0% found this document useful (0 votes)
145 views14 pages

Practice Questions AM II FH2025

The document is a handbook for the Applied Mathematics-II course at SIES Graduate School of Technology, covering the syllabus for the academic year 2024-25. It includes a question bank with various problems related to exact differential equations and their solutions. The content is structured in a way to assist first-year engineering students in understanding and solving mathematical equations as per the University of Mumbai syllabus R2025.

Uploaded by

Shreya Ranjane
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
145 views14 pages

Practice Questions AM II FH2025

The document is a handbook for the Applied Mathematics-II course at SIES Graduate School of Technology, covering the syllabus for the academic year 2024-25. It includes a question bank with various problems related to exact differential equations and their solutions. The content is structured in a way to assist first-year engineering students in understanding and solving mathematical equations as per the University of Mumbai syllabus R2025.

Uploaded by

Shreya Ranjane
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 14

SIES Graduate School of Technology

Nerul, Navi Mumbai

First Year Engineering


Applied
Mathematics -II
Handbook
Semester-II
Academic year: 2024-25
[As per the University of Mumbai syllabus R2025]
SIES Graduate School of Technology

Question Bank

Sr.
Problem Solution
No.
Module 01. Exact Differential Equation
2
1 Solve
2 2 𝑒 𝑥𝑦 + 𝑥 4 = 𝑦 3 = 𝑐
(𝑦 2 𝑒 𝑥𝑦 + 4𝑥 3 )𝑑𝑥 + (2𝑥𝑦𝑒 𝑥𝑦 − 3𝑦 2 )𝑑𝑦 = 0
1
2 Solve {𝑦 (1 + ) + 𝑐𝑜𝑠𝑦} 𝑑𝑥 + (𝑥 + 𝑙𝑜𝑔𝑥 − 𝑥𝑠𝑖𝑛𝑦)𝑑𝑦 = 0 𝑦(𝑥 + 𝑙𝑜𝑔𝑥) + 𝑥𝑐𝑜𝑠𝑦 = 𝑐
𝑥
3 Solve (1 + 2𝑥𝑦𝑐𝑜𝑠𝑥 − 2𝑥𝑦)𝑑𝑥 + 2 (𝑠𝑖𝑛𝑥 2 −𝑥 2 )𝑑𝑦
=0 𝑥 + 𝑦𝑠𝑖𝑛𝑥 2 − 𝑥 2 𝑦 = 𝑐
𝑑𝑦 𝑦𝑐𝑜𝑠𝑥+𝑠𝑖𝑛𝑦+𝑦
4 Solve
𝑑𝑥
+
𝑠𝑖𝑛𝑥+𝑥𝑐𝑜𝑠𝑦+𝑥
=0 𝑦𝑠𝑖𝑛𝑥 + 𝑥𝑠𝑖𝑛𝑦 + 𝑥𝑦 = 𝑐
5 Solve (𝑥 2 − 4𝑥𝑦 − 2𝑦 2 )𝑑𝑥
+ (𝑦 2 − 4𝑥𝑦 − 2𝑥 2 )𝑑𝑦 = 0 𝑥 3 + 𝑦 3 − 6𝑥 2 𝑦 − 6𝑦 2 𝑥 = 𝑐
6 Solve [𝑥√𝑥 2 + 𝑦 2 − 𝑦]𝑑𝑥 + [𝑦√𝑥 2 + 𝑦 2 − 𝑥]𝑑𝑦 = 0 (𝑥 2 + 𝑦 2 )3/2 − 3𝑥𝑦 = 𝑐
7 (𝑡𝑎𝑛𝑦 + 𝑥)𝑑𝑥 + (𝑥𝑠𝑒𝑐 2 𝑦 − 3𝑦)𝑑𝑦 = 0 2𝑥𝑡𝑎𝑛𝑦 − 3𝑦 2 + 𝑥 2 = 𝑐
8 (𝑥 − 2𝑒 𝑦 )𝑑𝑦 + (𝑦 + 𝑥𝑠𝑖𝑛𝑥)𝑑𝑥 = 0 𝑥𝑦 − 𝑥𝑐𝑜𝑠𝑥 + 𝑠𝑖𝑛𝑥 − 2𝑒 𝑦 = 𝑐

9 (4𝑥 + 3𝑦 − 4)𝑑𝑥 + (3𝑥 − 7𝑦 − 3)𝑑𝑦 = 0 4𝑥 2 + 6𝑥𝑦 − 8𝑥 − 7𝑦 2 − 6𝑦 = 𝑐

10 (𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑦 + 𝑒 2𝑥 )𝑑𝑥 + (𝑐𝑜𝑠𝑥𝑠𝑖𝑛𝑦 + 𝑡𝑎𝑛𝑦)𝑑𝑦 = 0 1


