Practice Questions AM II FH2025
Practice Questions AM II FH2025
Question Bank
Sr.
Problem Solution
No.
Module 01. Exact Differential Equation
2
1 Solve
2 2 𝑒 𝑥𝑦 + 𝑥 4 = 𝑦 3 = 𝑐
(𝑦 2 𝑒 𝑥𝑦 + 4𝑥 3 )𝑑𝑥 + (2𝑥𝑦𝑒 𝑥𝑦 − 3𝑦 2 )𝑑𝑦 = 0
1
2 Solve {𝑦 (1 + ) + 𝑐𝑜𝑠𝑦} 𝑑𝑥 + (𝑥 + 𝑙𝑜𝑔𝑥 − 𝑥𝑠𝑖𝑛𝑦)𝑑𝑦 = 0 𝑦(𝑥 + 𝑙𝑜𝑔𝑥) + 𝑥𝑐𝑜𝑠𝑦 = 𝑐
𝑥
3 Solve (1 + 2𝑥𝑦𝑐𝑜𝑠𝑥 − 2𝑥𝑦)𝑑𝑥 + 2 (𝑠𝑖𝑛𝑥 2 −𝑥 2 )𝑑𝑦
=0 𝑥 + 𝑦𝑠𝑖𝑛𝑥 2 − 𝑥 2 𝑦 = 𝑐
𝑑𝑦 𝑦𝑐𝑜𝑠𝑥+𝑠𝑖𝑛𝑦+𝑦
4 Solve
𝑑𝑥
+
𝑠𝑖𝑛𝑥+𝑥𝑐𝑜𝑠𝑦+𝑥
=0 𝑦𝑠𝑖𝑛𝑥 + 𝑥𝑠𝑖𝑛𝑦 + 𝑥𝑦 = 𝑐
5 Solve (𝑥 2 − 4𝑥𝑦 − 2𝑦 2 )𝑑𝑥
+ (𝑦 2 − 4𝑥𝑦 − 2𝑥 2 )𝑑𝑦 = 0 𝑥 3 + 𝑦 3 − 6𝑥 2 𝑦 − 6𝑦 2 𝑥 = 𝑐
6 Solve [𝑥√𝑥 2 + 𝑦 2 − 𝑦]𝑑𝑥 + [𝑦√𝑥 2 + 𝑦 2 − 𝑥]𝑑𝑦 = 0 (𝑥 2 + 𝑦 2 )3/2 − 3𝑥𝑦 = 𝑐
7 (𝑡𝑎𝑛𝑦 + 𝑥)𝑑𝑥 + (𝑥𝑠𝑒𝑐 2 𝑦 − 3𝑦)𝑑𝑦 = 0 2𝑥𝑡𝑎𝑛𝑦 − 3𝑦 2 + 𝑥 2 = 𝑐
8 (𝑥 − 2𝑒 𝑦 )𝑑𝑦 + (𝑦 + 𝑥𝑠𝑖𝑛𝑥)𝑑𝑥 = 0 𝑥𝑦 − 𝑥𝑐𝑜𝑠𝑥 + 𝑠𝑖𝑛𝑥 − 2𝑒 𝑦 = 𝑐
24 Solve (𝑥 4 + 𝑦 4 ) − 𝑥𝑦 3 𝑑𝑦 = 0 4𝑥 4 𝑙𝑜𝑔𝑥 − 𝑦 4 = 𝑐𝑥 4
𝒅𝒚
Linear Differential Equations 𝒅𝒙 + 𝑷𝒚 = 𝑸
25 Solve 𝑑𝑦 + (1−2𝑥) 𝑦 = 1 𝑦 = 𝑥 2 + 𝑐𝑒 1/𝑥 𝑥 2
𝑑𝑥 𝑥2
26 2 ) 𝑑𝑦
Solve (1 − x 𝑑𝑥 + 2𝑥𝑦 = 𝑥√1 − 𝑥 2 𝑦 = √(1 − 𝑥 2 ) + 𝑐(1 − 𝑥 2 )
27 𝑑𝑦
Solve (1 − x 2 ) 𝑑𝑥 + 2𝑥𝑦 = 𝑥√1 − 𝑥 2
28 𝑑𝑦
Solve sin2x 𝑑𝑥 = 𝑦 + 𝑡𝑎𝑛𝑥 𝑦 = 𝑐 √𝑡𝑎𝑛𝑥 + 𝑡𝑎𝑛𝑥
29 𝑑𝑦 𝑦𝑥𝑠𝑒𝑐𝑥 = 𝑡𝑎𝑛𝑥 + 𝑐
Solve 𝑥𝑐𝑜𝑠𝑥 𝑑𝑥 + 𝑦(𝑥𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥) = 1
