝑥 𝑑𝑥 𝑑𝑥 𝑛−2
−1 −2
𝑑𝑛𝑦 𝑑𝑛 𝑦 𝑑𝑛 𝑦
((D)) 𝑎0 (𝑎𝑥 + 𝑏)𝑛 𝑑𝑥 𝑛 + 𝑎1 (𝑎𝑥 + 𝑏)𝑛−1 𝑑𝑥 𝑛−1 + 𝑎2 (𝑎𝑥 + 𝑏)𝑛−2 𝑑𝑥 𝑛−2 + ⋯ ⋯ + 𝑎𝑛 𝑦 = 𝑓(𝑥),where
𝑎0 , 𝑎1 , 𝑎2 ⋯ ⋯ , 𝑎𝑛 are constant
((E)) C
((F))

−1 −2
𝑑𝑛𝑦 𝑑𝑛 𝑦 𝑑𝑛 𝑦
((Q))1_// Cauchy’s Linear equation 𝑎0 𝑥 𝑛 𝑑𝑥 𝑛 + 𝑎1 𝑥 𝑛−1 𝑑𝑥 𝑛−1 + 𝑎2 𝑥 𝑛−2 𝑑𝑥 𝑛−2 + ⋯ ⋯ + 𝑎𝑛 𝑦 = 𝑓(𝑥) is reduced
to Linear D.E. with constant coefficient by using substitution
((A)) 𝑥 = 𝑒 𝑧
((B)) 𝑦 = 𝑒 𝑧
((C)) 𝑥 = log𝑧
2
((D)) 𝑥 = 𝑒 𝑧
((E)) A
((F))

((Q))1_// The general form of Legendre’s Linear equation is


−1 −2
𝑑𝑛𝑦 𝑑𝑛 𝑦 𝑑𝑛 𝑦
((A)) 𝑎0 𝑑𝑥 𝑛 + 𝑎1 𝑑𝑥 𝑛−1 + 𝑎2 𝑑𝑥 𝑛−2 + ⋯ ⋯ + 𝑎𝑛 𝑦 = 𝑓(𝑥), where 𝑎0 , 𝑎1 , 𝑎2 ⋯ ⋯ , 𝑎𝑛 are constant
𝑑𝑥 𝑑𝑦 𝑑𝑧
((B)) = = , where 𝑃, 𝑄, 𝑅 are function of 𝑥, 𝑦, 𝑧.
𝑃 𝑄 𝑅
𝑛𝑦 −1 −2
𝑛 𝑑 𝑑𝑛 𝑦 𝑑𝑛 𝑦
((C)) 𝑎0 𝑥 + 𝑎1 𝑥 𝑛−1 𝑑𝑥 𝑛−1 + 𝑎2 𝑥 𝑛−2 𝑑𝑥 𝑛−2 + ⋯ ⋯ + 𝑎𝑛 𝑦 = 𝑓(𝑥),where 𝑎0 , 𝑎1 , 𝑎2 ⋯ ⋯ , 𝑎𝑛 are constant
𝑑𝑥 𝑛
−1 −2
𝑑𝑛𝑦 𝑑𝑛 𝑦 𝑑𝑛 𝑦
((D)) 𝑎0 (𝑎𝑥 + 𝑏)𝑛 𝑑𝑥 𝑛 + 𝑎1 (𝑎𝑥 + 𝑏)𝑛−1 𝑑𝑥 𝑛−1 + 𝑎2 (𝑎𝑥 + 𝑏)𝑛−2 𝑑𝑥 𝑛−2 + ⋯ ⋯ + 𝑎𝑛 𝑦 = 𝑓(𝑥), where
𝑎0 , 𝑎1 , 𝑎2 ⋯ ⋯ , 𝑎𝑛 are constant
((E)) D
((F))

