MCQ With Answer
MCQ With Answer
Module:1
(d) 𝑐1 𝑒 −𝑥 + 𝑐1 𝑒 2𝑥
(Ans:a)
1 2𝑥
(b) 𝑒
2
1
(c) 𝑒𝑥
21
1
(d) 21 𝑒 3𝑥
(Ans: a)
(b) -2
(c) 2
(d) 4
(Ans d)
𝑑2 𝑦
5. Solve the equation 𝑑𝑥 2 + 9𝑦 = 𝑠𝑖𝑛 4 𝑥
1
(a) 𝑦 = (𝑐1 𝑐𝑜𝑠 3𝑥 + 𝑐2 𝑠𝑖𝑛 3𝑥) − 7 𝑠𝑖𝑛 4 𝑥
1
(b) 𝑦 = (𝑐1 𝑐𝑜𝑠 𝑥 + 𝑐2 𝑠𝑖𝑛 𝑥) − 7 𝑠𝑖𝑛 4 𝑥
1
(c) 𝑦 = (𝑐1 𝑐𝑜𝑠 3𝑥 + 𝑐2 𝑠𝑖𝑛 𝑥) − 7 𝑠𝑖𝑛 𝑥
1
(d) 𝑦 = (𝑐1 𝑐𝑜𝑠 2𝑥 + 𝑐2 𝑠𝑖𝑛 2𝑥) + 𝑠𝑖𝑛 4 𝑥
7
(Ans : a)
𝑑2 𝑦 𝑑𝑦
6. The solution 𝑦(𝑥) of the differential equations𝑑𝑥 2 + 4 𝑑𝑥 + 4𝑦 = 0 Satisfying the
𝑑𝑦
condition 𝑦(0) = 4, 𝑑𝑥 (0) = 8 is
(a) 4𝑒 2𝑥
(b) (16𝑥 + 4)𝑒 −2𝑥
(c) 4𝑒 −2𝑥
(d) 4𝑒 −2𝑥 + 16𝑥𝑒 2𝑥
(Ans: b)
𝑑4 𝑦
(7) Solve 𝑑𝑥 4 − 𝑚4 𝑦 = 𝑐𝑜𝑠 𝑚 𝑥
𝑥
(a) 𝑦 = 𝑐1 𝑒 𝑚𝑥 + 𝑐2 𝑒 −𝑚𝑥 − 4𝑚3 𝑠𝑖𝑛 𝑚 𝑥
𝑥
(b) 𝑦 = 𝑐1 𝑐𝑜𝑠 𝑚 𝑥 + 𝑐2 𝑠𝑖𝑛 𝑚 𝑥 − 4𝑚3 𝑠𝑖𝑛 𝑚 𝑥
𝑥
(c) 𝑦 = 𝑐1 𝑒 𝑚𝑥 + 𝑐2 𝑒 −𝑚𝑥 + 𝑐3 𝑐𝑜𝑠 𝑚 𝑥 + 𝑐4 𝑠𝑖𝑛 𝑚 𝑥 − 4𝑚3 𝑠𝑖𝑛 𝑚 𝑥
(a) parabola
(b) straight line
(c) circle
(d) ellipse
(Ans: c)
𝑑𝑥 𝑑𝑦
10. Solve + 4𝑥 + 3𝑦 = 0, 𝑑𝑡 + 2𝑥 + 5𝑦 = 0
𝑑𝑡
(a) 𝑥 = 𝑐1 𝑒 2𝑡 + 𝑐2 𝑒 5𝑡 , 𝑦 = 𝑐3 𝑒 7𝑡 + 𝑐4 𝑒 2𝑡
(c) 𝑥 = 𝑐1 𝑒 3𝑡 + 𝑐2 𝑒 4𝑡 , 𝑦 = 𝑐3 𝑒 2𝑡 + 𝑐4 𝑒 5𝑡
(d) 𝑥 = 𝑐1 𝑒 2𝑡 + 𝑐2 𝑒 𝑡 ,𝑦 = 𝑐3 𝑒 2𝑡 + 𝑐4 𝑒 −7𝑡
(Ans: b)
𝑑2 𝑦
11. The solution of 𝑑𝑥 2 − 𝑦 = 𝑘 (here k is a non-zero constant), which vanishes when x=0
and which tends to finite limit as x tends to infinity is
(𝑎) 𝑦 = 𝑘(1 + 𝑒 −𝑥 )
(𝑏) 𝑦 = 𝑘(𝑒 −𝑥 − 1)
(𝑐)𝑦 = 𝑘(1 + 𝑒 −𝑥 + 𝑒 𝑥 )
(d) 𝑦 = 𝑘(1 + 2𝑒 −𝑥 )
(𝐴𝑛𝑠: 𝑏)
𝑑2 𝑦 𝑑𝑦
12. Solve the Linear Diff Eq. 𝑑𝑥 2 − 𝑐𝑜𝑡 𝑥 𝑑𝑥 − (1 − 𝑐𝑜𝑡 𝑥)𝑦 = 𝑒 𝑥 𝑠𝑖𝑛 𝑥
𝑒 𝑥 𝑐𝑜𝑠 𝑥
(a) 𝑦 = 𝑐2 𝑒 𝑥 − − 𝑒 −𝑥 (2 𝑠𝑖𝑛 𝑥 + 𝑐𝑜𝑠 𝑥)
2
𝑒 𝑥 𝑐𝑜𝑠 𝑥 𝑐1
(b) 𝑦 = 𝑐2 𝑒 𝑥 − 2
− 5
𝑒 −𝑥 (2 𝑠𝑖𝑛 𝑥 + 𝑐𝑜𝑠 𝑥)
𝑒 𝑥 𝑐𝑜𝑠 𝑥 𝑐1
(c) 𝑦 = 𝑐2 − − 𝑒 −𝑥 (2 𝑠𝑖𝑛 𝑥 + 𝑐𝑜𝑠 𝑥)
2 5
𝑒 𝑥 𝑐𝑜𝑠 𝑥 𝑐1
(d) 𝑦 = 𝑐2 𝑒 𝑥 − − (𝑠𝑖𝑛 𝑥 + 𝑐𝑜𝑠 𝑥)
2 5
(Ans: b)
𝑑2 𝑦 𝑑𝑦
13. If y = x is a solution of of 𝑥 2 +𝑥 − 𝑦 = 0 , then the second linearly independent
𝑑𝑥 2 𝑑𝑥
solution of this equation is
1
(𝑎) 𝑥
1
(𝑏) 𝑥 2
(𝑐) 𝑥 2
(d) Constant
(Ans: a)
𝑑2 𝑦 𝑑𝑦 2
14. Solve by normal form − 4𝑥 𝑑𝑥 + (4𝑥 2 − 1)𝑦 = −3𝑒 𝑥 𝑠𝑖𝑛 2 𝑥
𝑑𝑥 2
2
(a) 𝑦 = 𝑒 𝑥 (𝑐1 𝑐𝑜𝑠 𝑥 + 𝑐2 𝑠𝑖𝑛 𝑥 + 𝑠𝑖𝑛 2 𝑥)
2
(b) 𝑦 = 𝑒 𝑥 (𝑐1 𝑐𝑜𝑠 2𝑥 + 𝑐2 𝑠𝑖𝑛 2𝑥 + 𝑠𝑖𝑛 2 𝑥)
2
(c) 𝑦 = 𝑒 𝑥 (𝑐1 𝑐𝑜𝑠 2𝑥 + 𝑐2 𝑠𝑖𝑛 𝑥 + 𝑠𝑖𝑛 𝑥)
(Ans: a)
(Ans: b)
𝒅𝟐 𝒗 𝒅𝟐 𝒚 𝒅𝒚 𝟏 𝟏 𝟔
17. If 𝒅𝒙𝟐 + 𝑰𝒗 = 𝑺is the normal form of 𝒅𝒙𝟐 + 𝒙−𝟏/𝟑 𝒅𝒙 + (𝟒𝒙𝟐/𝟑 − 𝟔𝒙𝟒/𝟑 − 𝒙𝟐 ) 𝒚 =
𝟎 obtained by solving change of dependent variable, then the value of I is
(a) 1
(b) 0
(c) 6x −2
(d)- 6x −2
(Ans: d)
𝑑2 𝑦 2
18.Solve by method of variation of parameters 𝑑𝑥 2 − 𝑦 = 1+𝑒 𝑥
(a) 𝑦 = 𝑒 𝑥 𝑙𝑜𝑔(𝑒 −𝑥 + 1) + 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 −𝑥 − 𝑒 −𝑥 𝑙𝑜𝑔(𝑒 𝑥 + 1)
(b) 𝑦 = 𝑒 𝑥 𝑙𝑜𝑔(𝑒 −𝑥 + 1) + 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 −𝑥 − 𝑒 −𝑥 𝑙𝑜𝑔(𝑒 𝑥 ) − 1
(Ans: c)
𝑑2 𝑦 𝑑𝑦 4
19. A particular solution of 4 𝑥 2 + 8𝑥 +𝑦 = is