−𝑐𝑜𝑠𝑥𝑐𝑜𝑠𝑦 + 𝑒 2𝑥 + 𝑙𝑜𝑔𝑠𝑒𝑐𝑦 = 𝑐
2
𝝏𝑴 𝝏𝑵
Type I: If ( 𝝏𝒚 − 𝝏𝒙 ) /𝑵 is a function of x, 𝒇(𝒙)𝒔𝒂𝒚 𝒕𝒉𝒆𝒏 𝑰. 𝑭 𝒊𝒔 𝒆∫ 𝒇(𝒙)𝒅𝒙
1 1 1/𝑥 3 𝑦2
11 Solve (𝑥𝑦 2 − 𝑒 𝑥3 ) 𝑑𝑥 − 𝑥 2 𝑦𝑑𝑦 = 0 3
𝑒 − 2 𝑥2 = 𝑐
12 Solve (𝑥 2 + 𝑦 2 + 1)𝑑𝑥 − 2𝑥𝑦𝑑𝑦 = 0 𝑥−
𝑦2 1
−𝑥 =𝑐
𝑥
13 Solve (2𝑥𝑙𝑜𝑔𝑥 − 𝑥𝑦)𝑑𝑦 + 2𝑦𝑑𝑥 = 0 𝑦2
2𝑦𝑙𝑜𝑔𝑥 − =𝑐
2
14 Solve (4𝑥𝑦 + 3𝑦 2 − 𝑥)𝑑𝑥 + 𝑥(𝑥 + 2𝑦)𝑑𝑦 = 0 4𝑥 2 𝑦 + 4𝑥 3 𝑦 2 − 𝑥 4 = 𝑐
15 Solve (𝑥 4 + 𝑦 4 ) − 𝑥𝑦 3 𝑑𝑦 = 0 4𝑥 4 𝑙𝑜𝑔𝑥 − 𝑦 4 = 𝑐𝑥 4
𝝏𝑵 𝝏𝑴
Type II: If ( 𝝏𝒙 − ) /𝑴 is a function of 𝒚 𝒇(𝒚)𝒔𝒂𝒚 𝒕𝒉𝒆 𝑰. 𝑭 𝒊𝒔 𝒆∫ 𝒇(𝒚)𝒅𝒚
𝝏𝒚
16 Solve
(𝑥+2𝑦 3 )𝑑𝑦
=𝑦 𝑥 − 𝑦 3 = 𝑐𝑦
𝑑𝑥
𝑥 )𝑑𝑥
17 Solve 𝑦(𝑥𝑦 + 𝑒 − 𝑒 𝑥 𝑑𝑦 = 0 𝑥2 𝑒 𝑥
+ =𝑐
2 𝑦
18 𝑦 𝑦𝑙𝑜𝑔𝑥 − 𝑥𝑠𝑖𝑛𝑦 = 𝑐
Solve (𝑥 𝑠𝑒𝑐𝑦 − 𝑡𝑎𝑛𝑦) 𝑑𝑥 + (𝑠𝑒𝑐𝑦𝑙𝑜𝑔𝑥 − 𝑥)𝑑𝑦 = 0
19 Solve (𝑥𝑦 3 + 𝑦)𝑑𝑥 + 2(𝑥 2 𝑦 2 + 𝑥 + 𝑦 4 )𝑑𝑦 = 0 3𝑥 2 𝑦 4 + 6𝑥𝑦 2 + 𝑦 6 = 𝑐
Type III: I.F. for an equation of the type 𝒇𝟏 (𝒙𝒚)𝒚𝒅𝒙 + 𝒇𝟐 (𝒙𝒚)𝒙𝒅𝒚 = 𝟎:
𝟏
If 𝑴𝒅𝒙 + 𝑵𝒅𝒚 = 𝟎 is of the above form then is an IF provided that 𝑴𝒙 − 𝑵𝒚 ≠ 𝟎.
𝑴𝒙−𝑵𝒚
17 Solve 𝑦(𝑥𝑦 + 2𝑥 2 𝑦 2 )𝑑𝑥 + 𝑥(𝑥𝑦 − 𝑥 2 𝑦 2 )𝑑𝑦 = 0 𝑥2 1
log ( )= +𝑐
𝑦 𝑥𝑦
18 Solve (3𝑥 2 𝑦 4 + 2𝑥𝑦)𝑑𝑥 + (2𝑥 3 𝑦 3 − 𝑥 2 )𝑑𝑦 = 0 𝑥 3 𝑦 3 + 𝑥 2 = 𝑐𝑦
19 𝑑𝑦 𝑥 2 𝑦 3 +2𝑦 1 𝑥 1
Solve 𝑑𝑥 = − 2𝑥−2𝑥 3𝑦 2 log ( 2 ) − 2 2 = 𝑐
3 𝑦 3𝑥 𝑦
20 Solve (𝑦 − 𝑥𝑦 2 )𝑑𝑥 − (𝑥 + 𝑥𝑦 2 )𝑑𝑦 = 0 𝑥
log = 𝑐 + 𝑥𝑦
𝑦

1|Page First Year Engineering | Applied Mathematics-II | Handbook


SIES Graduate School of Technology

21 Solve 𝑦(𝑥 + 𝑦)𝑑𝑥 − (𝑦 − 𝑥)𝑥𝑑𝑦 = 0 𝑥


log = 𝑐 + 𝑥𝑦
𝑦
Type IV: I.F. of an homogeneous: If 𝑴𝒅𝒙 + 𝑵𝒅𝒚 = 𝟎 is homogeneous equation in x and y
𝟏
then 𝑴𝒙+𝑵𝒚 is an IF provided that 𝑴𝒙 + 𝑵𝒚 ≠ 𝟎.
22 Solve (𝑥 2 + 𝑦 2 )𝑑𝑥 − (𝑥 2 + 𝑥𝑦)𝑑𝑦 = 0 𝑦 𝑥
= log +𝑐
𝑥 (𝑥 − 𝑦)2
23 Solve (𝑥 2 𝑦)𝑑𝑥 − (𝑥 3 + 𝑦 3 )𝑑𝑦 = 0 𝑥3
𝑐𝑦 = 𝑒 3
3𝑦