−1 −2
𝑑𝑛𝑦 𝑑𝑛 𝑦 𝑑𝑛 𝑦
((Q))1_// Legendre’s Linear differential 𝑎0 (𝑎𝑥 + 𝑏)𝑛 𝑑𝑥 𝑛 + 𝑎1 (𝑎𝑥 + 𝑏)𝑛−1 𝑑𝑥 𝑛−1 + 𝑎2 (𝑎𝑥 + 𝑏)𝑛−2 𝑑𝑥 𝑛−2 +
⋯ ⋯ + 𝑎𝑛 𝑦 = 𝑓(𝑥) is reduced to Linear D.E. with constant coefficient by using substitution
((A)) 𝑥 = 𝑒 𝑧
((B)) 𝑎𝑥 + 𝑏 = 𝑒 𝑧
((C)) 𝑎𝑥 + 𝑏 = log𝑧
2
((D)) 𝑎𝑥 + 𝑏 = 𝑒 𝑧
((E)) C
((F))

𝑑2𝑦 𝑑𝑦
((Q))1_// On putting 𝑥 = 𝑒 𝑧 the transformed D.E. of 𝑥 2 𝑑𝑥 2 + 𝑥 𝑑𝑥 + 𝑦 = 𝑥is
𝑑2𝑦 𝑑𝑦
((A)) 𝑑𝑧 2 + 𝑑𝑧 + 𝑦 = 𝑒 𝑧
𝑑2𝑦
((B)) 𝑑𝑧 2 + 𝑦 = 𝑒 𝑧
𝑑2𝑦
((C)) 𝑑𝑧 2 + 𝑦 = 𝑒 𝑥
𝑑2𝑦
((D)) 𝑑𝑧 2 − 𝑦 = 𝑒 𝑧
((E)) B
((F))

𝑑2𝑦 𝑑𝑦
((Q))1_// On putting 𝑥 = 𝑒 𝑧 the transformed D.E. of 𝑥 2 −𝑥 + 4𝑦 = cos(log𝑥) + 𝑥sin(log𝑥) using 𝐷 ≡
𝑑𝑥 2 𝑑𝑥
𝑑
is
𝑑𝑧
((A)) (𝐷2 − 𝐷 + 4)𝑦 = sin𝑧 + 𝑒 𝑧 cos𝑧
((B)) (𝐷2 − 2𝐷 + 4)𝑦 = cos(log𝑥) + 𝑥sin(log𝑥)
((C)) (𝐷2 + 2𝐷 + 4)𝑦 = cos𝑧 + 𝑒 −𝑧 sin𝑧
((D)) (𝐷2 − 2𝐷 + 4)𝑦 = cos𝑧 + 𝑒 𝑧 sin𝑧
((E)) D
((F))

𝑑2𝑦 𝑑𝑦 𝑑
((Q))1_// On putting 𝑥 = 𝑒 𝑧 the transformed D.E. of 𝑥 2 2 − 3𝑥 + 5𝑦 = 𝑥 2 sin(log𝑥 ) using 𝐷 ≡ is
𝑑𝑥 𝑑𝑥 𝑑𝑧
((A)) (𝐷2 − 4𝐷 + 5)𝑦 = 𝑒 2𝑧 sin𝑧
((B)) (𝐷2 − 4𝐷 + 5)𝑦 = 𝑥 2 sin(log𝑥)
((C)) (𝐷2 − 4𝐷 − 4)𝑦 = 𝑒 𝑧 sin𝑧
2
((D)) (𝐷2 − 3𝐷 + 5)𝑦 = 𝑒 𝑧 sin𝑧
((E)) A
((F))

𝑑2𝑦 𝑑𝑦 𝑥3 𝑑
((Q))1_// On putting 𝑥 = 𝑒 𝑧 the transformed D.E. of 𝑥 2 𝑑𝑥 2 + 𝑥 𝑑𝑥 − 𝑦 = 1+𝑥 2 using 𝐷 ≡ 𝑑𝑧 is
𝑥3
((A)) (𝐷2 − 1)𝑦 = 1+𝑥 2
𝑒 3𝑧
((B)) (𝐷2 − 2𝐷 − 1)𝑦 = 1+𝑒 2𝑧
𝑒 3𝑧
((C)) (𝐷2 − 1)𝑦 = 1+𝑒 2𝑧
3
𝑒𝑧
((D)) (𝐷2 − 1)𝑦 = 2
1+𝑒 𝑧
((E)) C
((F))