𝑑𝑥 2 𝑑𝑥 √𝑥
(Ans: d)
𝑑2 𝑦 𝑑𝑦
20. Solve by method of variation of parameters 𝑑𝑥2 − 2 𝑑𝑥 = 𝑒 𝑥 𝑠𝑖𝑛 𝑥
(a) 𝑦 = 𝑐1 + 𝑐2 𝑒 2𝑥 − 𝑒 𝑥 𝑠𝑖𝑛 𝑥
1
(b) 𝑦 = 𝑐1 + 𝑐2 𝑒 2𝑥 − 2 𝑒 𝑥 𝑠𝑖𝑛 𝑥
1
(c) 𝑦 = 𝑐1 + 𝑐2 𝑒 2𝑥 − 3 𝑒 𝑥 𝑠𝑖𝑛 𝑥
1
(d) 𝑦 = 𝑐1 + 𝑐2 𝑒 𝑥 − 2 𝑒 𝑥 𝑠𝑖𝑛 𝑥
(Ans: b)
(c) 2𝑥 2 − 4𝑥 + 3
(d) 2𝑥 2 + 4𝑥 + 3
(Ans:d)
𝑑
23. The particular integral of (𝐷3 + 𝑎2 𝐷)𝑦 = 𝑠𝑖𝑛𝑎𝑥 , 𝐷 ≡ 𝑑𝑥 is
−𝑥 −𝑥 −𝑥 −𝑥
(𝑎) cos 𝑎𝑥 (𝑏) cos 𝑎𝑥 (𝑐) 2𝑎2 𝑠𝑖𝑛𝑎𝑥 (𝑑) 2𝑎2 cos 𝑎𝑥 𝑠𝑖𝑛𝑎𝑥
2𝑎 2𝑎2
(Ans: c)
𝑑2 𝑦 𝑑𝑦
25. 𝑑𝑥 2 + 𝑐𝑜𝑡𝑥 𝑑𝑥
+ 4 𝑐𝑜𝑠𝑒𝑐 2 𝑥. 𝑦 = 0, reduce form by changing the independent
variable:
𝑑2 𝑦
(a) −𝑦 =0
𝑑𝑧 2
𝑑2 𝑦
(b) +𝑦 =0
𝑑𝑧 2
𝑑2 𝑦
(c) + 2𝑦 = 0
𝑑𝑧 2
𝑑2 𝑦
(d) − 2𝑦 = 0
𝑑𝑧 2
(Ans: b)
𝑑2 𝑦 𝑑𝑦
26. If 𝑑𝑥 2 + 𝑐𝑜𝑡 𝑥 𝑑𝑥 − (1 − 𝑐𝑜𝑡 𝑥)𝑦 = 𝑒 𝑥 𝑠𝑖𝑛 𝑥 , Find one part of solution i.e. value of u
(a) 𝑢 = 𝑒 −𝑥
(b) 𝑢 = 𝑒 𝑥
(c) 𝑢 = 𝑒 2𝑥
(d) 𝑢 = 𝑒 3𝑥
(Ans: a)
𝑑𝑦 𝑑𝑦
27. Find order and degree of (𝑥 + y)(𝑥 + 𝑦)2 (𝑥 𝑑𝑥 + y) = 𝑥y (1+ 𝑑𝑥
)
(a) (1,1)
(b) (1,2)
(c) (2,1)
(d) None of these
(e) (Ans: a)
28. When three roots of a linear differential equation are equal then its C.F is
(a) (𝑐1 + 𝑥𝑐2 + 𝑥 2 𝑐3 )𝑒 𝑚𝑥
(b) (𝑐1 + 𝑥𝑐2 + 𝑥 2 𝑐3 )𝑒 −𝑚𝑥
(c) (𝑐1 − 𝑥𝑐2 − 𝑥 2 𝑐3 )𝑒 𝑚𝑥
(d) None of these
(Ans: a)
29. Find P.I. of (𝐷 2 − 4𝐷 + 3)𝑦 = 𝑒 3𝑥
𝑥
(a) P.I.= 𝑒 −2𝑥 𝑒 𝑒
𝑥
(b) P.I.=2 𝑒 3𝑥
𝑥
(c) P.I.= 𝑒 −2𝑥 𝑒 𝑒
(d) None of these
(Ans: b)
𝑑3 𝑦 𝑑2 𝑦 𝑑𝑦
30. P.I of 𝑑𝑥 3
--2 𝑑𝑥2 + 4 𝑑𝑥 -8y = 8
(a) 𝑦=1
(b) 𝑦 = −1
(c) 𝑦=2
(d) None of these
(Ans: b)
31. Determine the differential equation whose general solution is𝑦 = (𝑐1 + 𝑐2 𝑥 + 𝑐3 𝑥 2 )𝑒 𝑥 .
(a) 𝑦"′ − 3𝑦′′ + 3𝑦′ − 𝑦 = 0
(b) 𝑦 ′′′ + 3𝑦 ′′ + 2𝑦 ′ = 0
(c) 𝑦 ′′′ − 3𝑦 ′′ + 2𝑦 ′ = 0
(d) None of these
(Ans: a)
𝑑4 𝑦
32. If --𝑚4 𝑦 = 0 then its C.F will be
𝑑𝑥 4
(a) (𝑐1 𝑒 𝑚𝑥 + 𝑐2 𝑒 −𝑚𝑥 + 𝑐3 𝑐𝑜𝑠𝑚𝑥 + 𝑐4 𝑠𝑖𝑛𝑚𝑥)
(b) (𝑐1 𝑒 −𝑚𝑥 + 𝑐2 𝑒 −𝑚𝑥 + 𝑐3 𝑐𝑜𝑠𝑚𝑥 + 𝑐4 𝑠𝑖𝑛𝑚𝑥)
(c) (𝑐1 𝑒 𝑚𝑥 + 𝑐2 𝑒 𝑚𝑥 + 𝑐3 𝑐𝑜𝑠𝑚𝑥 + 𝑐4 𝑠𝑖𝑛𝑚𝑥)
(d) None of these
(Ans: a)
𝑑2 𝑦 𝑑𝑦
33. If +2 + 10y + 37𝑠𝑖𝑛3𝑥 = 0 , It P.I will be
𝑑𝑥 2 𝑑𝑥
(a) 6𝑐𝑜𝑠3𝑥 − 𝑠𝑖𝑛3𝑥
(b) 𝑐𝑜𝑠3𝑥 − 𝑠𝑖𝑛3𝑥
(c) 𝑐𝑜𝑠3𝑥 − 6𝑠𝑖𝑛3𝑥
(d) None of these
(Ans: a)
𝑑2 𝑦
34. If – y = 1, which vanishes when x = 0 and tends to a finite limit as x tending to infinity
𝑑𝑥 2
the y will be
(a) 𝑒 2𝑥 − 1
(b) 𝑒 𝑥 − 1
(c) 0
(d) None of these
(Ans: b)
𝑑2 𝑦 𝑑𝑦
36. If −2 + y = 𝑒 𝑥 𝑥 𝑠𝑖𝑛𝑥, It P.I will be
𝑑𝑥 2 𝑑𝑥
𝑥
(a) 𝑒 (−𝑥𝑐𝑜𝑠𝑥 + 2𝑠𝑖𝑛𝑥)
(b) 𝑒 𝑥 (𝑥𝑐𝑜𝑠𝑥 + 2𝑠𝑖𝑛𝑥)
(c) 𝑒 𝑥 (𝑥𝑐𝑜𝑠𝑥 − 2𝑠𝑖𝑛𝑥)
(d) None of these
(Ans:a)
37. The process of formation of the differential equation is given in the wrong order, select the
correct option from below given options.
(1) Eliminate the arbitrary constant
𝑑𝑦
(2) Differential equation which involves x,𝑥, 𝑦, 𝑑𝑥
(3) Differentiating the given equation w.r.t x as many times as the number of arbitrary
constants.