24 Solve (𝑥 4 + 𝑦 4 ) − 𝑥𝑦 3 𝑑𝑦 = 0 4𝑥 4 𝑙𝑜𝑔𝑥 − 𝑦 4 = 𝑐𝑥 4
𝒅𝒚
Linear Differential Equations 𝒅𝒙 + 𝑷𝒚 = 𝑸
25 Solve 𝑑𝑦 + (1−2𝑥) 𝑦 = 1 𝑦 = 𝑥 2 + 𝑐𝑒 1/𝑥 𝑥 2
𝑑𝑥 𝑥2
26 2 ) 𝑑𝑦
Solve (1 − x 𝑑𝑥 + 2𝑥𝑦 = 𝑥√1 − 𝑥 2 𝑦 = √(1 − 𝑥 2 ) + 𝑐(1 − 𝑥 2 )
27 𝑑𝑦
Solve (1 − x 2 ) 𝑑𝑥 + 2𝑥𝑦 = 𝑥√1 − 𝑥 2
28 𝑑𝑦
Solve sin2x 𝑑𝑥 = 𝑦 + 𝑡𝑎𝑛𝑥 𝑦 = 𝑐 √𝑡𝑎𝑛𝑥 + 𝑡𝑎𝑛𝑥
29 𝑑𝑦 𝑦𝑥𝑠𝑒𝑐𝑥 = 𝑡𝑎𝑛𝑥 + 𝑐
Solve 𝑥𝑐𝑜𝑠𝑥 𝑑𝑥 + 𝑦(𝑥𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥) = 1
30 Solve (1 + 𝑥 + 𝑥𝑦 2 )𝑑𝑦 + (𝑦 + 𝑦 3 )𝑑𝑥 = 0 𝑥𝑦 + tan−1 𝑦 = 𝑐
−1 −1 −1
31 Solve (1 + 𝑦 2 )𝑑𝑥 = (𝑒 tan 𝑦 − 𝑥)𝑑𝑦 𝑥𝑒 tan 𝑦 = 𝑒 tan 𝑦 + 𝑐
32 𝑑𝑥
Solve (1 + 𝑠𝑖𝑛𝑦) 𝑑𝑦 = [2𝑦𝑐𝑜𝑠𝑦 − 𝑥(𝑠𝑒𝑐𝑦 + 𝑡𝑎𝑛𝑦)] 𝑥(1 + 𝑠𝑖𝑛𝑦) = 𝑦 2 𝑐𝑜𝑠𝑦
+ 𝑐𝑐𝑜𝑠𝑦
𝒅𝒚
The equation of the form 𝒇′ (𝒚) 𝒅𝒙 + 𝑷𝒇(𝒚) = 𝑸 where
𝑷 𝒂𝒏𝒅 𝑸 𝒂𝒓𝒆 𝒕𝒉𝒆 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒙 only can be reduce to LDE
33 𝑑𝑦
Solve 𝑑𝑥 + 𝑥𝑠𝑖𝑛2𝑦 = 𝑥 3 cos 2 𝑦 1 2
𝑡𝑎𝑛𝑦 = (𝑥 2 − 1) + 𝑐𝑒 −𝑥
2
34 𝑑𝑦
Solve 𝑡𝑎𝑛𝑦 𝑑𝑥 + 𝑡𝑎𝑛𝑥 = 𝑐𝑜𝑠𝑦𝑐𝑜𝑠 𝑥3 𝑥 𝑠𝑖𝑛2𝑥
𝑠𝑒𝑐𝑦. 𝑠𝑒𝑐𝑥 = + +𝑐
2 4
35 𝑑𝑦
Solve 𝑡𝑎𝑛𝑦 𝑑𝑥 + 𝑡𝑎𝑛𝑥 = 𝑐𝑜𝑠𝑦𝑐𝑜𝑠 3 𝑥
36 𝑑𝑦
Solve 𝑑𝑥 + (2𝑥𝑡𝑎𝑛−1 − 𝑥 3 )(1 + 𝑦 2 ) = 0 1 2 2
𝑡𝑎𝑛𝑦 = (𝑥 − 1) + 𝑐𝑒 −𝑥
2
37 𝑑𝑦
Solve 𝑑𝑥 = 1 − 2𝑥(𝑦 − 𝑥) + 𝑥 3 1 2
𝑦 − 𝑥 = (𝑥 2 − 1) + 𝑐𝑒 −𝑥
2
38 𝑑𝑦
Solve 𝑑𝑥 −
𝑡𝑎𝑛𝑦
= (1 + 𝑥)𝑒 𝑥 𝑠𝑒𝑐𝑦 𝑠𝑖𝑛𝑦
1+𝑥 = 𝑒𝑥 + 𝑐
1+𝑥
Bernoulli’s Equation
39 Solve 𝑥 𝑑𝑦 + 𝑦 = 𝑥 3 𝑦 6 1 5
𝑑𝑥 5
= 𝑥 3 + 𝑐𝑥 5
𝑦 2
40 𝑑𝑥 𝑦
Solve 𝑦 𝑑𝑦 = 𝑥 − 𝑦𝑥 2 𝑠𝑖𝑛𝑦 − = 𝑦𝑐𝑜𝑠𝑦 − 𝑠𝑖𝑛𝑦 + 𝑐
𝑥
41 Solve 𝑦𝑑𝑥 + 𝑥(1 − 3𝑥 2 𝑦 2 )𝑑𝑦 = 0 1
+ 6𝑙𝑜𝑔𝑦 = 𝑐
𝑥 𝑦2
2

42 𝑑𝑦
Solve 𝑑𝑥 + 𝑥𝑦 = 𝑥 3 𝑦 3 1 2
= 𝑥 2 + 1 + 𝑐𝑒 𝑥
𝑦2

2|Page First Year Engineering | Applied Mathematics-II | Handbook


SIES Graduate School of Technology

43 𝑥𝑦(1+𝑥𝑦 2 )𝑑𝑦 1 2
Solve =1 = 2 − 𝑦 2 + 𝑐𝑒 −𝑦 /2
𝑑𝑥
𝑥
44 𝑑𝑦
Solve 𝑑𝑥 + 𝑥(𝑥 + 𝑦) = 𝑥 3 (𝑥 + 𝑦)3 − 1 1 2
2
= 𝑥 2 + 1 + 𝑐𝑒 𝑥
(𝑥 + 𝑦)

Module 02: Higher Order Differential Equations with Constant Coefficients

Sr.
Question Solution
No.
𝑑3 𝑦 𝑑2 𝑦 𝑑𝑦
1. Solve 𝑑𝑥 3 − 6 𝑑𝑥 2 + 11 𝑑𝑥 − 6𝑦 = 0 𝑦 = 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 2𝑥 + 𝑐3 𝑒 3𝑥

𝑑2 𝑦 𝑑𝑦
2. Solve 2 𝑑𝑥 2 − 5 𝑑𝑥 − 12𝑦 = 0 𝑦 = 𝑐1 𝑒 3𝑥/2 + 𝑐2 𝑒 −4𝑥

𝑑3 𝑦 𝑑2 𝑦 𝑑𝑦
3. Solve 𝑑𝑥 3 − 5 𝑑𝑥 2 + 8 𝑑𝑥 − 4𝑦 = 0 𝑦 = (𝑐1 + 𝑥𝑐2 )𝑒 2𝑥 + 𝑐3 𝑒 𝑥

𝑑3 𝑦 𝑑2 𝑦 𝑑𝑦
4. Solve 𝑑𝑥 3 − 3 𝑑𝑥 2 + 3 𝑑𝑥 − 𝑦 = 0 𝑦 = (𝑐1 + 𝑥𝑐2 + 𝑥 2 𝑐3 )𝑒 𝑥

𝑑2 𝑦 𝑑𝑦
5. . Solve 𝑑𝑥 2 + 4 𝑑𝑥 + 4𝑦 = 0 𝑦 = (𝑐1 + 𝑥𝑐2 )𝑒 −2𝑥

𝑑4 𝑦 𝑑3 𝑦 𝑑2 𝑦
6. Solve 𝑑𝑥 4 − 2 𝑑𝑥 3 + 𝑑𝑥 2 = 0 𝑦 = (𝑐1 + 𝑥𝑐2 )𝑒 𝑥 + (𝑐3 + 𝑥𝑐4 )

𝑑3 𝑦 𝑥 √3
7. Solve 𝑑𝑥 3 + 𝑦 = 0 𝑦 = 𝑐1 𝑒 −𝑥 + 𝑒 2 (𝑐2 cos √3 /2 𝑥 + 𝑐3 sin 𝑥)
2
𝑑4 𝑦 𝑑2 𝑦
8. Solve 𝑑𝑥 4 + 6 𝑑𝑥 2 + 9𝑦 = 0 𝑦 = (𝑐1 + 𝑥𝑐2 ) cos 𝑥 + (𝑐3 + 𝑐4 𝑥)𝑠𝑖𝑛𝑥

𝑑4 𝑦 √3 √3
9. Solve 𝑑𝑥 4 + 4𝑦 = 0 𝑦 = 𝑒 𝑥/2 {(𝑐1 + 𝑥𝑐2 )𝑐𝑜𝑠 𝑥 + (𝑐3 + 𝑥𝑐4 )𝑠𝑖𝑛 𝑥
2 2