𝑑2𝑦 𝑑𝑦 𝑑
((Q))1_// On putting 𝑥 = 𝑒 𝑧 the transformed D.E .of 𝑥 2 − 5𝑥 + 5𝑦 = 𝑥 2 log𝑥 using 𝐷 ≡ is
𝑑𝑥 2 𝑑𝑥 𝑑𝑧
𝑧2
((A)) (𝐷2 − 5𝐷 + 5)𝑦 = 𝑧 𝑒
((B)) (𝐷2 − 5𝐷 − 5)𝑦 = 𝑒 2𝑧 𝑧
((C)) (𝐷2 − 6𝐷 + 5)𝑦 = 𝑥 2 log𝑥
((D)) (𝐷2 − 6𝐷 + 5)𝑦 = 𝑧 𝑒 2𝑧
((E)) D
((F))

𝑑2𝑦 𝑑𝑦
((Q))1_// On putting 2𝑥 + 1 = 𝑒 𝑧 the transformed D.E. of (2𝑥 + 1)2 𝑑𝑥 2 − 2(2𝑥 + 1) 𝑑𝑥 + 5𝑦 = 6𝑥 using 𝐷 ≡
𝑑
is
𝑑𝑧
3
((A)) (𝐷2 − 2𝐷 − 3)𝑦 = 4 (𝑒 𝑧 − 1)
((B)) (𝐷2 + 2𝐷 + 3)𝑦 = 3(𝑒 𝑧 − 1)
3
((C)) (𝐷2 + 2𝐷 − 12)𝑦 = 4 (𝑒 𝑧 − 1)
((D)) (𝐷2 − 2𝐷 − 3)𝑦 = 6𝑥
((E)) A
((F))

𝑑2𝑦 𝑑𝑦
((Q))1_// On putting 3𝑥 + 2 = 𝑒 𝑧 the transformed D.E. of (3𝑥 + 2)2 𝑑𝑥 2 + 3(3𝑥 + 2) 𝑑𝑥 − 36𝑦 = 3𝑥 2 + 4𝑥 +
𝑑
1 using 𝐷 ≡ 𝑑𝑧 is
1
((A)) (𝐷2 + 3𝐷 − 36)𝑦 = 27 (𝑒 2𝑧 − 1)
1
((B)) (𝐷2 + 4)𝑦 = 9 (𝑒 2𝑧 − 1)
1
((C)) (𝐷2 − 4)𝑦 = (𝑒 2𝑧 − 1)
27
((D)) (𝐷2 − 9)𝑦 = (𝑒 2𝑧 − 1)
((E)) C
((F))

𝑑𝑥 𝑑𝑦 𝑑
((Q))2_// For the simultaneous Linear DE 𝑑𝑡
+ 2𝑥 − 3𝑦 = 𝑡, 𝑑𝑡
− 3𝑥 + 2𝑦 = 𝑒 2𝑡 solution of 𝑦 using 𝐷 ≡ 𝑑𝑡 is
obtain from
((A)) (𝐷2 + 4𝐷 − 5)𝑥 = 1 + 2𝑡 + 3𝑒 2𝑡
((B)) (𝐷2 − 4𝐷 − 5)𝑦 = 𝑡 − 4𝑒 2𝑡
((C)) (𝐷2 + 4𝐷 + 5)𝑦 = 3𝑡 + 2𝑒 2𝑡
((D)) (𝐷2 + 4𝐷 − 5)𝑦 = 3𝑡 + 4𝑒 2𝑡
((E)) D
((F))

𝑑𝑥 𝑑𝑦 𝑑
((Q))2_// For the simultaneous Linear DE + 2𝑥 − 3𝑦 = 𝑡, − 3𝑥 + 2𝑦 = 𝑒 2𝑡 solution of 𝑥 using 𝐷 ≡ is
𝑑𝑡 𝑑𝑡 𝑑𝑡
obt((A))in from
((A)) (𝐷2 + 4𝐷 − 5)𝑥 = 1 + 2𝑡 + 3𝑒 2𝑡
((B)) (𝐷2 − 4𝐷 − 5)𝑥 = 1 + 2𝑡 − 3𝑒 2𝑡
((C)) (𝐷2 + 4𝐷 − 5)𝑥 = 3𝑡 + 3𝑒 2𝑡
((D)) (𝐷2 + 4𝐷 − 5)𝑦 = 3𝑡 + 4𝑒 2𝑡
((E)) A
((F))