(a) 1,2,3
(b) 3,1,2
(c) 2,1,3
(d) None of these
(Ans:c)
𝑑2 𝑦 𝑑𝑦
38. The differential equation 𝑑𝑥2 + 2 𝑑𝑥 + y = 0
(a) Second order linear
(b) Nonlinear
(c) Linear with fixed constants
(d) Undeterminable to be linear or nonlinear
(Ans: a)
39. A differential equation is considered to be ordinary if it has
(a) One dependent variable
(b) More than one dependent variable
(c) One independent variable
(d) More than one independent variable
(Ans: a)
40. If the root of A.E. are (-1000, -1000) then C.F.
(a) (𝑐1 + x𝑐2 )𝑒 −1000𝑥
(b) (𝑐1 − x𝑐2 )𝑒 −1000𝑥
(c) (𝑐1 + x𝑐2 )𝑒 1000𝑥
(d) None of these
(Ans: a)
41. The general solution of (x 2 D2 – x D) y = 0 is
(a) y = (c1 + c2 ex )
(b) y = (c1 + c2 x)
(c) y = (c1 + c2 x 2 )
(d) None of these
(Ans: c)
42. For what value of ω does the system described by y′′ + 9y = 4 cos(ωt) exhibit resonance?
(a) 0
(b) 3
(c) 4
(d) None of these
(Ans:b)
𝑑4 𝑦
43. P.I. of 𝑑𝑥 4 − 𝑦 = 𝑐𝑜𝑠 𝑥 𝑐𝑜𝑠ℎ 𝑥
(a) 𝑐𝑜𝑠ℎ𝑥 𝑐𝑜𝑠𝑥
(b) 𝑐𝑜𝑠ℎ𝑥 𝑐𝑜𝑠ℎ2𝑥
1
(c) − 5 𝑐𝑜𝑠 𝑥 𝑐𝑜𝑠ℎ 𝑥
(d) None of these
(Ans: c)
𝑑2 𝑦 𝑑𝑦
44. Solution of 𝑑𝑥 2
+ 2𝑝 𝑑𝑥 + ( 𝑝2 + 𝑞 2 )𝑦 = 𝑒 2𝑥
𝑒 2𝑥
(a) 𝑦 = 𝑒 −𝑝𝑥 (𝑐1 𝑐𝑜𝑠𝑞𝑥 + 𝑐2 𝑠𝑖𝑛𝑞𝑥) + (2+𝑝)2 +𝑞2
𝑒 2𝑥
(b) 𝑦 = 𝑒 𝑝𝑥 (𝑐1 𝑐𝑜𝑠𝑞𝑥 + 𝑐2 𝑠𝑖𝑛𝑞𝑥) + (2+𝑝)2 +𝑞2
(c) 𝑦 = 𝑒 𝑝𝑥 (𝑐1 𝑐𝑜𝑠𝑞𝑥 + 𝑐2 𝑠𝑖𝑛𝑞𝑥)
(d) None of these
(Ans:a)
𝑑2 𝑦 𝑑𝑦 𝜋
45. The complete solution of 𝑑𝑥 2
+ 2 𝑑𝑥 + 10𝑦 + 37 𝑠𝑖𝑛3𝑥 = 0, given that when 𝑥 = 2
being
𝑑𝑦
given that 𝑦 = 3 𝑎𝑛𝑑 𝑑𝑥
= 0 when 𝑥 = 0
(a) 𝑦 = 0
(b) 𝑦 = 1
(c) 𝑦 = 𝑠𝑖𝑛𝑥
(d) None of these
(Ans: b)
𝑑4 𝑦 𝑑2 𝑦
46. Solution of 𝑑𝑥 4
+ 2𝑛2 𝑑𝑥 2 + 𝑛4 𝑦 = 𝑐𝑜𝑠𝑚𝑥 when m ≠ 𝑛
𝑐𝑜𝑠𝑚𝑥
(a) 𝑦 = (𝑐1 + 𝑥𝑐2 )(𝑐3 𝑐𝑜𝑠𝑛𝑥 + 𝑐4 𝑠𝑖𝑛𝑛𝑥) + (𝑛2 −𝑚2 )2
𝑠𝑖𝑛𝑚𝑥
(b) 𝑦 = (𝑐1 + 𝑥𝑐2 )(𝑐3 𝑐𝑜𝑠𝑛𝑥 + 𝑐4 𝑠𝑖𝑛𝑛𝑥) + (𝑛2 −𝑚2 )2
(c) 𝑦 = (𝑐1 + 𝑥𝑐2 )(𝑐3 𝑐𝑜𝑠𝑛𝑥 + 𝑐4 𝑠𝑖𝑛𝑛𝑥)
(d) None of these
(Ans:a)
47. Solution of 𝑦 ′′ -2𝑦 ′ +2y= 𝑥 + 𝑒 𝑥 𝑐𝑜𝑠 𝑥 is
1 1
(a) 𝑦 = 𝑒 𝑥 (𝑐1 𝑐𝑜𝑠 𝑥 + 𝑐2 𝑠𝑖𝑛 𝑥) + 2 (𝑥 + 1) + 2 𝑥𝑒 𝑥 𝑠𝑖𝑛 𝑥
1 1
(b) 𝑦 = 𝑒 𝑥 (𝑐1 𝑐𝑜𝑠 𝑥 + 𝑐2 𝑠𝑖𝑛 𝑥) + 2 (𝑥 + 1) + 2 𝑥𝑒 𝑥 𝑐𝑜𝑠𝑥
1 1
(c) 𝑦 = 𝑒 𝑥 (𝑐1 𝑐𝑜𝑠 𝑥 + 𝑐2 𝑠𝑖𝑛 𝑥) + 2 (𝑥 + 1) − 2 𝑥𝑒 𝑥 𝑠𝑖𝑛 𝑥
(d) None of these
(Ans:a)
48. Solution of (𝐷 2 − 4𝐷 + 4)𝑦 = 8𝑥 2 𝑒 2𝑥 𝑠𝑖𝑛 2 𝑥 is
(a) 𝑦 = 𝑒 2𝑥 [𝑐1 + 𝑐2 𝑥 + (3 − 2𝑥 2 ) 𝑠𝑖𝑛 2 𝑥 + 4𝑥 𝑐𝑜𝑠 2 𝑥]
(b) 𝑦 = 𝑒 2𝑥 [𝑐1 + 𝑐2 𝑥 + (3 + 2𝑥 2 ) 𝑠𝑖𝑛 2 𝑥 − 4𝑥 𝑐𝑜𝑠 2 𝑥]
(c) 𝑦 = 𝑒 2𝑥 [𝑐1 + 𝑐2 𝑥 + (3 − 2𝑥 2 ) 𝑠𝑖𝑛 2 𝑥 − 4𝑥 𝑐𝑜𝑠 2 𝑥]
(d) None of these
(Ans: b)
𝑑3 𝑦 𝑑2 𝑦 𝑑𝑦
49. The solution of the homogeneous linear differential equation is 𝑥 3 𝑑𝑥 3 + 3𝑥 2 𝑑𝑥 2 + 𝑥 𝑑𝑥 =
24𝑥 2
(a) 𝑦 = 𝑐1 + 𝑐2 𝑙𝑜𝑔 𝑥 + 𝑐3 (𝑙𝑜𝑔 𝑥)2 − 3𝑥 2
(b) 𝑦 = 𝑐1 + 𝑐2 𝑙𝑜𝑔 𝑥 + 𝑐3 (𝑙𝑜𝑔 𝑥)2 + 3𝑥 2
(c) 𝑦 = 𝑐1 + 𝑐2 𝑙𝑜𝑔 𝑥 − 𝑐3 (𝑙𝑜𝑔 𝑥)2 − 3𝑥 2
(d) None of these
(Ans: b)
d
50. The solution of the differential equation (D 2 + 1)y = 2 is D
dx
(a) y = C1 cos x + C2 sin x + 2
(b) y = C1 cos x + C2 sin x − 2
(c) y = C1 + C2 x + 2
(d) None of these
(Ans: a)
𝑑
51. The complete solution of (𝐷2 − 3𝐷 + 4)𝑦 = 0, 𝐷 ≡ is
𝑑𝑥
(a) y = c1e − x + c 2 e 4 x
(b) y = c1x + c 2 + x
(c) y = (c1 + c 3 x )e x
(d) None of these
(Ans:d)
52. The complementary function of (𝐷2 + 2𝐷 + 1)𝑦 = 𝑥 − 1, is
(a) (c1 + c 2 x )e x
(b) (c1 + c 2 x )e − x
(c) y = c1e x + c 2 e − x
(d) None of these
(Ans:b)
1 1
53. To find 𝑓(𝐷) 𝑒 𝑎𝑥 𝑋,if we have brought e ax to the left from right of 𝑓(𝐷),then D
must be replaced by
(a) D-a
(b) a
(c) D+a
(d) None of these
(Ans:c)
54. Particular integral of (𝑥 2 𝐷2 + 5𝑥𝐷 + 4)𝑦 = 𝑥 𝑙𝑜𝑔 𝑥is given by
1
(a) x log x
9
2
(b) x
27
1 2
(c) x log x − x
9 27
(d) None of these
(e) (Ans:c)
𝑑2 𝑦 𝑑𝑦
55. The complete solution of 𝑥 2 𝑑𝑥 2 − 𝑥 𝑑𝑥 + 2𝑦 = 𝑥 𝑙𝑜𝑔 𝑥is
(a) xc1 cos(log x) + c 2 sin (log x)
(b) x log x
(c) (a)+(b)
(d) None of these
(Ans:c)
𝑑2 𝑦 𝑑𝑦
56. If P+Qx=0, then the part of complementary function of 𝑑𝑥 2 + 𝑃 𝑑𝑥 + 𝑄𝑦 = 𝑅is
(a) y=x
(b) y = x 2
(c) y = x 3
(d) y = x 4
(Ans:a)
𝑑2 𝑦 𝑑𝑦
57. y = x 2 is a part of complementary function of 𝑑𝑥 2 + 𝑃 𝑑𝑥 + 𝑄𝑦 = 𝑅if
(a) 1+P+Q=0
(b) 2 + 2Px + Qx 2 = 0
(c) 1-P+Q=0
(d) P+Qx=0
(Ans:b)
58. If y = e mx is a solution of linear differential equation of 2nd order
d2y dy
+P + Qy = R ,then
dx 2
dx
(a) m 2 + Pm + Q = 0
(b) m 2 + Pm + Q = 1 .