30 Solve (1 + 𝑥 + 𝑥𝑦 2 )𝑑𝑦 + (𝑦 + 𝑦 3 )𝑑𝑥 = 0 𝑥𝑦 + tan−1 𝑦 = 𝑐
−1 −1 −1
31 Solve (1 + 𝑦 2 )𝑑𝑥 = (𝑒 tan 𝑦 − 𝑥)𝑑𝑦 𝑥𝑒 tan 𝑦 = 𝑒 tan 𝑦 + 𝑐
32 𝑑𝑥
Solve (1 + 𝑠𝑖𝑛𝑦) 𝑑𝑦 = [2𝑦𝑐𝑜𝑠𝑦 − 𝑥(𝑠𝑒𝑐𝑦 + 𝑡𝑎𝑛𝑦)] 𝑥(1 + 𝑠𝑖𝑛𝑦) = 𝑦 2 𝑐𝑜𝑠𝑦
+ 𝑐𝑐𝑜𝑠𝑦
𝒅𝒚
The equation of the form 𝒇′ (𝒚) 𝒅𝒙 + 𝑷𝒇(𝒚) = 𝑸 where
𝑷 𝒂𝒏𝒅 𝑸 𝒂𝒓𝒆 𝒕𝒉𝒆 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒙 only can be reduce to LDE
33 𝑑𝑦
Solve 𝑑𝑥 + 𝑥𝑠𝑖𝑛2𝑦 = 𝑥 3 cos 2 𝑦 1 2
𝑡𝑎𝑛𝑦 = (𝑥 2 − 1) + 𝑐𝑒 −𝑥
2
34 𝑑𝑦
Solve 𝑡𝑎𝑛𝑦 𝑑𝑥 + 𝑡𝑎𝑛𝑥 = 𝑐𝑜𝑠𝑦𝑐𝑜𝑠 𝑥3 𝑥 𝑠𝑖𝑛2𝑥
𝑠𝑒𝑐𝑦. 𝑠𝑒𝑐𝑥 = + +𝑐
2 4
35 𝑑𝑦
Solve 𝑡𝑎𝑛𝑦 𝑑𝑥 + 𝑡𝑎𝑛𝑥 = 𝑐𝑜𝑠𝑦𝑐𝑜𝑠 3 𝑥
36 𝑑𝑦
Solve 𝑑𝑥 + (2𝑥𝑡𝑎𝑛−1 − 𝑥 3 )(1 + 𝑦 2 ) = 0 1 2 2
𝑡𝑎𝑛𝑦 = (𝑥 − 1) + 𝑐𝑒 −𝑥
2
37 𝑑𝑦
Solve 𝑑𝑥 = 1 − 2𝑥(𝑦 − 𝑥) + 𝑥 3 1 2
𝑦 − 𝑥 = (𝑥 2 − 1) + 𝑐𝑒 −𝑥
2
38 𝑑𝑦
Solve 𝑑𝑥 −
𝑡𝑎𝑛𝑦
= (1 + 𝑥)𝑒 𝑥 𝑠𝑒𝑐𝑦 𝑠𝑖𝑛𝑦
1+𝑥 = 𝑒𝑥 + 𝑐
1+𝑥
Bernoulli’s Equation
39 Solve 𝑥 𝑑𝑦 + 𝑦 = 𝑥 3 𝑦 6 1 5
𝑑𝑥 5
= 𝑥 3 + 𝑐𝑥 5
𝑦 2
40 𝑑𝑥 𝑦
Solve 𝑦 𝑑𝑦 = 𝑥 − 𝑦𝑥 2 𝑠𝑖𝑛𝑦 − = 𝑦𝑐𝑜𝑠𝑦 − 𝑠𝑖𝑛𝑦 + 𝑐
𝑥
41 Solve 𝑦𝑑𝑥 + 𝑥(1 − 3𝑥 2 𝑦 2 )𝑑𝑦 = 0 1
+ 6𝑙𝑜𝑔𝑦 = 𝑐
𝑥 𝑦2
2
42 𝑑𝑦
Solve 𝑑𝑥 + 𝑥𝑦 = 𝑥 3 𝑦 3 1 2
= 𝑥 2 + 1 + 𝑐𝑒 𝑥
𝑦2
43 𝑥𝑦(1+𝑥𝑦 2 )𝑑𝑦 1 2
Solve =1 = 2 − 𝑦 2 + 𝑐𝑒 −𝑦 /2
𝑑𝑥
𝑥
44 𝑑𝑦
Solve 𝑑𝑥 + 𝑥(𝑥 + 𝑦) = 𝑥 3 (𝑥 + 𝑦)3 − 1 1 2
2
= 𝑥 2 + 1 + 𝑐𝑒 𝑥
(𝑥 + 𝑦)
Sr.