𝑑𝑥 𝑑𝑦 𝑑𝑥 𝑑
((Q))2_// For the simultaneous Linear DE − 3𝑥 − 6𝑦 = 𝑡 2 , + 𝑑𝑡 − 3𝑦 = 𝑒 𝑡 solution of 𝑥 using 𝐷 ≡ 𝑑𝑡 is
𝑑𝑡 𝑑𝑡
obt((A))in from
((A)) (𝐷2 + 9)𝑥 = 6𝑒 𝑡 − 3𝑡 2 + 2𝑡
((B)) (𝐷2 + 9)𝑦 = −2𝑒 𝑡 − 2𝑡
((C)) (𝐷2 − 9)𝑥 = 6𝑒 𝑡 − 3𝑡 2
((D)) (𝐷2 + 12𝐷 + 9)𝑥 = 6𝑒 𝑡 + 3𝑡 2 + 2𝑡
((E)) A
((F))

𝑑𝑢 𝑑𝑣 𝑑
((Q))2_// For the simultaneous Linear DE 𝑑𝑥 + 𝑣 = sin𝑥, + 𝑢 = cos𝑥 solution of 𝑢 using 𝐷 ≡ 𝑑𝑥 is obtain
𝑑𝑥
from
((A)) (𝐷2 + 1)𝑢 = 2cos𝑥
((B)) (𝐷2 − 1)𝑢 = 0
((C)) (𝐷2 − 1)𝑢 = sin𝑥 − cos𝑥
((D)) (𝐷2 − 1)𝑣 = −2sin𝑥
((E)) B
((F))

𝑑𝑢 𝑑𝑣 𝑑
((Q))2_// For the simultaneous Linear DE 𝑑𝑥 + 𝑣 = sin𝑥, + 𝑢 = cos𝑥 solution of 𝑣 using 𝐷 ≡ 𝑑𝑥 is obtain
𝑑𝑥
from
((A)) (𝐷2 + 1)𝑣 = 0
((B)) (𝐷2 − 1)𝑢 = 0
((C)) (𝐷2 − 1)𝑣 = −2sin𝑥
((D)) (𝐷2 + 1)𝑣 = sin𝑥 + cos𝑥
((E)) C
((F))

𝑑𝑥 𝑑𝑦
((Q))2_// For the simultaneous Linear DE 𝐿 𝑑𝑡 + 𝑅𝑥 + 𝑅(𝑥 − 𝑦) = 𝐸, 𝐿 + 𝑅𝑦 − 𝑅(𝑥 − 𝑦) = 0 where
𝑑𝑡
𝑑
𝐿 , 𝑅 and 𝐸are constants, solution of 𝑥 using 𝐷 ≡ 𝑑𝑡 is obtain from
((A)) (𝐿2 𝐷2 + 4𝑅𝐿𝐷 + 5𝑅2 )𝑥 = 2𝑅𝐸 + 2𝑅
((B)) (𝐿2 𝐷2 + 4𝑅𝐿𝐷 + 3𝑅2 )𝑦 = 𝑅𝐸
((C)) (𝐿2 𝐷2 + 4𝑅𝐿𝐷 + 3𝑅2 )𝑥 = 2𝑅𝐸
((D)) (𝐿2 𝐷2 + 2𝑅𝐿𝐷 + 5𝑅2 )𝑥 = 2𝑅𝐸
((E)) C
((F))

𝑑𝑥 𝑑𝑦
((Q))2_// For the simultaneous Linear DE 𝐿 𝑑𝑡 + 𝑅𝑥 + 𝑅(𝑥 − 𝑦) = 𝐸, 𝐿 + 𝑅𝑦 − 𝑅(𝑥 − 𝑦) = 0 where
𝑑𝑡
𝑑
𝐿 , 𝑅 and 𝐸 are constants, solution of 𝑦 using 𝐷 ≡ 𝑑𝑡 is obtain from
((A)) (𝐿2 𝐷2 + 4𝑅𝐿𝐷 + 5𝑅2 )𝑦 = 𝑅𝐸 + 2𝑅
((B)) (𝐿2 𝐷2 + 4𝑅𝐿𝐷 + 3𝑅2 )𝑦 = 𝑅𝐸
((C)) (𝐿2 𝐷2 + 4𝑅𝐿𝐷 + 3𝑅2 )𝑥 = 2𝑅𝐸
((D)) (𝐿2 𝐷2 + 2𝑅𝐿𝐷 + 5𝑅2 )𝑦 = 2𝑅𝐸
((E)) B
((F))