10. Solve (𝐷 2 − 2𝐷 − 4)) = 0 𝑦 = 𝑒 𝑥 (𝑐1 𝑐𝑜𝑠ℎ√5 𝑥 + 𝑐2 sinh √5 𝑥)

−𝑥
𝑒 3𝑥
11 Solve
𝑑3 𝑦
−3
𝑑2 𝑦
+ 4𝑦 = 𝑒 3𝑥 𝑦 = 𝑐1 𝑒 + (𝑐2 + 𝑥𝑐3 )𝑒 2𝑥 +
𝑑𝑥 3 𝑑𝑥 2 4

𝑥 3𝑥 4
12 Solve (𝐷 3 − 2𝐷 2 − 5𝐷 + 6)𝑦 = 𝑒 3𝑥 + 8 𝑦 = 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 −2𝑥 + 𝑐3 𝑒 3𝑥 + 𝑒 +
10 3
𝑑3 𝑦 𝑑𝑦 𝑥 1
13 Solve 𝑑𝑥 3 − 4 𝑑𝑥 = 2 𝑐𝑜𝑠ℎ2 2𝑥 𝑦 = 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 2𝑥 + 𝑐3 𝑒 −2𝑥 − + 𝑠𝑖𝑛ℎ4𝑥
4 48
Find the particular integral of 1
14
(𝐷 2 − 4𝐷 + 4)𝑦 = 𝑒 𝑥 + 𝑐𝑜𝑠2𝑥 𝑦 = 𝑒 𝑥 − 𝑠𝑖𝑛2𝑥
8
𝑥
15 Solve (𝐷 2 + 4)𝑦 = 𝑐𝑜𝑠2𝑥 𝑦 = 𝑐1 𝑐𝑜𝑠2𝑥 + 𝑐3 𝑠𝑖𝑛2𝑥 + 𝑠𝑖𝑛2𝑥
4
1
16 Solve (𝐷 2 − 5𝐷 + 6)𝑦 = 𝑠𝑖𝑛3𝑥 𝑦 = 𝑐1 𝑒 2𝑥 + 𝑐2 𝑒 3𝑥 + (5𝑐𝑜𝑠3𝑥 − 𝑠𝑖𝑛3𝑥)
78

3|Page First Year Engineering | Applied Mathematics-II | Handbook


SIES Graduate School of Technology

𝑑3 𝑦 𝑑2 𝑦 𝑑𝑦 𝑥 𝑥
17 Solve 𝑑𝑥 3 − 3 𝑑𝑥 2 + 9 𝑑𝑥 − 27𝑦 = 𝑐𝑜𝑠3𝑥 𝑦 = 𝑐1 𝑒 3𝑥 + (𝑐2 𝑐𝑜𝑠3𝑥 + 𝑐3 𝑠𝑖𝑛3𝑥) − 𝑐𝑜𝑠3𝑥 − 𝑠𝑖𝑛3𝑥
36 36

𝑥 1
𝑦 = 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 −𝑥 + 𝑐3 𝑐𝑜𝑠𝑥 + 𝑐4 𝑠𝑖𝑛𝑥 + 𝑒 𝑥 + 𝑐𝑜𝑠4𝑥
18 Solve (𝐷 4 − 1)𝑦 = 𝑒 𝑥 + 𝑐𝑜𝑠𝑥𝑐𝑜𝑠3𝑥 4 510
1
+ 𝑐𝑜𝑠2𝑥
30
1 𝑥2
19 Solve (𝐷 4 + 8𝐷 2 + 16)𝑦 = 𝑠𝑖𝑛2 𝑥 𝑦 = (𝑐1 + 𝑥𝑐2 )(𝑐3 𝑐𝑜𝑠2𝑥 + 𝑐4 𝑠𝑖𝑛2𝑥) + + 𝑐𝑜𝑠2𝑥
32 64
1 3
20 Solve (𝐷 3 − 3𝐷 + 2)𝑦 = 𝑥 𝑦 = (𝑐1 + 𝑥𝑐2 )𝑒 𝑥 + 𝑐3 𝑒 −2𝑥 + [𝑥 + ]
2 2
𝑑3 𝑦 𝑑𝑦 1
21 Solve 𝑑𝑥 3 − 2 𝑑𝑥 + 4𝑦 = 3𝑥 2 − 5𝑥 + 2 𝑦 = 𝑐1 𝑒 −2𝑥 + 𝑒 𝑥 (𝑐2 𝑐𝑜𝑠𝑥 + 𝑐3 𝑠𝑖𝑛𝑥) + [3𝑥 2 − 2𝑥 + 1]
4

𝑥 3 5𝑥 2
22 SSolve (𝐷 3 − 2𝐷 2 + 𝐷)𝑦 = 𝑥 2 + 𝑥 𝑦 = 𝑐1 + (𝑐2 + 𝑥𝑐3 )𝑒 𝑥 + + + 8𝑥
3 2
1 𝑥 3 𝑥 2 25𝑥
23 Solve (𝐷 3 − 𝐷 2 − 6𝐷)𝑦 = 𝑥 2 + 1 𝑦 = 𝑐1 + 𝑐2 𝑒 −2𝑥 + 𝑐3 𝑒 3𝑥 − [ − + ]
6 3 6 1
𝑥3
24 Solve (𝐷 2 − 3𝐷 + 2)𝑦 = 𝑥 2 𝑒 2𝑥 𝑦 = 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 2𝑥 + 𝑒 2𝑥 ( − 𝑥 2 + 2𝑥)
3
𝑒 3𝑥 2 3
25 Solve (𝐷 2 − 4𝐷 + 3)𝑦 = 2𝑥𝑒 3𝑥 + 3𝑒 𝑥 𝑐𝑜𝑠2𝑥 𝑦 = 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 3𝑥 + (𝑥 − 𝑥) − 𝑒 𝑥 (𝑠𝑖𝑛2𝑥 + 𝑐𝑜𝑠2𝑥)
2 8
𝑒 3𝑥 2 12𝑥 50 𝑒𝑥
𝑑2 𝑦 𝑦 = 𝑐1 𝑐𝑜𝑠√2𝑥 + 𝑐2 𝑠𝑖𝑛√2𝑥 + {𝑥 − + }+
26 Solve 𝑑𝑥 2 + 2𝑦 = 𝑥 2 𝑒 3𝑥 + 𝑒 𝑥 − 𝑐𝑜𝑠2𝑥 11 11 121 3
1
+ 𝑐𝑜𝑠2𝑥
2
𝑒 3𝑥 2 12 50
𝑦 = 𝑐1 𝑐𝑜𝑠√2𝑥 + 𝑐2 𝑠𝑖𝑛√2𝑥 + {𝑥 − 𝑥 + }
27 Solve (𝐷 2 + 2)𝑦 = 𝑒 𝑥 𝑐𝑜𝑠𝑥 + 𝑥 2 𝑒 3𝑥 11 11 121
𝑒𝑥
+ (𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥)
4
1 𝑥
𝑦 = 𝑐1 𝑒 −𝑥 + 𝑐2 𝑒 −2𝑥 + 𝑐3 𝑒 3𝑥 − 𝑒 (𝑠𝑖𝑛𝑥 + 3𝑐𝑜𝑠𝑥)
28 Solve (𝐷 3 − 7𝐷 − 6)𝑦 = 𝑐𝑜𝑠ℎ𝑥𝑐𝑜𝑠𝑥 100
1 −𝑥
+ 𝑒 (3𝑐𝑜𝑠𝑥 − 5𝑠𝑖𝑛𝑥)
68
𝑥 2 3𝑥 𝑥 3 3𝑥
29 Solve (𝐷 2 − 6𝐷 + 9)𝑦 = 𝑒 3𝑥 (1 + 𝑥) 𝑦 = (𝑐1 + 𝑥𝑐2 )𝑒 3𝑥 + 𝑒 + 𝑒
2 6