Question Solution
No.
𝑑3 𝑦 𝑑2 𝑦 𝑑𝑦
1. Solve 𝑑𝑥 3 − 6 𝑑𝑥 2 + 11 𝑑𝑥 − 6𝑦 = 0 𝑦 = 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 2𝑥 + 𝑐3 𝑒 3𝑥
𝑑2 𝑦 𝑑𝑦
2. Solve 2 𝑑𝑥 2 − 5 𝑑𝑥 − 12𝑦 = 0 𝑦 = 𝑐1 𝑒 3𝑥/2 + 𝑐2 𝑒 −4𝑥
𝑑3 𝑦 𝑑2 𝑦 𝑑𝑦
3. Solve 𝑑𝑥 3 − 5 𝑑𝑥 2 + 8 𝑑𝑥 − 4𝑦 = 0 𝑦 = (𝑐1 + 𝑥𝑐2 )𝑒 2𝑥 + 𝑐3 𝑒 𝑥
𝑑3 𝑦 𝑑2 𝑦 𝑑𝑦
4. Solve 𝑑𝑥 3 − 3 𝑑𝑥 2 + 3 𝑑𝑥 − 𝑦 = 0 𝑦 = (𝑐1 + 𝑥𝑐2 + 𝑥 2 𝑐3 )𝑒 𝑥
𝑑2 𝑦 𝑑𝑦
5. . Solve 𝑑𝑥 2 + 4 𝑑𝑥 + 4𝑦 = 0 𝑦 = (𝑐1 + 𝑥𝑐2 )𝑒 −2𝑥
𝑑4 𝑦 𝑑3 𝑦 𝑑2 𝑦
6. Solve 𝑑𝑥 4 − 2 𝑑𝑥 3 + 𝑑𝑥 2 = 0 𝑦 = (𝑐1 + 𝑥𝑐2 )𝑒 𝑥 + (𝑐3 + 𝑥𝑐4 )
𝑑3 𝑦 𝑥 √3
7. Solve 𝑑𝑥 3 + 𝑦 = 0 𝑦 = 𝑐1 𝑒 −𝑥 + 𝑒 2 (𝑐2 cos √3 /2 𝑥 + 𝑐3 sin 𝑥)
2
𝑑4 𝑦 𝑑2 𝑦
8. Solve 𝑑𝑥 4 + 6 𝑑𝑥 2 + 9𝑦 = 0 𝑦 = (𝑐1 + 𝑥𝑐2 ) cos 𝑥 + (𝑐3 + 𝑐4 𝑥)𝑠𝑖𝑛𝑥
𝑑4 𝑦 √3 √3
9. Solve 𝑑𝑥 4 + 4𝑦 = 0 𝑦 = 𝑒 𝑥/2 {(𝑐1 + 𝑥𝑐2 )𝑐𝑜𝑠 𝑥 + (𝑐3 + 𝑥𝑐4 )𝑠𝑖𝑛 𝑥
2 2
−𝑥
𝑒 3𝑥
11 Solve
𝑑3 𝑦
−3
𝑑2 𝑦
+ 4𝑦 = 𝑒 3𝑥 𝑦 = 𝑐1 𝑒 + (𝑐2 + 𝑥𝑐3 )𝑒 2𝑥 +
𝑑𝑥 3 𝑑𝑥 2 4
𝑥 3𝑥 4
12 Solve (𝐷 3 − 2𝐷 2 − 5𝐷 + 6)𝑦 = 𝑒 3𝑥 + 8 𝑦 = 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 −2𝑥 + 𝑐3 𝑒 3𝑥 + 𝑒 +
10 3
𝑑3 𝑦 𝑑𝑦 𝑥 1
13 Solve 𝑑𝑥 3 − 4 𝑑𝑥 = 2 𝑐𝑜𝑠ℎ2 2𝑥 𝑦 = 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 2𝑥 + 𝑐3 𝑒 −2𝑥 − + 𝑠𝑖𝑛ℎ4𝑥
4 48
Find the particular integral of 1
14
(𝐷 2 − 4𝐷 + 4)𝑦 = 𝑒 𝑥 + 𝑐𝑜𝑠2𝑥 𝑦 = 𝑒 𝑥 − 𝑠𝑖𝑛2𝑥
8
𝑥
15 Solve (𝐷 2 + 4)𝑦 = 𝑐𝑜𝑠2𝑥 𝑦 = 𝑐1 𝑐𝑜𝑠2𝑥 + 𝑐3 𝑠𝑖𝑛2𝑥 + 𝑠𝑖𝑛2𝑥
4
1