𝑑𝑥 𝑑𝑦 𝑑
((Q))2_// For the simultaneous Linear DE 𝑑𝑡 + 𝑦 = 𝑒 𝑡 , + 𝑥 = 𝑒 −𝑡 solution of 𝑥 using 𝐷 ≡ 𝑑𝑡 is obtain from
𝑑𝑡

((A)) (𝐷2 − 1)𝑥 = 2𝑒 𝑡


((B)) (𝐷2 − 1)𝑦 = −𝑒 𝑡 − 𝑒 −𝑡
((C)) (𝐷2 + 1)𝑥 = 𝑒 −𝑡 + 𝑒 𝑡
((D)) (𝐷2 − 1)𝑥 = 𝑒 𝑡 − 𝑒 −𝑡
((E)) D
((F))

𝑑𝑥 𝑑𝑦 𝑑
((Q))2_// For the simultaneous Linear DE + 5𝑥 − 2𝑦 = 𝑡, + 2𝑥 + 𝑦 = 0, solution of 𝑦 using 𝐷 ≡ 𝑑𝑡 is
𝑑𝑡 𝑑𝑡
obtain from
((A)) (𝐷2 − 6𝐷 − 9)𝑦 = 2𝑡
((B)) (𝐷2 + 6𝐷 + 9)𝑥 = 1 + 𝑡
((C)) (𝐷2 + 6𝐷 + 1)𝑦 = 𝑡
((D)) (𝐷2 + 6𝐷 + 9)𝑦 = 2𝑡
((E)) B
((F))

𝑑𝑥 𝑑𝑦 𝑑
((Q))2_// For the simultaneous Linear DE 𝑑𝑡 + 𝑦 = 𝑒 𝑡 , + 𝑥 = 𝑒 −𝑡 , solution of 𝑦 using 𝐷 ≡ 𝑑𝑡 is obtain from
𝑑𝑡
((A)) (𝐷2 − 1)𝑦 = 2𝑒 𝑡
((B)) (𝐷2 − 1)𝑦 = −𝑒 𝑡 − 𝑒 −𝑡
((C)) (𝐷2 + 1)𝑦 = 𝑒 −𝑡 + 𝑒 𝑡
((D)) (𝐷2 − 1)𝑥 = 𝑒 𝑡 − 𝑒 −𝑡
((E)) B
((F))
𝑑𝑥 𝑑𝑦 𝑑
((Q))2_// For the simultaneous Linear DE + 5𝑥 − 2𝑦 = 𝑡, + 2𝑥 + 𝑦 = 0, solution of 𝑥 using 𝐷 ≡ 𝑑𝑡 is
𝑑𝑡 𝑑𝑡
obtain from
((A)) (𝐷2 + 6𝐷 + 9)𝑥 = 1 + 𝑡
((B)) (𝐷2 − 6𝐷 + 9)𝑥 = 2𝑡
((C)) (𝐷2 + 6𝐷 + 1)𝑥 = 𝑡
((D)) (𝐷2 + 6𝐷 + 9)𝑦 = 2𝑡
((E)) A
((F))

𝑑𝑢 𝑑𝑣
((Q))1_// For the D.E. + 𝑣 = sin 𝑥, + 𝑢 = cos 𝑥, the auxiliary equation for 𝑢 is
𝑑𝑥 𝑑𝑥
((A)) 𝐷2 + 1 = 0
((B)) 𝐷2 + 2 = 0
((C)) 𝐷2 − 1 = 0
((D)) 𝐷2 − 2 = 0
((E)) C
((F))