(c) m 2 + Pm + Q 0
(d) None of these
(Ans:d)
2
𝑑4 𝑦 𝑑3 𝑦 𝑑2 𝑦 𝑑𝑦
59. The order of the differential equation − 3( ) +4 −5 + 6𝑦 = 0is
𝑑𝑥 4 𝑑𝑥 3 𝑑𝑥 2 𝑑𝑥
(a) 3
(b) 6
(c) 4
(d) 2
(Ans: c)
60. Particular integral of the differential equation (𝐷2 + 𝐷 + 1)𝑦 = 𝑒 𝑥 is
1
(a) e x
3
(b) 3e x
(c) e x
(d) None of these
(Ans:a)
61. The solution of differential equation (𝐷2 + 1)𝑦 = 0is
(a) y = c1e − x + c 2 e x
(b) y = c1 cos x + c 2 sin x
(c) (c1 + c 2 x)cos x + (c 3 + c 4 x)sin x
(d) None of these
(Ans:b)
62. For the differential equation F(D )y = e ax ,if F(a) = 0 ,then
1 ax
e is given by
F(D )
1 ax
(a) e
F(a )
1
(b) e ax
F(− a )
1
(c) e ax
F(D + a )
(d) None of these
(e) (Ans: d)
63. If F(− a 2 ) = 0 ,then which of the following is correct:
1 1
(a) sin ax = sin ax
F(D )2
F(− a 2 )
1 x
(b) sin ax = − cos ax
D +a
2 2
2a
1 x
(c) 2 sin ax = cos ax
D + a2 2a
(d) None of these
(Ans:b)
𝑑2 𝑦 𝑑𝑦
64. The solution of the differential equation 𝑑𝑥 2 − 3 𝑑𝑥 + 2𝑦 = 𝑒 𝑥 is
(a) y = c1e x + c 2 e 3x + x
(b) (c1 + c 2 )e x − xe x
(c) y = c1e x + c 2 e 2 x − xe x
(d) y = c1 x + c 2 e x − e 2 x
(Ans: c)
𝑑2 𝑦 𝑑𝑦
65. Complementary function of the differential equation 𝑥 2 𝑑𝑥 2 + 4𝑥 𝑑𝑥 + 2𝑦 =
𝑒 𝑥 is
(a) c1 + c 2 x
(b) c1x −2 + c 2 x −1
(c) c1e − x + c 2 e x
(d) None of these
(Ans: b)
𝑑3 𝑦 𝑑2 𝑦
66. Complementary function of the differential equation 𝑥 4 𝑑𝑥 3 + 2𝑥 3 𝑑𝑥 2 −
𝑑𝑦
𝑥 2 𝑑𝑥 + 𝑥𝑦 = 1is
(a) (c1 + c 2 x )e x + c 3 e − x
(b) c1e x + c 2 e − x + c 3 e 2 x
c
(c) (c1 + c 2 log x )x + 3 +
1
log x
x 4x
(d) None of these
(Ans:d)
𝑑2 𝑦 𝑑𝑦
67. Complementary function of the equation (𝑥 + 𝑎)2 𝑑𝑥 2 − 4(𝑥 + 𝑎) 𝑑𝑥 + 6𝑦 =
𝑥is
(a) 𝑐1 𝑥 2 + 𝑐2 𝑥 3
(b) 𝑐1 (𝑥 + 𝑎)2 + 𝑐2 (𝑥 + 𝑎)3
(c) 𝑐1 𝑒 3𝑥 + 𝑐2 𝑒 2𝑥
(d) None of these
(Ans: b)
68. The differential Equation formed by eliminating the arbitrary constant from
𝑦 2 = (x-c)2
(a) y’2 = -1
(b) y’2 = 1
(c) y2 = -1
(d) y2 = -1
(Ans:b)
𝑑4 𝑦 𝑑𝑦
69. The degree of the differential equation (𝑑𝑥 4 )3/2 = 1 - 2 𝑑𝑥 is
(a) 4
(b) 3
(c) 2
(d) 1
(Ans:b)
70. Solution for (D2 + 1)2 (D – 2) y = 0 is
(a) y = (c1 + c2x ) e-x + (c3 + c4 x ) ex + c5e2x
(b) y = (c1 + c2x ) cos x + (c3 + c4 x ) sin x + c5e2x
(c) y = (c1 + c2x ) cos x + (c3 + c4 x ) sin x + c5ex
(d) None of these
(Ans:b)
71. P.I. for y” + 6y’ + 9y = 7e2x
𝑒 2𝑥
(a) 7 25
𝑒 2𝑥
(b) 7
17
𝑒 2𝑥
(c) 25
𝑒𝑥
(d) 7 25
(Ans:a)
72. Solution of the differential equation y’’ +2 y’+ y = 0 , y (0) = 1, y’(0) = -1 is
(a) xe-x
(b) -xe-x
(c) -e-x
(d) e-x
(Ans: d)
Ajay Kumar Garg Engineering College Gzb .
Course: B. Tech. Semester: IInd
Subject: Engg. Mathematics-I Subject Code: KAS-203T
Module:2
MULTIVARIABLE CALCULUS II
MULTIPLE CHOICE QUESTIONS
1. Value of 𝜞(𝒏 + 𝟏)
(a) 𝛤(𝑛 + 1)
(b) n
(c) 𝛤(𝑛)
(d) n𝛤(𝑛)
Ans: (d)
∞
2. Evaluate ∫𝟎 √𝒙𝒆−𝒙 𝒅𝒙
(a) 12 √𝜋
(b) √𝜋
(c) 32 √𝜋
(d) 12 𝜋
Ans: (a)
𝝅 𝝅
𝒅𝜽
3. Value of ∫𝟎 𝟐 𝒙 ∫𝟎 √𝒔𝒊𝒏 𝜽 𝒅𝜽
𝟐
√𝒔𝒊𝒏 𝜽
(a) 3 𝜋
(b) 2𝜋
(c) 𝜋
(d) √𝜋
Ans: (c )
𝟏
4. Value of ∫𝟎 𝒙𝒎−𝟏 (𝟏 − 𝒙𝟐 )𝒏−𝟏 𝒅𝒙
1 𝑚
(a) 2 𝐵 ( 2 , 𝑛)
Page 1 of 11
(b) 13 𝐵 (𝑚3 , 𝑛)
1 𝑚 𝑛
(c) 𝐵( , )
2 2 2
(d) 12 𝐵 (𝑚, 𝑛
2
)
(Ans: a)