16 Solve (𝐷 2 − 5𝐷 + 6)𝑦 = 𝑠𝑖𝑛3𝑥 𝑦 = 𝑐1 𝑒 2𝑥 + 𝑐2 𝑒 3𝑥 + (5𝑐𝑜𝑠3𝑥 − 𝑠𝑖𝑛3𝑥)
78
𝑑3 𝑦 𝑑2 𝑦 𝑑𝑦 𝑥 𝑥
17 Solve 𝑑𝑥 3 − 3 𝑑𝑥 2 + 9 𝑑𝑥 − 27𝑦 = 𝑐𝑜𝑠3𝑥 𝑦 = 𝑐1 𝑒 3𝑥 + (𝑐2 𝑐𝑜𝑠3𝑥 + 𝑐3 𝑠𝑖𝑛3𝑥) − 𝑐𝑜𝑠3𝑥 − 𝑠𝑖𝑛3𝑥
36 36
𝑥 1
𝑦 = 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 −𝑥 + 𝑐3 𝑐𝑜𝑠𝑥 + 𝑐4 𝑠𝑖𝑛𝑥 + 𝑒 𝑥 + 𝑐𝑜𝑠4𝑥
18 Solve (𝐷 4 − 1)𝑦 = 𝑒 𝑥 + 𝑐𝑜𝑠𝑥𝑐𝑜𝑠3𝑥 4 510
1
+ 𝑐𝑜𝑠2𝑥
30
1 𝑥2
19 Solve (𝐷 4 + 8𝐷 2 + 16)𝑦 = 𝑠𝑖𝑛2 𝑥 𝑦 = (𝑐1 + 𝑥𝑐2 )(𝑐3 𝑐𝑜𝑠2𝑥 + 𝑐4 𝑠𝑖𝑛2𝑥) + + 𝑐𝑜𝑠2𝑥
32 64
1 3
20 Solve (𝐷 3 − 3𝐷 + 2)𝑦 = 𝑥 𝑦 = (𝑐1 + 𝑥𝑐2 )𝑒 𝑥 + 𝑐3 𝑒 −2𝑥 + [𝑥 + ]
2 2
𝑑3 𝑦 𝑑𝑦 1
21 Solve 𝑑𝑥 3 − 2 𝑑𝑥 + 4𝑦 = 3𝑥 2 − 5𝑥 + 2 𝑦 = 𝑐1 𝑒 −2𝑥 + 𝑒 𝑥 (𝑐2 𝑐𝑜𝑠𝑥 + 𝑐3 𝑠𝑖𝑛𝑥) + [3𝑥 2 − 2𝑥 + 1]
4
𝑥 3 5𝑥 2
22 SSolve (𝐷 3 − 2𝐷 2 + 𝐷)𝑦 = 𝑥 2 + 𝑥 𝑦 = 𝑐1 + (𝑐2 + 𝑥𝑐3 )𝑒 𝑥 + + + 8𝑥
3 2
1 𝑥 3 𝑥 2 25𝑥
23 Solve (𝐷 3 − 𝐷 2 − 6𝐷)𝑦 = 𝑥 2 + 1 𝑦 = 𝑐1 + 𝑐2 𝑒 −2𝑥 + 𝑐3 𝑒 3𝑥 − [ − + ]
6 3 6 1
𝑥3
24 Solve (𝐷 2 − 3𝐷 + 2)𝑦 = 𝑥 2 𝑒 2𝑥 𝑦 = 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 2𝑥 + 𝑒 2𝑥 ( − 𝑥 2 + 2𝑥)
3
𝑒 3𝑥 2 3
25 Solve (𝐷 2 − 4𝐷 + 3)𝑦 = 2𝑥𝑒 3𝑥 + 3𝑒 𝑥 𝑐𝑜𝑠2𝑥 𝑦 = 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 3𝑥 + (𝑥 − 𝑥) − 𝑒 𝑥 (𝑠𝑖𝑛2𝑥 + 𝑐𝑜𝑠2𝑥)
2 8
𝑒 3𝑥 2 12𝑥 50 𝑒𝑥
𝑑2 𝑦 𝑦 = 𝑐1 𝑐𝑜𝑠√2𝑥 + 𝑐2 𝑠𝑖𝑛√2𝑥 + {𝑥 − + }+
26 Solve 𝑑𝑥 2 + 2𝑦 = 𝑥 2 𝑒 3𝑥 + 𝑒 𝑥 − 𝑐𝑜𝑠2𝑥 11 11 121 3
1
+ 𝑐𝑜𝑠2𝑥
2
𝑒 3𝑥 2 12 50
𝑦 = 𝑐1 𝑐𝑜𝑠√2𝑥 + 𝑐2 𝑠𝑖𝑛√2𝑥 + {𝑥 − 𝑥 + }
27 Solve (𝐷 2 + 2)𝑦 = 𝑒 𝑥 𝑐𝑜𝑠𝑥 + 𝑥 2 𝑒 3𝑥 11 11 121