Apply the method of variation of parameters to 1 𝑥


30 𝑦 = 𝑐1 𝑐𝑜𝑠𝑎𝑥 + 𝑐2 𝑠𝑖𝑛𝑎𝑥 + 𝑙𝑜𝑔𝑐𝑜𝑠𝑎𝑥. 𝑐𝑜𝑠𝑎𝑥 + 𝑠𝑖𝑛𝑎𝑥
solve (𝐷 2 + 𝑎2 )𝑦 = 𝑠𝑒𝑐𝑎 𝑥 𝑎2 𝑎
Apply the method of variation of parameters to 𝑥
31 d2 𝑦 𝑑𝑦 𝑥 𝑦 = 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 −2𝑥 + 𝑒 −2𝑥 𝑒 𝑒
solve 𝑑𝑥 2 + 3 𝑑𝑥 + 2𝑦 = 𝑒 𝑒
Apply the method of variation of parameters to 𝑦 = 𝑐1 𝑐𝑜𝑠𝑥 + 𝑐2 𝑠𝑖𝑛𝑥 + (𝑥 − 𝑡𝑎𝑛𝑥)𝑐𝑜𝑠𝑥
32 d2 𝑦
solve + 𝑦 = 𝑠𝑒𝑐𝑥𝑡𝑎𝑛𝑥 + 𝑠𝑖𝑛𝑥𝑙𝑜𝑔𝑠𝑒𝑐𝑥
𝑑𝑥 2
Apply the method of variation of parameters to
33 𝑦 = 𝑐1 𝑒 2𝑥 + 𝑐2 𝑥𝑒 2𝑥 + 𝑒 2𝑥 𝑙𝑜𝑔𝑠𝑒𝑐𝑥
solve (𝐷 2 − 4𝐷 + 4)𝑦 = 𝑒 2𝑥 sec 2 𝑥
Apply the method of variation of parameters to
34 𝑦 = 𝑐1 𝑒 3𝑥 + 𝑐2 𝑥𝑒 3𝑥 − 𝑒 3𝑥 (𝑙𝑜𝑔𝑥 + 1)
solve (𝐷 2 − 6𝐷 + 9)𝑦 = 𝑒 3𝑥 /𝑥 2
Apply the method of variation of parameters to 𝑦 = 𝑒 𝑥 (𝑐1 𝑐𝑜𝑠𝑥 + 𝑐2 𝑠𝑖𝑛𝑥) − 𝑒 𝑥 𝑐𝑜𝑠𝑥. log (𝑠𝑒𝑐𝑥
35
solve (𝐷 2 − 2𝐷 + 2)𝑦 = 𝑒 𝑥 𝑡𝑎𝑛𝑥 + 𝑡𝑎𝑛𝑥)

4|Page First Year Engineering | Applied Mathematics-II | Handbook


SIES Graduate School of Technology

Apply the method of variation of parameters to 𝑦 = 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 −𝑥 − 1 + 𝑒 𝑥 . log(1 + 𝑒 −𝑥 )


36 2
solve (𝐷 2 − 1)𝑦 = − 𝑒 −𝑥 . log (1 + 𝑒 𝑥 )
1+𝑒 𝑥
Apply the method of variation of parameters to 𝑦 = 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 2𝑥 − 𝑒 𝑥 + (𝑒 𝑥
37 𝑒𝑥
solve (𝐷 2 − 3𝐷 + 2)𝑦 = 𝑥 + 𝑒 2𝑥 ). log(1 + 𝑒 −𝑥 )
1+𝑒
Apply the method of variation of parameters to
38 𝑦 = 𝑐1 𝑒 −𝑥 + 𝑐2 𝑒 2𝑥 − 𝑒 −2𝑥 sin 𝑒 𝑥
solve (𝐷 2 + 3𝐷 + 2)𝑦 = 𝑠𝑖𝑛 𝑒 𝑥

Module 03: Beta and Gamma Function, Differentiation under Integral


sign, and Rectification
Beta Gamma Functions
∞ 𝟒 1 𝟏
1. Evaluate ∫𝟎 𝒆−𝒙 . 𝒅𝒙 𝚪( )
4 𝟒
3
2. Evaluate

∫0 √𝑥 𝑒 − √𝑥 . 𝑑𝑥 315
√𝜋
16
∞ 3
3. Evaluate ∫0 𝑥 1/4 𝑒 −√𝑥 𝑑𝑥 √𝜋
2
∞ 8
1 𝟑
4. Evaluate ∫0 𝑥 2 𝑒 −𝑥 𝑑𝑥 𝚪( )
8 𝟖
∞ 2
5. Evaluate ∫0 (𝑥 4 + 4)𝑒 −2𝑥 𝑑𝑥 67 𝜋

32 2
∞ 8 ∞ 4 𝜋
6. Show that a) ∫0 𝑥𝑒 −𝑥 𝑑𝑥. ∫0 𝑥 2 𝑒 −𝑥 𝑑𝑥 =
16 √2
2 2
∞ 𝑒 −𝑥 ∞ 6 𝜋 ∞ 2 ∞ 𝑒 −𝑦 𝑑𝑥 𝜋
b) ∫0 𝑥 𝑑𝑥. ∫0 𝑥 4 𝑒 −𝑦 𝑑𝑥 = 9
, c) ∫0 √𝑦. 𝑒 −𝑦 𝑑𝑦. ∫0 =2
√ √𝑦 √2
7. 1 1 Γ(𝑛 + 1)
Evaluate ∫0 𝑥 𝑚 (log 𝑥)𝑛 𝑑𝑥
(𝑚 + 1)𝑛+1
8. 1
Evaluate ∫0 (𝑥𝑙𝑜𝑔𝑥)3 𝑑𝑥 3