∞ 𝒙𝒎−𝟏
5. Value of ∫𝟎 𝒅𝒙, where m, n, a and b are positive.
(𝒂𝒙+𝒃)𝒎+𝒏
(a) 𝐵(𝑚,𝑛)
𝑎𝑚𝑏𝑛
(b) 𝑎𝑚𝑏𝑚
𝐵(𝑚,𝑚)
(c) 𝑎𝐵(𝑛,𝑛)
𝑚 −𝑏 𝑛
(d) 𝑎𝐵(𝑚,𝑛)
𝑚 +𝑏 𝑛
(Ans:a)
𝟐
6. Value of ∫𝟎 𝒙𝟒 (𝟖 − 𝒙𝟑 )−𝟏/𝟑 𝒅𝒙
(a) 𝑠𝑖𝑛𝜋𝑛𝜋
(b) 𝑠𝑖𝑛2 𝜋𝑝𝜋
(c) 𝑠𝑖𝑛𝜋 𝜋
(d) 𝑠𝑖𝑛 𝜋2 𝑝𝜋
(Ans:a)
𝟏
8. Value of 𝜞(𝒎)𝜞 (𝒎 + )
𝟐
Page 2 of 11
(a) 2√2𝑚
𝜋
𝛤(2𝑚)
(b) 22𝑚+1
√𝜋
𝛤(2𝑚)
(c) 22𝑚−1
√𝜋
𝛤(2𝑚)
(d) 22𝑚+1√𝜋
𝛤(2𝑚 + 1)
(Ans:c)
9. Apply Dirichlet’s integral to evaluate ∬𝑽 𝒙𝟐l-𝟏 𝒚𝟐𝒎−𝟏 𝒅𝒙𝒅𝒚 for all positive values of
x and y such that 𝒙𝟐 + 𝒚𝟐 ≤ 𝒂𝟐
𝟐𝒍+𝟐𝒎
(a) 𝒂 𝟒 𝜞(𝒍+𝒎+𝟏)
𝜞(𝒍)𝜞(𝒎)
𝒂𝟐𝒍+𝟐𝒎 𝜞(𝒍)𝜞(𝒎)
(b) 𝟒 𝜞(𝒍+𝒎)
𝒂𝟐𝒍+𝟐𝒎 𝜞(𝒍)𝜞(𝒎)
(c) 𝟒 𝜞(𝒍+𝒎−𝟏)
𝒂𝒍+ 𝒎 𝜞(𝒍)𝜞(𝒎)
(d) 𝟒 𝜞(𝒍+𝒎+𝟏)
(Ans:a)
10.Using Dirichlet’s integral, find the area in the first quadrant bounded by the
𝒙 𝜶 𝒚 𝜷
curve (𝒂) + (𝒃) = 𝟏
𝟏 𝟏
𝒂𝒃 𝜞(𝜶)𝜞(𝜷)
(a) 𝜶𝜷 𝟏 𝟏
𝜞( + )
𝜶 𝜷
𝟏 𝟏
𝒂𝒃 𝜞(𝜶)𝜞(𝜷)
(b) 𝜶𝜷 𝜞(𝟏 +𝟏 +𝟏)
𝜶 𝜷
𝟏 𝟏
𝜞( )𝜞( )
(c) 𝒂𝒃 𝜶
𝜶𝜷 𝜞(𝟏 +𝟏 −𝟏)
𝜷
𝜶 𝜷
𝟏 𝟏
𝜞( )𝜞( )
(d) 𝜶
𝟏 𝟏
𝜞( + +𝟏)
𝜷
𝜶 𝜷
(Ans:b)
𝒙 𝒚 𝒛
11.The plane + + =1 meets the axes in A, B and C. Apply Dirichlet’s integral to
𝒂 𝒃 𝒄
find the volume of the tetrahedron OABC. Also find its mass if the density at
any point is kxyz.
2 2 2 2 2 2
(a) V = 𝑎 𝑏6 𝑐 , M = 𝑘𝑎720
𝑏 𝑐
(b) V = 𝑎𝑏𝑐
6
,M=
𝑘𝑎𝑏𝑐
720
Page 3 of 11
2 2 2
(c) V = 𝑎𝑏𝑐
6
,M=
𝑘𝑎 𝑏 𝑐
720
𝑎2 𝑏2 𝑐 2
(d) V = 6 , M = 702
𝑎𝑏𝑐
(Ans:a)
𝑘𝑎9 𝜋
(b) 945
9
(c) 4𝑘𝑎
945
4𝑎9 𝜋
(d) 945
(Ans:a)
13.If l, m, n are all positive∭ 𝒙𝒍−𝟏 𝒚𝒎−𝟏 𝒛𝒏−𝟏 𝒅𝒙𝒅𝒚𝒅𝒛, where the integral is taken
𝒙𝟐 𝒚𝟐 𝒛𝟐
throughout the part of ellipsoid 𝟐
+ 𝟐
+ = 𝟏 which lies in positive octant.
𝒂 𝒃 𝒄𝟐
𝑙 𝑚 𝑛
𝑎𝑙 𝑏𝑚 𝑐 𝑛 𝛤( )𝛤( )𝛤( )
(a) 2
𝑙 𝑚 𝑛
2 2
𝛤( + + +1)
2 2 2
𝑙 𝑚 𝑛
𝑎 𝑏 𝑐 𝑛 𝛤( )𝛤( )𝛤( )
𝑙 𝑚
(b) 2
𝑙 𝑚 𝑛
2 2
8𝛤( + + )
2 2 2
𝑙 𝑚 𝑛
𝑎 𝑏𝑚+1 𝑐 𝑛 𝛤( )𝛤( )𝛤( )
𝑙+1
(c) 2
𝑙 𝑚 𝑛
2 2
8𝛤( + + +1)
2 2 2
𝑙 𝑚 𝑛
𝛤( )𝛤( )𝛤( )
(d) 2 2
𝑙 𝑚 𝑛
2
8𝛤( + + +1)
2 2 2
(Ans:a)
𝒙𝟐 𝒚𝟐
14.Apply Dirichlet’s integral to find the mass of an octant of the ellipsoid 𝟐
+ +
𝒂 𝒃𝟐
𝒛𝟐
= 𝟏,the density at any point being 𝝆 = 𝒌𝒙𝒚𝒛
𝒄𝟐
2 2 2
(a) 𝑎 48
𝑏 𝑐
2 2
(b) 𝑘𝑎48𝑐
2 2
(c) 𝑘𝑎48𝑏
2 2 2
(d) 𝑘𝑎 48𝑏 𝑐
(Ans:d)
Page 4 of 11
15.Find the value of ∬𝑫 𝒙𝒍−𝟏 𝒚𝒎−𝟏 𝒅𝒙𝒅𝒚, where D is the domain 𝒙 ≥ 𝟎, 𝒚 ≥ 𝟎 and
x+y≤1.
(a) 𝛤(𝑙)𝛤(𝑚)
𝛤(𝑙+𝑚)
(b) 𝛤(𝑙+𝑚+1)
𝛤(𝑙)𝛤(𝑚)
(c) 𝛤(𝑙)𝛤(𝑚)
𝛤(𝑙+1)
(d) 𝛤(𝑙+𝑚+1)
𝛤(𝑙+1)𝛤(𝑚)
(Ans:b)
17. Evaluate ∭ 𝒍𝒐𝒈( 𝒙 + 𝒚 + 𝒛)𝒅𝒙𝒅𝒚𝒅𝒛,the integral extending over all positive and
zero values of x, y and z subject to 𝟎 < 𝒙 + 𝒚 + 𝒛 ≤ 𝟏.
(a) 18
(b) − 181
(c) 19
(d) 32
(Ans:b)
𝒅𝒙𝒅𝒚𝒅𝒛
18. Evaluate ∭𝑽 taken throughout the volume of the sphere 𝒙𝟐 + 𝒚𝟐 +
√𝒂𝟐 −𝒙𝟐 −𝒚𝟐 −𝒛𝟐
𝒛𝟐 = 𝒂𝟐 lying in positive octant.
2 2
(a) 𝜋 8𝑎
2
(b) 𝜋 8𝑎
2
(c) 𝜋8𝑎
Page 5 of 11
(d) 𝜋8𝑎
(Ans:a)
∞ 𝒅𝒙
19.Find the value of ∫𝟎 ,𝒂 > 𝟎
𝒂𝟐 +𝒙𝟐
(a) Convergent, 2𝑎
𝜋
(b) Divergent, 2𝑎
𝜋
(c) Convergent, 𝜋𝑎
(d) Divergent, 𝜋𝑎
(Ans: a)
∞ 𝒅𝒙
20.Find the value of ∫𝒆
𝒙(𝒍𝒐𝒈𝒆 𝒙)𝟑
(a) Convergent, 13
(b) Divergent, 12
(c) Convergent, 12
(d) Divergent, 13
(Ans:a)
∞
21.Find the value of ∫𝟏 𝒙𝒆−𝒙 𝒅𝒙
(a) Convergent, 1𝑒
(b) Divergent, 2𝑒
(c) Convergent, 2𝑒
(d) Divergent, 1𝑒
(Ans:c)
22. The curved surface of the solid generated by revolution about the x-axis, of the
area bounded by the curve 𝒚 = 𝒇(𝒙), x-axis and ordinates 𝐱 = 𝒂, 𝐱 = 𝒃 is
Page 6 of 11
23.The area of the parabola 𝒚𝟐 = 𝟒𝒂𝒙 lying between the vertex and the latus rectum
is revolved about the x-axis. Then volume generated.
(a) 𝝅𝒂𝟑
(b) 𝝅𝒂𝒃𝟐
(c) 𝟐𝝅𝒂𝟐
(d) 𝟐𝝅𝒂𝟑
(Ans:d)
𝒙𝟐 𝒚𝟐
24.Find the volume of the solid generated by revolving the ellipse 𝟐 + 𝟐 = 𝟏 about
𝒂 𝒃
the x-axis.