𝑒𝑥
+ (𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥)
4
1 𝑥
𝑦 = 𝑐1 𝑒 −𝑥 + 𝑐2 𝑒 −2𝑥 + 𝑐3 𝑒 3𝑥 − 𝑒 (𝑠𝑖𝑛𝑥 + 3𝑐𝑜𝑠𝑥)
28 Solve (𝐷 3 − 7𝐷 − 6)𝑦 = 𝑐𝑜𝑠ℎ𝑥𝑐𝑜𝑠𝑥 100
1 −𝑥
+ 𝑒 (3𝑐𝑜𝑠𝑥 − 5𝑠𝑖𝑛𝑥)
68
𝑥 2 3𝑥 𝑥 3 3𝑥
29 Solve (𝐷 2 − 6𝐷 + 9)𝑦 = 𝑒 3𝑥 (1 + 𝑥) 𝑦 = (𝑐1 + 𝑥𝑐2 )𝑒 3𝑥 + 𝑒 + 𝑒
2 6
18. 2𝑎 5 4
Evaluate ∫0 𝑥 2 √2𝑎𝑥 − 𝑥 2 𝑑𝑥 𝑎 𝜋
8
19. 3 𝑥 3\2 1 𝑑𝑥 432
Prove that a) ∫0 𝑑𝑥. ∫0 = 𝜋
√3−𝑥 √1−𝑥 1/4 35
1 1\2 𝜋
b) ∫0 √1 − √𝑥 𝑑𝑥. ∫0 √2𝑦 − 4𝑦 2 𝑑𝑦 = 30
20. 𝟐𝒂 𝒙𝟗/𝟐 11 1
Evaluate ∫𝟎 𝒅𝒙 (2𝑎)5. 𝐵 ( , )
√𝟐𝒂−𝒙 2 2
21. 1 𝑥7 1/3
Evaluate ∫0 𝑑𝑥
√1−𝑥 4
22. ∞ 𝒅𝒙 16/35
Evaluate ∫𝟎 (𝟏+𝒙𝟐 )𝟗/𝟐
23. ∞ 𝒙𝟐 8/45
Evaluate ∫𝟎 (𝟏+𝒙𝟔 )𝟕/𝟐 𝒅𝒙
24. ∞ 𝒙𝟑 𝟓
Evaluate ∫𝟎 (𝟏+𝒙𝟖 )𝟒
dx 𝝅
𝟏𝟐𝟖
25. 𝜋/6 16/315
Evaluate ∫0 𝑐𝑜𝑠 3 3𝜃 𝑠𝑖𝑛2 6𝜃 𝑑𝜃
2𝑎
26. Evaluate ∫0 𝑥√2𝑎𝑥 − 𝑥 2 𝑑𝑥 𝝅𝒂𝟑
𝟐
27. 1/2 1/120
Evaluate ∫0 𝑥 3 √1 − 4𝑥 2 . 𝑑𝑥
28. ∞ 𝑥2 2/15
Evaluate ∫0 (1+𝑥 2 )7/2
𝑑𝑥
29. 𝑎 𝑑𝑥 𝜋 𝜋
Show that ∫0 (𝑎𝑛 −𝑥𝑛 )1/𝑛 = 𝑐𝑜𝑠𝑒𝑐 ( )
𝑛 𝑛
31. ∞ 𝑑𝑥 1 𝑛 𝑛 ∞ 16/35
Prove that ∫0 = 𝐵 ( , ) and hence evaluate ∫0 𝑠𝑒𝑐ℎ 8 𝑥 𝑑𝑥
(𝑒 𝑥 +𝑒 −𝑥 )𝑛 4 2 2
34 ∞ sin 𝑚𝑥 𝑚 𝝅/𝟒
Prove that ∫0 𝑒 −𝑎𝑥 . 𝑥
𝑑𝑥 = tan−1 𝑎 . ( 𝑎 𝑖𝑠 𝑎 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) Hence ,
∞ sin 𝑥
evaluate ∫0 𝑒 −𝑥 𝑥 . 𝑑𝑥
35 Show that ∫0
𝜋 log(1+𝑎 cos 𝑥)
𝑑𝑥 = 𝜋𝑠𝑖𝑛−1 𝑎 , 0 ≤ 𝑎 ≤ 1 .Hence 𝝅𝟐
cos 𝑥
𝟐
𝜋 log(1+cos 𝑥)
evaluate∫0 cos 𝑥
𝑑𝑥
36 𝜋 log(1+sin 𝛼 cos 𝑥)
Show that ∫0 𝑑𝑥 = 𝜋𝛼