128
9. ∞ 𝑥4 4!
Evaluate ∫0 𝑑𝑥
4𝑥 (log 4)5
∞ 2 1
10. Evaluate ∫0 𝑥 2 . 7−4𝑥 𝑑𝑥 √𝜋
32(log 7)3/2
11. ∞ 𝚪(𝑚) 𝑚𝜋
Show that ∫0 𝑥 𝑚−1 cos 𝑎𝑥 𝑑𝑥 = 𝑎𝑚
cos (2
)
∞ Γ (𝑛 + 1) 𝑛𝜋
12. Evaluate ∫0 cos(𝑎𝑥 1/𝑛 ) 𝑑𝑥
cos ( )
𝑎𝑛 2
13. 2 16/15
Evaluate ∫0 𝑥 2 (2 − 𝑥)3 𝑑𝑥
8
14. Evaluate ∫0 𝑥 4 (8 − 𝑥)−1/3 𝑑𝑥 85 2
. 𝐵 (5, )
3 3
15. 1
Evaluate ∫0 𝑥 6 (1 − 𝑥 2 )1/2 𝑑𝑥 1 7 3
𝐵( , )
2 2 2
16. 1 5 3
Evaluate ∫0 √[√𝑥 − 𝑥]. 𝑑𝑥 2𝐵 ( , )
2 2
17. 2𝑎
Evaluate ∫0 𝑥 𝑚 √2𝑎𝑥 − 𝑥 2 𝑑𝑥 3 3
(2𝑎)𝑚+2 𝐵 (𝑚 + , )
2 2

5|Page First Year Engineering | Applied Mathematics-II | Handbook


SIES Graduate School of Technology

18. 2𝑎 5 4
Evaluate ∫0 𝑥 2 √2𝑎𝑥 − 𝑥 2 𝑑𝑥 𝑎 𝜋
8
19. 3 𝑥 3\2 1 𝑑𝑥 432
Prove that a) ∫0 𝑑𝑥. ∫0 = 𝜋
√3−𝑥 √1−𝑥 1/4 35

1 1\2 𝜋
b) ∫0 √1 − √𝑥 𝑑𝑥. ∫0 √2𝑦 − 4𝑦 2 𝑑𝑦 = 30

20. 𝟐𝒂 𝒙𝟗/𝟐 11 1
Evaluate ∫𝟎 𝒅𝒙 (2𝑎)5. 𝐵 ( , )
√𝟐𝒂−𝒙 2 2
21. 1 𝑥7 1/3
Evaluate ∫0 𝑑𝑥
√1−𝑥 4

22. ∞ 𝒅𝒙 16/35
Evaluate ∫𝟎 (𝟏+𝒙𝟐 )𝟗/𝟐
23. ∞ 𝒙𝟐 8/45
Evaluate ∫𝟎 (𝟏+𝒙𝟔 )𝟕/𝟐 𝒅𝒙

24. ∞ 𝒙𝟑 𝟓
Evaluate ∫𝟎 (𝟏+𝒙𝟖 )𝟒
dx 𝝅
𝟏𝟐𝟖
25. 𝜋/6 16/315
Evaluate ∫0 𝑐𝑜𝑠 3 3𝜃 𝑠𝑖𝑛2 6𝜃 𝑑𝜃
2𝑎
26. Evaluate ∫0 𝑥√2𝑎𝑥 − 𝑥 2 𝑑𝑥 𝝅𝒂𝟑
𝟐
27. 1/2 1/120
Evaluate ∫0 𝑥 3 √1 − 4𝑥 2 . 𝑑𝑥
28. ∞ 𝑥2 2/15
Evaluate ∫0 (1+𝑥 2 )7/2
𝑑𝑥
29. 𝑎 𝑑𝑥 𝜋 𝜋
Show that ∫0 (𝑎𝑛 −𝑥𝑛 )1/𝑛 = 𝑐𝑜𝑠𝑒𝑐 ( )
𝑛 𝑛

30. ∞ 𝑥 5 (1+𝑥 4 ) B(6,10)


Express ∫0 𝑑𝑥
(1+𝑥)16

31. ∞ 𝑑𝑥 1 𝑛 𝑛 ∞ 16/35
Prove that ∫0 = 𝐵 ( , ) and hence evaluate ∫0 𝑠𝑒𝑐ℎ 8 𝑥 𝑑𝑥
(𝑒 𝑥 +𝑒 −𝑥 )𝑛 4 2 2

Differentiation Under Integral sign


32 1 𝑥 𝛼 −1 1 𝑥 7 −1 𝐥𝐨𝐠 𝟖
Prove that ∫0 log 𝑥
𝑑𝑥 = log(1 + 𝛼) , 𝛼 ≥ 0.Hence , evaluate ∫0 log 𝑥
𝑑𝑥
33 ∞ 𝑒 −𝑥 𝐥𝐨𝐠 𝟖
Evaluate ∫0 (1 − 𝑒 −𝑎𝑥 )𝑑𝑥 , 𝑎 > −1 .Hence,
𝑥
∞ 𝑒 −𝑥
evaluate ∫0 (1 − 𝑒 −7𝑥 )𝑑𝑥
𝑥

34 ∞ sin 𝑚𝑥 𝑚 𝝅/𝟒
Prove that ∫0 𝑒 −𝑎𝑥 . 𝑥
𝑑𝑥 = tan−1 𝑎 . ( 𝑎 𝑖𝑠 𝑎 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) Hence ,
∞ sin 𝑥
evaluate ∫0 𝑒 −𝑥 𝑥 . 𝑑𝑥
35 Show that ∫0
𝜋 log(1+𝑎 cos 𝑥)
𝑑𝑥 = 𝜋𝑠𝑖𝑛−1 𝑎 , 0 ≤ 𝑎 ≤ 1 .Hence 𝝅𝟐
cos 𝑥
𝟐
𝜋 log(1+cos 𝑥)
evaluate∫0 cos 𝑥
𝑑𝑥

36 𝜋 log(1+sin 𝛼 cos 𝑥)
Show that ∫0 𝑑𝑥 = 𝜋𝛼
cos 𝑥

6|Page First Year Engineering | Applied Mathematics-II | Handbook


SIES Graduate School of Technology
𝜋
37 log(1+cos 𝛼 cos 𝑥) 𝜋2 𝛼2
Show that ∫02 𝑑𝑥 = −
cos 𝑥 8 2

38 ∞ 1−cos 𝑚𝑥 1
Show that ∫0 𝑥
. 𝑒 −𝑥 𝑑𝑥 = 2
log(𝑚2 + 1). Hence, deduce that
∞ 1−cos 𝑥
∫0 . 𝑒 −𝑥 𝑑𝑥 = log √2
𝑥
𝜋
39 log(1+𝑎𝑠𝑖𝑛2 𝑥)
Prove that ∫0 2 𝑑𝑥 = 𝜋[√𝑎 + 1 − 1], 𝑎 > −1
𝑠𝑖𝑛2 𝑥