(a) 𝟒𝟑 𝒂𝒃𝟐
(b) 𝝅𝒂𝒃𝟐
(c) 𝟒𝟑 𝝅𝒂𝒃𝟐
(d) 𝟒𝟑 𝝅𝒂𝒃
(Ans:c)
∞ 𝟏
25.The value of integral ∫𝟏 𝒅𝒙 is
𝒙𝟐
(a) 0
(b) 1
(c) ∞
(d) None of these.
(Ans:b)
𝟎
26.The value of ∫−∞ 𝒙𝒔𝒊𝒏𝒙 𝒅𝒙
(a) 0
(b) ∞
(c) −∞
(d) 1
(Ans:c)
∞
27.The value of ∫𝟎 √𝒙𝒆−𝒙 𝒅𝒙 is
(a) √𝜋
1
(b) √𝜋
2
(c) 0
(d) ∞
Page 7 of 11
(Ans:b)
𝟎
28.Value of ∫−∞ 𝒆−|𝒙| 𝒅𝒙 is
(a) 0
(b) 1
(c) ∞
(d) −∞
(Ans:b)
𝟑 𝒅𝒙
30.The integral ∫𝟎 converges to
√𝟗−𝒙𝟐
(a) 1
(b) 𝜋
(c) 𝜋/2
(d) 𝜋/4
(Ans:c)
32.Value of ┌(𝟑. 𝟓) is
(a) √𝜋
(b) 15/8
15
(c) √𝜋
8
(d) None of these
(Ans: c)
Page 8 of 11
𝝅
33. ∫𝟎𝟐 𝒔𝒊𝒏𝟕 𝜽√𝒄𝒐𝒔𝜽𝒅𝜽 is equal to
3 3
(a) 𝛽 ( , )
4 4
3
(b) 𝛽 (4, )
4
1 3
(c) 𝛽 (4, )
2 4
(d) 𝛽(4,4)
(Ans:c)
𝒙𝟐 𝒚𝟐
34.What is the volume generated when the ellipse 𝟐 + 𝟐 = 𝟏 is revolved around its
𝒂 𝒃
Minor axis?
(a) 4𝑎𝑏 Cubic units
4
(b) 𝑎2 𝑏 Cubic units
3
4
(c) 𝑎𝑏 Cubic units
3
(d) 4 cubic units
(Ans:b)
∞ 𝐥𝐧 𝒙
37.The integral ∫𝟏 𝒅𝒙 is
𝒙𝟐
(a) Convergent
(b) Divergent
(c) Oscillatory
(d) None of these
(Ans:a)
Page 9 of 11
𝟏 𝒅𝒙
38.The value of ∫𝟎 is
√−𝒍𝒐𝒈𝒙
(a) √𝜋
√𝜋
(b)
2
(c) 2√𝜋
(d) None of these
(Ans:a)
∞ 𝟒
39.The value of ∫𝟎 𝟒𝒙𝟒 𝒆−𝒙 𝒅𝒙 is
𝟏
(a) ┌( )
𝟒
1 𝟏
(b) ┌ ( )
4 𝟒
𝟑
(c) ┌ (− )
𝟒
(d) 0
(Ans:b)
∞
40.The integral ∫𝟎 𝒆−𝟒𝒙 𝒄𝒐𝒔𝟓𝒙𝒅𝒙 is
(a) Convergent, value = −4/41
(b) Convergent, value = 4/41
(c) Divergent, value =−∞
(d) Oscillatory
(Ans:b)
∞
41.The integral ∫−∞ 𝒆−𝒙 𝒅𝒙 is
(a) Divergent
(b) Oscillating finitely
(c) Convergent
(d) Oscillating infinitely
(Ans:a)
∞ 𝒅𝒙
42.Value of ∫√𝟐 is
𝒙√𝒙𝟐 −𝟏
𝜋
(a)
2
𝜋
(b) −
4
𝜋
(c)
4
(d) 0
(Ans:c)
∞ 𝒅𝒙
43.The value of ∫𝟎 , 𝒂 > 𝟎 is
𝒂𝟐 +𝒙𝟐
𝜋
(a)
2
𝜋
(b)
2𝑎
(c) −∞
Page 10 of 11
(d) ∞
(Ans:b)
𝟎
44.The integral ∫−∞ 𝒙𝒔𝒊𝒏𝒙 𝒅𝒙
(a) Oscillates finitely
(b) Convergent
(c) Diverges to −∞
(d) Diverges to ∞
(Ans:c)
Page 11 of 11
Ajay Kumar Garg Engineering College, Ghaziabad
MODULE-3
SEQUENCE AND SERIES
MULTIPLE CHOICE QUESTIONS
1. Period of cos 3x is
a)
2
b)
3
c) 2
d) None of these
(Ans:b)
2. The periodic function of period 2 represented by the following graph is
2 3 4
A
A if 0 x
a) f x
A if x 2
A if 0 x
b) f x
A if x 2
c) f x A
d) None of these
(Ans: a)
a0 nx nx
3. If f x a n cos b n sin then value of a n is
2 n 1 l l
f x cos nx dx
1 2
a)
0
1 c 2l nx
b) f x cos dx
l c l
1
1 c 2l nx
c) f x cos dx
c c c
d) None of these
(Ans:b)
b)
1
n
n4
c) 0
d) None of these
(Ans:c)
1 1 t 0
5. If f t ,then f(t) is
1 0 t 1
a)
Even function
b)
Odd function
c)
Periodic function
d)
Constant function
(Ans:b)
6. Fourier Series expansion of an even function in , has
a) Only sine terms
b) Only cosine terms
c) Both sine & cosine terms
d) None of these
(Ans:b)
x, x 0
7. If f x ,then f is
x, 0 x
a) Even function
b) Odd function
c) Periodic function
d) None of these
(Ans: a)
8. If f x x 2 in -2<x<2, f(x+4) = f(x) ; then a n is
a) 0
f x cos nx dx
1 2
2 0
b)
nx
c) 2 f x cos
1 2
dx
2 2
d) None of these
(Ans: c)
2
9. If f (x) x 2 in , ,then b n is
1
a)
n2
b)
1n
n2
c) 0
d) None of these
(Ans:c)
2x
1 , x 0
10.If f x is expanded in Fourier Series ,then
1 2x , 0 x
a) a n 0
b) b n 0
c) Both a) and b)
d) None of these
(Ans:b)
11.If f (x) e x is expanded in Fourier Series in 0,2 ,then a n is
a)
n
1 n2
1 e 2
b) 2 1 1n
n
2
c) 2 1 1n
n
2
d) None of these
(Ans: d)
12.The Fourier Series expansion of x sinh x in , contains
a) Only sine terms
b) Only cosine terms
c) Both sine & cosine terms
d) None of these
(Ans: b)
13.At x ,the Fourier Series of f x x x 2 in , converges to
a) 2
b) 2
c) 0
d) 2
(Ans: d)
14.The series 1 + + + +………..is
(a) Divergent (b) Convergent (c) Oscillates finitely (d) Oscillates infinetly
(Ans: b)
3
√( )
15.For which real number m does the infinite series ∑ converges
(a) m> 1/3 (b) m > 1/2 (c) m > 1 (d) m > 3/2
(Ans: (d)
16.The series ∑ ( ) for | |>1 is
(a) Divergent (b) Convergent (c) oscillatory (d) None of these
(Ans:a)
( )
19.For f(x) = √ ,0<x<2 a0 is given by
(a) (b) (c) (d)
(Ans:d)
(a){ } (b) { }
(c) { } (d){ }
(Ans:a)
21.For f(x) = x2 , -2 x 2 bn is given by
(a) (b) 0 (c) 1 (d) not defined
(Ans: b)
22.In the Fourier series expansion of f(x) = 2x + sinx, -1 < x < 1, the coefficient that
vanishes is
4
(a) a0 (b) bn (c) an (d) both a0 & an
(Ans: d)
23.In the half range cosine series for f(x) = x ( – x) ; 0 < x < , a0 is given by
(a) (b) (c) (d)
(Ans:c)
24.The Sequence is
(a) Convergent
(b) Divergent
(c) Oscillatory
(d) None of these
(Ans: a)
25.Test the Convergence of
(a) Convergent
(b) Divergent
(c) Oscillatory
(d) None
(Ans: a)
26.The Series ∑
(a) 1
(b) less than 1
(c) greater than 1
(d) None
(Ans:c)
27. The sequence is
(a) Diverge to 5
(b) Converge to 0
(c) Converge to 5
(d) None
(Ans:c)
28.The Sequence is
(a) Divergent
(b) Convergent
(c) Not Divergent
(d) Not Convergent
(Ans:c)
29.The sequence ( ) is Converge to
(a) 1
(b) 2
(c) infinite
(d) e
5
(Ans:d)
30.The Sequence
(a) 2
(b) 1
(c) 3
(d) None
(Ans:a)
31.The P-Series is convergent if
(a) P = 1
(b)
(c)
(d) None
(Ans:c)
32. The convergence of the series
(a) Divergent
(b) Convergent
(c) Not Divergent
(d) Not Convergent
(Ans:a)
33. Determine the value ∑
(a) Convergent to 0
(b) Convergent to 12
(c) Divergent
(d) Not Convergent
(Ans: b)
34.The series ∑
(a) Divergent
(b) Not Convergent
(c) Not Divergent
(d) Convergent
(Ans: a)
35. The series ∑
(a) p- series
(b) G.P
(c) Alternating
(d) None
(Ans:a)
36.Test the convergence of ∑ is
(a) Divergent
6
(b) Not Convergent
(c) Not Divergent
(d) Convergent
(Ans:a)
37. Test the convergence of ∑ is
(a) Divergent
(b) Convergent
(c) Not Divergent
(d) Not Convergent
(Ans: b)
38.Which test is use to check the convergence of ∑
(a) Comparison Test
(b) Cauchy Test
(c) Raabie’s Test
(d) Ratio Test
(Ans:d)
39.