((Q))1_// The general form of symmetric simultaneous DE is


−1 −2
𝑑𝑛𝑦 𝑑𝑛 𝑦 𝑑𝑛 𝑦
((A)) 𝑎0 𝑑𝑥 𝑛 + 𝑎1 𝑑𝑥 𝑛−1 + 𝑎2 𝑑𝑥 𝑛−2 + ⋯ ⋯ + 𝑎𝑛 𝑦 = 𝑓(𝑥), where 𝑎0 , 𝑎1 , 𝑎2 ⋯ ⋯ , 𝑎𝑛 are constant
𝑑𝑥 𝑑𝑦 𝑑𝑧
((B)) = = , where 𝑃, 𝑄, 𝑅 are function of 𝑥, 𝑦, 𝑧.
𝑃 𝑄 𝑅
𝑛 −1 −2
𝑛𝑑 𝑦 𝑑𝑛 𝑦 𝑑𝑛 𝑦
((C)) 𝑎0 𝑥 + 𝑎1 𝑥 𝑛−1 𝑑𝑥 𝑛−1 + 𝑎2 𝑥 𝑛−2 𝑑𝑥 𝑛−2 + ⋯ ⋯ + 𝑎𝑛 𝑦 = 𝑓(𝑥),where 𝑎0 , 𝑎1 , 𝑎2 ⋯ ⋯ , 𝑎𝑛 are constant
𝑑𝑥 𝑛
−1 −2
𝑑𝑛𝑦 𝑑𝑛 𝑦 𝑑𝑛 𝑦
((D)) 𝑎0 (𝑎𝑥 + 𝑏)𝑛 𝑑𝑥 𝑛 + 𝑎1 (𝑎𝑥 + 𝑏)𝑛−1 𝑑𝑥 𝑛−1 + 𝑎2 (𝑎𝑥 + 𝑏)𝑛−2 𝑑𝑥 𝑛−2 + ⋯ ⋯ + 𝑎𝑛 𝑦 = 𝑓(𝑥),where
𝑎0 , 𝑎1 , 𝑎2 ⋯ ⋯ , 𝑎𝑛 are constant
((E)) B
((F))

𝑑𝑥 𝑑𝑦 𝑑𝑧
((Q))1_// Considering the first two ratio of the symmetrical simultaneous DE = −𝑥𝑦 = 𝑥(𝑧−2𝑦), one of the
𝑦2
relation in the solution of DE is
((A)) 𝑥 2 + 𝑦 2 = 𝑐
((B)) 𝑥 3 + 𝑦 3 = 𝑐
𝑥2 𝑦3
((C)) − 2 = 3 + 𝑐
((D)) 𝑥 2 − 𝑦 2 = 𝑐
((E)) A
((F))

𝑑𝑥 𝑑𝑦 𝑑𝑧
((Q))1_// Which of the following are the sets of multipliers for the solution of = 4𝑥−2𝑧 = 2𝑦−3𝑥
3𝑥−4𝑦
((A)) 𝑥, 𝑦, 𝑧
((B)) 4, 3, 2
1 1 1
((C)) 𝑥 , 𝑦 , 𝑧
1 1 1
((D)) 4 , 3 , 2
((E)) A
((F))

𝑥𝑑𝑥 𝑑𝑦 𝑑𝑧
((Q))1_// Considering the first & third ratio of the symmetrical simultaneous DE = 𝑥 2𝑧 = 𝑦 3, one of the
𝑦3𝑧
relation in the solution of DE is
((A)) 𝑥 2 − 𝑧 2 = 𝑐
((B)) 𝑥 4 − 𝑦 4 = 𝑐
((C)) 𝑥 3 − 𝑧 3 = 𝑐
((D)) 𝑥 − 𝑧 = 𝑐
((E)) A
((F))

𝑥𝑑𝑥 𝑑𝑦 𝑑𝑧
((Q))1_// Using a set of multiplier as 1, 𝑦, 𝑧 the solution of DE 𝑧 2−2𝑦𝑧−𝑦2 = 𝑦+𝑧 = 𝑦−𝑧 is
((A)) 𝑥 2 + 𝑦 2 + 𝑧 2 = 𝑐
𝑦2 𝑧2
((B)) 𝑥 + 2 + 2 = 𝑐
((C)) 𝑥 + 𝑦 + 𝑧 = 𝑐
((D)) 𝑥 + 𝑦 2 + 𝑧 2 = 𝑐
((E)) A
((F))