Rectification
1 Find the total length of the curve 𝑥 2/3 + 𝑦 2/3 = 𝑎2/3 𝟔𝒂

2 Show that the length of the arc of the curve 𝑎𝑦 2 = 𝑥 3 from the origin to the
8𝑎 9𝑏
point whose abscissa is b is 27 [(1 + 4𝑎) − 13/2 ]
3 Show that if s is the arc of the curve 9𝑦 2 = 𝑥(3 − 𝑥)2 measured from the origin 𝟑𝒔𝟐
to the point P(x,y) then 3𝑠 2 = 3𝑦 2 + 4𝑥 2
4 Find the perimeter of the loop of the curve 4𝑎√3
9𝑎𝑦 2 = (𝑥 − 2𝑎)(𝑥 − 5𝑎)2
5 Find the length of the loop of the curve 3𝑎𝑦 2 = 𝑥(𝑥 − 𝑎)2 𝟒
𝒂
√𝟑
6 Find the total length of the loop of the curve 4√3
9𝑦 2 = (𝑥 + 7)(𝑥 + 4)2
7 Find the perimeter of the cardioid 𝑟 = 𝑎(1 − 𝑐𝑜𝑠𝜃) and prove that the line 𝜃 = 8a
2𝜋/3 bisects the upper half of the cardioid
8 Find the perimeter of the 𝑐𝑎𝑟𝑑𝑖𝑜𝑖𝑑 𝑟 = 𝑎(1 − 𝑐𝑜𝑠𝜃) 8a
9 Find the length of the cardioid 𝑟 = 𝑎(1 − 𝑐𝑜𝑠𝜃), 𝑙𝑦𝑖𝑛𝑔 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒 𝑟 = 4𝑎√3
𝑎𝑐𝑜𝑠𝜃
10 Find the length of the cardioid 𝑟 = 𝑎(1 + 𝑐𝑜𝑠𝜃), 𝑙𝑦𝑖𝑛𝑔 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒 𝑟 + 4𝑎√3
𝑎𝑐𝑜𝑠𝜃 = 0
11 Find the length of the upper arc of one loop of Lemniscate 𝑟 2 = 𝑎2 cos 2𝜃 𝑎 (Γ 1/4)2
.
4√2 √𝜋

Module 04: Multiple Integration I [Double Integration]


4.1 Evaluation of Double Integral
1 𝑥
Evaluate ∫0 ∫𝑥 2 𝑥𝑦 (𝑥 + 𝑦)𝑑𝑦 𝑑𝑥 3
1. [ ]
56
1 √1+𝑥 2 𝑑𝑥 𝑑𝑦 𝜋
2. Evaluate ∫0 ∫0 [ log (1 + √2)]
1+𝑥 2 +𝑦 2 4

1 𝑥2 𝑦⁄ 1
3. Evaluate ∫0 ∫0 𝑒 𝑥 𝑑𝑦 𝑑𝑥 [ ]
2
3
1 𝑥 [ ]
4. Evaluate ∫0 ∫𝑥 2 𝑥𝑦 (𝑥 2 + 𝑦 2 )𝑑𝑦 𝑑𝑥 80

7|Page First Year Engineering | Applied Mathematics-II | Handbook


SIES Graduate School of Technology

1 𝑥 1
5. Evaluate ∫0 ∫0 𝑒 𝑥+𝑦 ⋅ 𝑑𝑥 𝑑𝑦 [𝑒 − 1]2
2
1 𝑦 2
6. Evaluate ∫0 ∫0 𝑥𝑦𝑒 −𝑥 ⋅ 𝑑𝑥 𝑑𝑦 1/4e

1 𝑥
7. Evaluate ∫0 ∫0 (𝑥 2 + 𝑦 2 )𝑥 ⋅ 𝑑𝑥 𝑑𝑦 4/15

5 2+𝑥
8. Evaluate ∫0 ∫2−𝑥 𝑑𝑥 𝑑𝑦 25

𝜋/4 √𝑐𝑜𝑠2𝜃 𝑟 1
9. Evaluate ∫0 ∫0 (1+𝑟 2 )2
⋅ 𝑑𝑟 𝑑𝜃 (𝜋 − 2)
8
𝜋/2 𝑎𝑐𝑜𝑠𝜃 2 2𝑎3
10. Evaluate ∫0 ∫0 𝑟 ⋅ 𝑑𝑟 𝑑𝜃
9
𝜋 𝑎(1+𝑐𝑜𝑠𝜃) 3𝜋𝑎2
11. Evaluate ∫0 ∫0 𝑟 ⋅ 𝑑𝑟 𝑑𝜃
4
4.2 Evaluation of Double Integrals by changing the order of integration
2 4−𝑥
12. Change the order of integration and evaluate ∫0 ∫𝑥2 𝑥𝑦 𝑑𝑦 𝑑𝑥 6
2

Change the order of integration and evaluate


13. 2 2+√4−𝑦2 2𝜋
∫0 ∫2−√4−𝑦 2 𝑑𝑥 𝑑𝑦
Change the order of integration and evaluate √2 − 1
14. 1 √2−𝑥 2 𝑥 𝑑𝑥 𝑑𝑦
∫0 ∫𝑥 𝑑𝑥 𝑑𝑦 √2
√𝑥 2 +𝑦 2
Change the order of integration and evaluate 2𝜋
15. 2 2 𝑥2 [ ]
∫0 ∫√2𝑦 √𝑥 4 𝑑𝑥 𝑑𝑦 3
−4𝑦 2

1 4 2 1 16
16. Change the order of integration and evaluate ∫0 ∫4𝑦 𝑒 𝑥 𝑑𝑥 𝑑𝑦 [𝑒 − 1]
8
5 2+𝑥
17. Change the order of integration and evaluate ∫0 ∫2−𝑥 𝑑𝑥 𝑑𝑦 25

1 2−𝑥 𝑥
18. Change the order of integration and evaluate ∫0 ∫𝑥 𝑑𝑥 𝑑𝑦 log(4/e)
𝑦

Change the order of integration and evaluate ∫ ∫𝑅 𝑥 2 𝑑𝑥 𝑑𝑦,


7𝑎4
19. where R is the region in the first quadrant bounded by 𝑥𝑦 = 𝑎2 ,
4
𝑥 = 2𝑎, 𝑦 = 0, 𝑎𝑛𝑑 𝑦 = 𝑥
4.3 Evaluation of Integrals over the given region (Cartesian and Polar)
Evaluate ∬ 𝑥𝑦 (𝑥 − 1)𝑑𝑥 𝑑𝑦 over the region bounded by
[8(3 − 2 𝑙𝑜𝑔2)]
21. 𝑥𝑦 = 4, 𝑦 = 0, 𝑥 = 1 𝑎𝑛𝑑 𝑥 = 4