cos 𝑥
38 ∞ 1−cos 𝑚𝑥 1
Show that ∫0 𝑥
. 𝑒 −𝑥 𝑑𝑥 = 2
log(𝑚2 + 1). Hence, deduce that
∞ 1−cos 𝑥
∫0 . 𝑒 −𝑥 𝑑𝑥 = log √2
𝑥
𝜋
39 log(1+𝑎𝑠𝑖𝑛2 𝑥)
Prove that ∫0 2 𝑑𝑥 = 𝜋[√𝑎 + 1 − 1], 𝑎 > −1
𝑠𝑖𝑛2 𝑥
Rectification
1 Find the total length of the curve 𝑥 2/3 + 𝑦 2/3 = 𝑎2/3 𝟔𝒂
2 Show that the length of the arc of the curve 𝑎𝑦 2 = 𝑥 3 from the origin to the
8𝑎 9𝑏
point whose abscissa is b is 27 [(1 + 4𝑎) − 13/2 ]
3 Show that if s is the arc of the curve 9𝑦 2 = 𝑥(3 − 𝑥)2 measured from the origin 𝟑𝒔𝟐
to the point P(x,y) then 3𝑠 2 = 3𝑦 2 + 4𝑥 2
4 Find the perimeter of the loop of the curve 4𝑎√3
9𝑎𝑦 2 = (𝑥 − 2𝑎)(𝑥 − 5𝑎)2
5 Find the length of the loop of the curve 3𝑎𝑦 2 = 𝑥(𝑥 − 𝑎)2 𝟒
𝒂
√𝟑
6 Find the total length of the loop of the curve 4√3
9𝑦 2 = (𝑥 + 7)(𝑥 + 4)2
7 Find the perimeter of the cardioid 𝑟 = 𝑎(1 − 𝑐𝑜𝑠𝜃) and prove that the line 𝜃 = 8a
2𝜋/3 bisects the upper half of the cardioid
8 Find the perimeter of the 𝑐𝑎𝑟𝑑𝑖𝑜𝑖𝑑 𝑟 = 𝑎(1 − 𝑐𝑜𝑠𝜃) 8a
9 Find the length of the cardioid 𝑟 = 𝑎(1 − 𝑐𝑜𝑠𝜃), 𝑙𝑦𝑖𝑛𝑔 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒 𝑟 = 4𝑎√3
𝑎𝑐𝑜𝑠𝜃
10 Find the length of the cardioid 𝑟 = 𝑎(1 + 𝑐𝑜𝑠𝜃), 𝑙𝑦𝑖𝑛𝑔 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒 𝑟 + 4𝑎√3
𝑎𝑐𝑜𝑠𝜃 = 0
11 Find the length of the upper arc of one loop of Lemniscate 𝑟 2 = 𝑎2 cos 2𝜃 𝑎 (Γ 1/4)2
.