𝑑𝑥 𝑑𝑦 𝑑𝑧
((Q))1_// Considering the second & third ratio of the symmetrical simultaneous DE = 2𝑥𝑦 = 2𝑥𝑧, one
𝑥 2 −𝑦 2 −𝑧 2
of the relation in the solution of DE is
1 1
((A)) 𝑦 2 − 𝑧 2 = 𝑐
((B)) 𝑦 2 − 𝑧 2 = 𝑐
((C)) 𝑦 = 𝑐 𝑧
((D)) 𝑥 − 𝑧 = 𝑐
((E)) C
((F))

𝑑𝑥 𝑑𝑦 𝑑𝑧
((Q))1_// Using a set of multiplier as 1,1,1 the solution of DE 𝑦−𝑧 = 𝑧−𝑥 = 𝑥−𝑦 is
((A)) 𝑥 2 + 𝑦 2 + 𝑧 2 = 𝑐
((B)) 𝑥 − 𝑦 − 𝑧 = 𝑐
((C)) 𝑥 + 𝑦 + 𝑧 = 𝑐
((D)) −𝑥 + 𝑦 − 𝑧 = 𝑐
((E)) C
((F))

𝑑𝑥 𝑑𝑦 𝑑𝑧
((Q))1_// Using a set of multiplier as 𝑥 3 , 𝑦 3 , 𝑧 3 the solution of DE 𝑥(2𝑦 4−𝑧 4) = 𝑦(𝑧 4−2𝑥 4) = 𝑧(𝑥 4−𝑦 4) is
((A)) 𝑥 3 + 𝑦 3 + 𝑧 3 = 𝑐
((B)) 𝑥 4 + 𝑦 4 + 𝑧 4 = 𝑐
((C)) 𝑥 + 𝑦 + 𝑧 = 𝑐
((D)) 𝑥 𝑦𝑧 = 𝑐
((E)) B
((F))

𝑑𝑥 𝑑𝑦 𝑑𝑧
((Q))1_// Considering the first two ratio of the symmetrical simultaneous DE = = , one of the
𝑦2𝑧 𝑥 2𝑧 𝑦2𝑥
relation in the solution of DE is
((A)) 𝑥 2 − 𝑦 2 = 𝑐
((B)) 𝑥 − 𝑦 = 𝑐
((C)) 𝑥 3 − 𝑦 3 = 𝑐
((D)) 𝑥 3 + 𝑦 3 = 𝑐
((E)) C
((F))

𝑑𝑥 𝑑𝑦 𝑑𝑧
((Q))1_// Using a set of multiplier as 3, 2, 1 the solution of DE = −𝑥 = 2𝑥−3𝑦 is
𝑦
((A)) 3𝑥 2 + 2𝑦 2 + 𝑧 2 = 𝑐
3 2 1
((B)) 𝑥 + 𝑦 + 𝑧 = 𝑐
((C)) 3𝑥 − 2𝑦 − 𝑧 = 𝑐
((D)) 3𝑥 + 2𝑦 + 𝑧 = 𝑐
((E)) D
((F))

𝑑𝑥 𝑑𝑦 𝑑𝑧
((Q))1_// Using a set of multiplier as 𝑥 , 𝑦, 𝑧 the solution of DE = = is
3𝑧−4𝑦 4𝑥−2𝑧 2𝑦−3𝑥
3 3 3
((A)) 𝑥 + 𝑦 + 𝑧 = 𝑐
1 1 1
((B)) 𝑥 + 𝑦 + 𝑧 = 𝑐
((C)) 𝑥 + 𝑦 + 𝑧 = 𝑐
((D)) 𝑥 2 + 𝑦 2 + 𝑧 2 = 𝑐
((E)) D
((F))

𝑑𝑥 𝑑𝑦 𝑑𝑧
((Q))1_// Considering the first two ratio of the symmetrical simultaneous DE = = 𝑥 2𝑦 2𝑧 2, one of the
𝑦2 𝑥2
relation in the solution of DE is
1 1
((A)) 𝑥 − 𝑦 = 𝑐
((B)) 𝑥 − 𝑦 = 𝑐
((C)) 𝑥 2 − 𝑦 2 = 𝑐
((D)) 𝑥 3 − 𝑦 3 = 𝑐
((E)) D
((F))

You might also like