( )
(a)
( )
(b)
( )
(c)
(d) none
(Ans: a)
(d) none
(Ans: b)
(Ans: a)
(a)
(b)
(c)
10
(d) None
(Ans: a)
(a) convergent
(b) divergent
(c) oscillate
(d) none
(Ans: a)
61. A sequence * + is convergent if is ……
a) finite b) not finite c) oscillating d) None of these.
(Ans: a)
62. Every convergent sequence is ……
a) unbounded b) bounded c) bounded above d) None of these.
(Ans: b)
63. An infinite geometric series is convergent if ……
a) | | b) c) d) .
(Ans: a)
64. The series is ……
a) b) c) d) p .
(Ans: b)
11
67. The series √ is ……
a) b) c) d) for all x.
(Ans: a)
a) b) c) d) .
(Ans: a)
73. The series ∑[ ]is ……
a) divergent b) c) oscillating infinite d) None of these.
(Ans: b)
n2
74. If , then the infinite series ∑ is ……
2n
12
(Ans: b)
75. .By D’ Alembert’s ratio test, an infinite series ∑ is convergent if is ……
a) b) c) d) .
(Ans: a)
76. The series∑ is
a) convergent b) may be convergent c) divergent d) None.
(Ans: a)
77. If ( ) is discontinuous at x then the Fourier series converges to _________ where
( ), ( ) are respectively right hand and left hand limits of ( )
( ) ( ) ( ) ( )
a) b)
( ) ( ) ( ) ( )
c) d)
(Ans: a)
78. The period of the function ( ) is
a) b) c) 2 d)
(Ans: c)
79. If f x x sin x in ( , ) then the value of bn is
a) b) c) d)
(Ans: d)
80. If ( ) in ( ) and ( ) ( ), then the value of is
a) ∫ . / b) ∫ . /
(Ans: d)
81. In Fourier series expansion of function ( ) , the value of is
13
a) b) c) d)
(Ans: d)
82. In Fourier series expansion of function ( ) , the value of is
( ) ( ) ( )
a) b) c) d) None of
these.
(Ans: c)
83. Half range Fourier sine series for the function ( ) is given by
, ( ) - , ( ) -
a) ∑ b) ∑
, ( ) -
c) ∑ d) None of these
(Ans: b)
14
Ajay Kumar Garg Engineering College, Ghaziabad
MODULE-4
COMPLEX VARIABLE – DIFFERENTIATION
MULTIPLE CHOICE QUESTIONS
(a) Analytic everywhere (b) Analytic nowhere (c) only differentiable (d) None
(Ans: a)
5. If f(z) = u + iv is an analytic fn. in the z-plane, then the C-R equations are satisfied by
it‟s real and imaginary parts i.e …….
(a) , (b) ,
(c) , (d) ,
(Ans: a)
a) ∫* ( ) ( )+ b) ∫* ( ) ( )+
c) ∫* ( ) ( )+ d) None of these.
(Ans: b)
8. Let ( ) be a complex valued function. Where then is analytic for
any value of
a) is analytic for suitable value of
b) is analytic only when constant
c) can‟t be analytic for any value of
d) .
(Ans: d)
9. The value of „s‟ such that ( ) ( ) is an analytic function.
a) 1 b) 2 c) ⁄ d)
(Ans: a)
10. If a function ( ) is continuous at , then
a) ( ) is differentiable at
b) ( ) is not necessarily differentiable at
c) ( ) is analytic at
d) None of the above.
(Ans: b)
11. The only function among the following that‟s analytic, is
) ( ) ( ) b) ( ) ( ) c) ( ) ̄ d) ( ) .
(Ans: d)
12. An analytic function is
a) Infinitely differentiable
b) not necessarily differentiable
c) finitely differentiable.
d) None of these.
(Ans: a)
13. Let ( ) ( ) for all real x and y then the imaginary part of u, such that
( ) ( ) ( ) is analytic, is
a) ( )
b) ( )
c) ( )
d) ( )
(Ans: a)
14. Which of the following can not be the real part of an analytic function.
a) b) c) d) ( )
(Ans: a)
15. The harmonic conjugate of ( ) ( ) is
a) ( )
b) ( )
c) ( )
d) ( )
(Ans: a)
16. The invariant points of the transformation are
a) b) c) d)
(Ans: b)
17. Under the mapping the image of line y 0 is,
a) ( ) b) ( ) c) ( ) d) ( )
(Ans: b)
18. The mapping ( ) ̄ is
(Ans: c)
20. A function f(z) may be differentiable in a domain except for a finite number of points,
these points are called…..
(Ans: c)
21. The points which coincide with their transformations are called………and can be
obtained by the condition…..
(Ans: d)
(Ans: a)
23. The image of the circle | | in complex plane under the transformation wz=1
is….
a) v= b) v= c) u= d) u
(Ans: c)
24. The transformation represents….
(Ans: b)
a) | ( )| | ( )| b) | ( )| | ( )|
c) | ( )| | ( )| d) | ( )| | ( )|
(Ans: d)
26. “If function f(z) & g(z) are analytic within & on a closed curve C and | ( )| | ( )| on
C then f(z) & f(z)+g(z) have same number of zeros inside C” this statement is known as…
(Ans: d)
(a)
(b)
(c)
(d)
(Ans: b)
(a)
(b)
(c)
(d) None
(Ans:b)
29. Under the transformation the image of the line y=0 in the z-plane is
(a) v=-1
(b) v=1
(c) u=1
(d) u = -1
(Ans: a)
(a)
(b)
(c)
(d)
(Ans: d)
(a) ( )
(b) ( )
(c) ( )
(d) None
(Ans: a)
33. The Bilinear Transformation which carries 0, i,-i into 1,-1,0 respectively is given by
(a)
(b)
(c)
(d)
(Ans: b)
34. The transformation transform the unit circle in the w-plane into straight line in
z-plane if
(a)
(b) | | | |
(c) | | | |
(d) None
(Ans: b)
35. The transformation is said to be normalized if ad-bc is equal to
(a) 0
(b) 1
(c)
(d) None
(Ans: b)
(b)
(c)
(d) None
(Ans: b)
37. The Bilinear transformation having only one fixed point then it is called
(a) Parabolic
(b) Hyperbolic
(c) circle
(d) none
(Ans: a)
38. A Bilinear transformation having two fixed point as p and q then which is true
(a)
(b)
(c) w= pqz
(d) None
(Ans: a)
(a) | |
(b) | |
(c) | |
(d) None
(Ans: a)
(a) | |
(b) | |
(c) | |
(d) k is Real
(Ans: d)
(a) Orthogonal
(b) Normalized
(c) loxodromic
(d) none
(Ans: c)
(Ans: b)
(a)
(b)
(c)
(d) None
(Ans: a)
(a) Sufficient
(b) Necessary
(c) a&b
(d) None
(Ans: b)
(a) logz +c
(b) log | | +c
(c) sinz +c
(d) None
(Ans: a)
(a) (0,0)
(b) (1,1)
(c) (0,1)
(d) (1,0)
(Ans: a)
(a)
(b)
(c)
(d) None
(Ans: a)
(a) 2v+1=0
(b) 2v-1=0
(c) u=v
(d) None
(Ans: a)
49. Which of the following is a Bilinear transformation
(a) w = z
(b)
( )
(c) ( )
(d) None
(Ans: a)
50. If f(z) is analytic then f'(z) is:
a) u i v
x x
u v
b) i
y y
u v
c) i
x x
u v
d) i .
y y
(Ans: a)
51. CR equations for w = u+ i v are:
a) ux vx , uy vy .
b) ux vy , u y vx
c) ux vy , u y vx .
d) ux vy , u y vx
(Ans: b)
52. Which is correct for w=f(z):
dw w
a)
dz x
dw w
b)
dz x
dw w
c) .
dz y
dw w
d)
dz y
(Ans: a)
53.A function u(x,y) is harmonic if:
a) u2 v2 0
2 2
x x
2u 2 v
b) 0
x 2 y 2
2u 2u
c) 0
x 2 y 2
d) None
(Ans: c)
54. A derivative of f(z) = log z is:
a) z
b) 1
z
c) 0
d) none.