4√2 √𝜋
1 𝑥2 𝑦⁄ 1
3. Evaluate ∫0 ∫0 𝑒 𝑥 𝑑𝑦 𝑑𝑥 [ ]
2
3
1 𝑥 [ ]
4. Evaluate ∫0 ∫𝑥 2 𝑥𝑦 (𝑥 2 + 𝑦 2 )𝑑𝑦 𝑑𝑥 80
1 𝑥 1
5. Evaluate ∫0 ∫0 𝑒 𝑥+𝑦 ⋅ 𝑑𝑥 𝑑𝑦 [𝑒 − 1]2
2
1 𝑦 2
6. Evaluate ∫0 ∫0 𝑥𝑦𝑒 −𝑥 ⋅ 𝑑𝑥 𝑑𝑦 1/4e
1 𝑥
7. Evaluate ∫0 ∫0 (𝑥 2 + 𝑦 2 )𝑥 ⋅ 𝑑𝑥 𝑑𝑦 4/15
5 2+𝑥
8. Evaluate ∫0 ∫2−𝑥 𝑑𝑥 𝑑𝑦 25
𝜋/4 √𝑐𝑜𝑠2𝜃 𝑟 1
9. Evaluate ∫0 ∫0 (1+𝑟 2 )2
⋅ 𝑑𝑟 𝑑𝜃 (𝜋 − 2)
8
𝜋/2 𝑎𝑐𝑜𝑠𝜃 2 2𝑎3
10. Evaluate ∫0 ∫0 𝑟 ⋅ 𝑑𝑟 𝑑𝜃
9
𝜋 𝑎(1+𝑐𝑜𝑠𝜃) 3𝜋𝑎2
11. Evaluate ∫0 ∫0 𝑟 ⋅ 𝑑𝑟 𝑑𝜃
4
4.2 Evaluation of Double Integrals by changing the order of integration
2 4−𝑥
12. Change the order of integration and evaluate ∫0 ∫𝑥2 𝑥𝑦 𝑑𝑦 𝑑𝑥 6
2
1 4 2 1 16
16. Change the order of integration and evaluate ∫0 ∫4𝑦 𝑒 𝑥 𝑑𝑥 𝑑𝑦 [𝑒 − 1]
8
5 2+𝑥
17. Change the order of integration and evaluate ∫0 ∫2−𝑥 𝑑𝑥 𝑑𝑦 25
1 2−𝑥 𝑥
18. Change the order of integration and evaluate ∫0 ∫𝑥 𝑑𝑥 𝑑𝑦 log(4/e)
𝑦
𝑎4
22. Evaluate ∫ ∫ 𝑥𝑦 𝑑𝑥 𝑑𝑦
3
1
23. Evaluate ∫ ∫𝑅 4 2 𝑑𝑥 𝑑𝑦, 𝑤ℎ𝑒𝑟𝑒 𝑅 𝑖𝑠 𝑟𝑒𝑔𝑖𝑜𝑛 𝑥 ≥ 1, 𝑦 ≥ 𝑥 2 𝜋/4
𝑥 +𝑦
Evaluate ∫ ∫ 𝑥𝑦 𝑑𝑥 𝑑𝑦 1
24. −
𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑏𝑦 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎𝑠 𝑦 = 𝑥 2 𝑎𝑛𝑑 𝑦 2 = −𝑥 12
Evaluate ∫ ∫ 𝑥 2 𝑑𝑥 𝑑𝑦 over the region bounded by 𝑥𝑦 = 16, 𝑦 =
25. 448
𝑥, 𝑦 = 0, 𝑎𝑛𝑑 𝑥 = 8
2 𝑥 2𝑥+2𝑦 𝑒 12 𝑒 6 𝑒 4 4
3. Evaluate ∫0 ∫0 ∫0 𝑒 𝑥+𝑦+𝑧 𝑑𝑧 𝑑𝑦 𝑑𝑥 [
18
− − + 𝑒2 − ]
9 2 9
𝑙𝑜𝑔2 𝑥 𝑥+𝑦 5
4. Evaluate ∫0 ∫0 ∫0 𝑒 𝑥+𝑦+𝑧 𝑑𝑧 𝑑𝑦 𝑑𝑥 [ ]
8
𝑒 𝑙𝑜𝑔𝑦 𝑒𝑥 1
5. Evaluate ∫1 ∫1 ∫1 𝑙𝑜𝑔𝑧 𝑑𝑧 𝑑𝑥 𝑑𝑦 [ (𝑒 2 − 8𝑒 + 13)]
2
1 1−𝑥 1−𝑥−𝑦
1 5
1 [ (𝑙𝑜𝑔2 − )]
6. Evaluate ∫0 ∫0 ∫0 (𝑥+𝑦+𝑧+1)3
𝑑𝑧 𝑑𝑦 𝑑𝑥 2 8
𝑎 𝑎−𝑥 𝑎−𝑥−𝑦 𝑎5
7. Evaluate ∫0 ∫0 ∫0 𝑥 2 𝑑𝑧 𝑑𝑦 𝑑𝑥