(Ans: b)
55.f(z)= u+iv is analytic iff u and v are:
a) harmonic.
b) continuous.
c) differentiable.
d) satisfies CR equation.
(Ans: d)
56.If f is analytic in domain D, then in that domain
a) f is continuous only.
b) f is differentiable only.
c) both a and b.
d) None
(Ans: c)
57.If w = f(z) is conformal mapping in D, then f(z) is:
a) analytic in D.
b) not always analytic
c) never analytic.
d) none
(Ans: a)
58.The bilinear transformation which maps z 1, z 0, z 1 onto w i , w 0, w i is
a) w iz
b) w z
c) w i(z 1) .
d) None
(Ans: a)
59.Which is analytic function?
a) sin z .
b) z .
c) Im .( z ) .
d) Re(iz) .
(Ans: a)
60.A function f(z) is analytic function if
a) Real part of f(z) is analytic
b) Imaginary part of f(z) is analytic
c) Both real and imaginary part of f(z) is analytic
d) none of the above
(Ans: c)
61.If f (z) = x + y + i ( x + y) is analytic then , , equals to
a) = 1 and = -
b) = 1 and = -
c) = 1 and = -
d) = = =1
(Ans: a)
(Ans: d)
MODULE-5
COMPLEX VARIABLE – INTEGRATION
1. The value of the integral of 1 / z along a semicircular arc from -1 to 1 in the clockwise
direction will be ……………….
a) 0 b) i c) i-1 d) 1+i
(Ans:a)
𝑒𝑧
7. The Poles of function f(z)=𝑧 2+𝑎2 are……
1 1 3
a) 𝑎 sina b)− 2 c) 2 d) None of these.
(Ans: a)
1+𝑧
9. The residue of f(z)= 𝑧 2−2𝑧 4 at z = 0 is……….
a) -1 b) 0 c) 1 d ) None of these
(Ans: c)
𝑧 2 −4
10. Simple poles of f(z) =𝑧 2+5𝑧+4 are………..
(a) |𝑧| < 1 (b) |𝑧| > 3 (c) |𝑧| < 2 (d)None
(Ans: c)
1
14. The region of validity of 𝑧+1 for its Taylor’s series expansion about z = 0 is…..
15. If F(z) is an analytic function at z = a, then it has a power series expansion about z = a.
a) 1+2i b) -1-i c) 0 d) 3i
(Ans: c)
cos z
18. Evaluate c z − dz , where C is the circle z − 1 = 3 .
a)2πi b) -2 i c) -πi d) 1
(Ans:b)
e 3iz
19. Evaluate dz , where C is the circle |𝑧 − 𝜋| = 16/5
c
(z + )3
a) 𝑒 3𝑖 b) 𝑒 2𝑖 c) 𝑒 𝑖 d) 𝑒 0 − 1
(Ans: d)
𝑓(𝑧)
20. The relation ∫𝑐 𝑑𝑧 = 2𝜋𝑖 𝑓 ′ (𝑎) 𝑖𝑠 known as:
(𝑧−𝑎)2
a) Cauchy integral theorem b) Cauchy residue theorem
c) Cauchy integral formula d) Cauchy integral formula for derivative
(Ans: d)
𝑐𝑜𝑠 𝜋𝑧
21. Find the zeros of (𝑧) = (𝑧−1)2 .
𝜋 𝜋
a) 𝑧 = (2𝑛 + 1) 2 , n is integer b) 𝑧 = 2
𝜋
c) 𝑧 = 𝑛 2 , n is integer d) 𝑧 = 0
(Ans: a)
1
22. Find the singularities of the following function and discuss its nature: f (z ) = cos
z−2
a) Isolated essential singularity at z=2 b) Removable singularity at z=2
c) Isolated singularity at z=2 d) Essential singularity at z=2
(Ans:d)
2z + 1
23. Find the poles of 2 and the residue at each pole.
z −z−2
1 5 1 5
a) Poles are z=1, -2 Residues are , b) Poles are z=-1,-2 Residues are ,
3 3 3 3
1 5 1 5
c) Poles are z=-1,2 Residues are , d) Poles are z=1,2 Residues are ,
3 3 3 3
(Ans: c)
24. Residue of f(z) at 𝑧 = ∞ is….
53. When all pole of the complex function 𝑓(𝑧) lies outside the closed curve c then its
integration is
(a) Always 0
(b) Always 1
(c) Always negative
(d) None of these
(Ans:a)
54. If a function f(z) is analytic inside and on a simple closed curve C, then f(z)dz = 0 .
C
e
z2
58. The value of dz for the triangle having vertices as z = 0, z = 2+i and z = 1-i is
C
q) 2i
2i
r)
e2
s) 0
t) None of these
(Ans:s)
sin z
59. The residue of z(z + 1) dz at z = 0 is
C
u) 2i
v) sin 1
w) 0
x) None of these
(Ans: w)
z2 + 1
60. The value of dz where C is given by|z|= 2 is
C z+1
y) 2i
z) 4i
aa) i
bb) None of these
(Ans:z)
e iz
61. The value of 3 dz where C is given by|z|= 2 is
C
z
cc) 2i
dd) 4i
ee) − i
ff) None of these
(Ans: ee)
e 2z
62. The value of dz where C is given by|z|= 20 is
c
(z + 1 )5
4i
gg)
3e 2
2
hh) 2
3e
ii) 0
jj) None of these
(Ans: gg)
sin z
63. The value of dz where C is given by|z|= 30 is
C
(z + )(z + 2)
kk) 2i
ll) − 2i
mm) 0
nn) None of these
(Ans: mm)
cos z x2 y2
64. The value of z(z + 4)
C
dz where C is the ellipse given by
4
+
9
= 1 is
i
oo)
2
1
pp)
4
qq) 0
rr) None of these
(Ans: oo)
65. A region which is not simply connected is called
ss) Multiple curve
tt) Jordan Curve
uu) Connected curve
vv) Multiply connected
(Ans: vv)
66. If f(z) is analytic and f ’(z) is continuous at all points in the region bounded by simple
closed curves C1 and C2, then
ww) f (z )dz = f (z )dz
C1 C2
2𝜋
70. Integral of the type ∫0 𝐹(𝑐𝑜𝑠𝜃 , 𝑠𝑖𝑛𝜃)𝑑𝜃 can be written as
𝑧 + 𝑧 −1 𝑧− 𝑧 −1 𝑑𝑧
(a) ∮𝐶 𝐹( , ) ; C:|𝑧| = 1
2 2𝑖 𝑧
𝑧 + 𝑧 −1 𝑧− 𝑧 −1 𝑑𝑧
(b) ∮𝐶 𝐹( , ) ; C:|𝑧| = 1
2 2𝑖 𝑖𝑧
𝑧− 𝑧 −1 𝑧+ 𝑧 −1 𝑑𝑧
(c) ∮𝐶 𝐹( , ) 𝑖𝑧 ; C:|𝑧| = 1
2 2𝑖
(d) None of these
(Ans: b)
2𝜋 𝑐𝑜𝑠3𝜃
71. Value of ∫0 𝑑𝜃 is
5−4𝑐𝑜𝑠𝜃
(a) 0
𝜋
(b) 3
𝜋
(c) 12
−𝜋
(d) 12
(Ans: c)
𝑧 2 −1
72. Expansion of the function f(z) = ( 𝑧+2 )( 𝑧+3 ) in the region 2 <|𝑧|< 3 is
(𝑧−𝜋)2 (𝑧−𝜋)4
(a) 1+ + + …….
3! 5!
(𝑧−𝜋)2 (𝑧−𝜋)4
(b) 1+ - + …….
3! 5!
(𝑧−𝜋)2 (𝑧−𝜋)4
(c) -1+ + + …….
3! 5!
(𝑧−𝜋)2 (𝑧−𝜋)4
(d) -1+ - + …….
3! 5!
(Ans: d)
𝑑𝑧
74. The value of ∮𝐶 where C is the circle |z-a|=r , is
𝑧−𝑎
(a) 0
(b) 𝜋𝑖
(c) 2𝜋𝑖
(d) 3𝜋𝑖
(Ans: c)
75. The value of ∮𝐶 (𝑧 − 𝑎)𝑛 𝑑𝑧 , where n is not equal to -1 and C is the circle |z-a|=r , is
(a) 0
(b) 1
(c) 2
(d) 3
(Ans: a)
(a) 0
(b) 4
(c) −2
(d) 3
(Ans: a)