60
1 𝑧 𝑥+𝑧
8. Evaluate ∫−1 ∫0 ∫𝑥−𝑧 (𝑥 + 𝑦 + 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥 0
1 1−𝑥 𝑥+𝑦
9. Evaluate ∫0 ∫0 ∫0 𝑒 𝑧 𝑑𝑧 𝑑𝑦 𝑑𝑥 1/2
𝑎 𝑥 𝑥+𝑦 𝑎3
10. Evaluate ∫0 ∫0 ∫0√ 𝑧 𝑑𝑧 𝑑𝑦 𝑑𝑥
4
When the region of integration is bounded by planes
When the region of integration is not bounded by planes, but by sphere, ellipsoid etc.
Use Runge-Kutta method to find an approximate value of y when 𝑥 = 1.2 (𝑖) 𝑦(1.1) = 1.1272
10. 𝑑𝑦 [ ]
given that 𝑑𝑥 = 𝑥𝑦 𝑤ℎ𝑒𝑛 𝑦 = 1 𝑎𝑡 𝑥 = 1 taking ℎ = 0.1 (𝑖𝑖)𝑦(1.2) = 1.2374
Use Runge-Kutta method to find an approximate value of y when 𝑥 = 1 (𝑖) 𝑦(0.5) = 1.3571
11. 𝑑𝑦 1 [ ]
given that 𝑑𝑥 = (𝑥+𝑦) 𝑤ℎ𝑒𝑛 𝑦 = 1 𝑎𝑡 𝑥 = 0 taking ℎ = 0.5 (𝑖𝑖)𝑦(1.0) = 1.5837
Numerical Integration
1 𝑥2
Find the value of the integral ∫0 𝑑𝑥, using (i) Trapezoidal rule and (ii) [
(𝑖) 0.2311
]
12. 1+𝑥 3
(𝑖𝑖)0.2311
Simpson’s (1/3)rd rule.
𝜋
13. Evaluate ∫02 √𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥 𝑑𝑥 by Simpson’s (3/8)th rule by dividing into [1.7702]
six intervals.
4
Find the approximate value of ∫0 𝑒 𝑥 𝑑𝑥 by using (i) Trapezoidal and (ii) [
(𝑖) 57.9905
]
14. (𝑖𝑖)53.5961
Simpson’s (1/3)rd rule.
1 1 (𝑖) 1.5615
Find the value of the integral ∫−1 1+𝑥 2 𝑑𝑥, using (i) Trapezoidal rule, (ii)
15. [ (𝑖𝑖)1.5709 ]
Simpson’s (1/3)rd rule, (iii) Simpson’s (3/8)th rule (𝑖𝑖𝑖)1.5692
1.4 (𝑖) 4.0715
Compute the values of the integral ∫0.2 (𝑠𝑖𝑛𝑥 − 𝑙𝑜𝑔𝑒 𝑥 + 𝑒 𝑥 ) 𝑑𝑥 , using (i) [ (𝑖𝑖)4.0521 ]
16. Trapezoidal rule, (ii) Simpson’s (1/3)rd rule, (iii) Simpson’s (3/8)th rule (𝑖𝑖𝑖)4.0530