8|Page First Year Engineering | Applied Mathematics-II | Handbook


SIES Graduate School of Technology

𝑎4
22. Evaluate ∫ ∫ 𝑥𝑦 𝑑𝑥 𝑑𝑦
3
1
23. Evaluate ∫ ∫𝑅 4 2 𝑑𝑥 𝑑𝑦, 𝑤ℎ𝑒𝑟𝑒 𝑅 𝑖𝑠 𝑟𝑒𝑔𝑖𝑜𝑛 𝑥 ≥ 1, 𝑦 ≥ 𝑥 2 𝜋/4
𝑥 +𝑦

Evaluate ∫ ∫ 𝑥𝑦 𝑑𝑥 𝑑𝑦 1
24. −
𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑏𝑦 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎𝑠 𝑦 = 𝑥 2 𝑎𝑛𝑑 𝑦 2 = −𝑥 12
Evaluate ∫ ∫ 𝑥 2 𝑑𝑥 𝑑𝑦 over the region bounded by 𝑥𝑦 = 16, 𝑦 =
25. 448
𝑥, 𝑦 = 0, 𝑎𝑛𝑑 𝑥 = 8

Evaluate ∬ 𝑥 (𝑥 − 𝑦)𝑑𝑥 𝑑𝑦 over the triangle region with vertices


26. -1
(0,0), (1,2), (0,4)

Evaluate ∫ ∫ (𝑥 2 + 𝑦 2 ) 𝑑𝑥 𝑑𝑦 over the triangle whose vertices are


27. 7/6
(0,1), (1,1), (1,2)

Evaluate ∫ ∫ √𝑥𝑦 − 𝑦 2 𝑑𝑥 𝑑𝑦, over the triangle whose vertices are


28. 6
(0,0), (10,1), (1,1)

Evaluate ∫ ∫ 𝑥𝑦 𝑑𝑥 𝑑𝑦 𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑏𝑦


29. 7/12
𝑥 2 + 𝑦 2 = 2𝑥, 𝑦 2 = 2𝑥, 𝑦 = 𝑥

Evaluate ∫ ∫ 𝑟 3 𝑑𝑟 𝑑𝜃 over the circles. 45


30. 𝜋
𝑟 = 2𝑠𝑖𝑛𝜃 𝑎𝑛𝑑 𝑟 = 4𝑠𝑖𝑛𝜃 2
𝑟2
Evaluate ∫ ∫ 𝑟𝑒
− 2
𝑎 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 𝑑𝑟 𝑑𝜃 over the upper half of the circle 𝑎2
31. [3 + 𝑒 −4 ]
𝑟 = 2𝑎𝑐𝑜𝑠𝜃 16
𝑟 𝑑𝑟 𝑑𝜃
Evaluate ∫ ∫ 2 2 , over one loop of lemniscate. 𝑎
32. √𝑟 +𝑎 [4 − 𝜋]
𝑟 2 = 𝑎2 𝑐𝑜𝑠2𝜃 2
𝑑𝑥 𝑑𝑦
Change to polar coordinates and evaluate ∬ (1+𝑥2 +𝑦2 )2 over one 𝜋−2
33. [ ]
loop of the lemniscates (𝑥 2 + 𝑦 2 )2 = 𝑥 2 − 𝑦 2 4
5.1 Evaluation of Double Integrals by changing to polar coordinates.
Change to polar coordinates and evaluate ∬ 𝑦 2 𝑑𝑥 𝑑𝑦 over the 15 𝜋𝑎4
34. area outside 𝑥 2 + 𝑦 2 − 𝑎𝑥 = 0 𝑎𝑛𝑑 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 [ ]
2 2 16
𝑥 + 𝑦 − 2𝑎𝑥 = 0
1 𝑥
Change to polar coordinates and evaluate ∫0 ∫0 (𝑥 + 𝑦) 𝑑𝑦 𝑑𝑥 1
35. [2]
𝑎 𝑎
Change to polar coordinates and evaluate ∫0 ∫𝑦 𝑥 𝑑𝑦 𝑑𝑥
36. 𝑎3 /3

Change to polar coordinates and evaluate 𝜋 5


37. 4𝑎 𝑦 𝑥 2 −𝑦 2 8𝑎2 [ − ]
∫0 ∫𝑦 2/4𝑎 [𝑥 2 +𝑦 2] 𝑑𝑥 𝑑𝑦 2 3
Change to polar coordinates and evaluate 𝜋
38. ∞ ∞ 2 2
∫0 ∫0 𝑒 −(𝑥 +𝑦 ) 𝑑𝑦 𝑑𝑥 4

9|Page First Year Engineering | Applied Mathematics-II | Handbook


SIES Graduate School of Technology

Use polar coordinates to evaluate ∬ √𝑎2 − 𝑥 2 − 𝑦 2 𝑑𝑥 𝑑𝑦 𝑎3


39. [3𝜋 − 4]
over the upper half of the circle 𝑥 2 + 𝑦 2 = 𝑎𝑥 18
1
Use polar coordinates to evaluate ∫ ∫ 𝑑𝑥 𝑑𝑦, over the 𝜋
40. √𝑥𝑦
2 2
region bounded by 𝑥 + 𝑦 = 𝑥, 𝑎𝑛𝑑 𝑦 ≥ 0 √2
Area by Double Integration

44. Find by double integration the area enclosed by 𝑦 2 = 𝑥 3 𝑎𝑛𝑑 𝑦 = 𝑥 1/10

Find by double integration the area enclosed by the curve 1 4


45.
9𝑥𝑦 = 4 𝑎𝑛𝑑 𝑎 𝑙𝑖𝑛𝑒 2𝑥 + 𝑦 = 2 − 𝑙𝑜𝑔2
3 9
Find by double integration the area between the curve
46. 4𝜋𝑎2
𝑦 2 𝑥 = 4𝑎2 (2𝑎 − 𝑥) 𝑎𝑛𝑑 𝑖𝑡𝑠 𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑒
Find by double integration the area between the curve
47. 3𝜋𝑎2
𝑦 2 (2𝑎 − 𝑥) = 𝑥 3 𝑎𝑛𝑑 𝑖𝑡𝑠 𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑒
3𝜋𝑎2
48. Find by the double integration the area of cardioide 𝑟 = 𝑎(1 + 𝑐𝑜𝑠𝜃)
2
Find by the double integration the total area of lemnicate
49. 𝑎2
(𝑥 2 + 𝑦 2 )2 = 𝑎2 (𝑥 2 − 𝑦 2 )
Find by the double integration the area inside the circle 𝑟 = 𝑎𝑠𝑖𝑛𝜃 and 𝑎2
50. [4 − 𝜋]
outside the cardioide. 𝑟 = 𝑎(1 − 𝑐𝑜𝑠𝜃) 4
Find by the double integration the area between the circles 𝑟 = 2𝑎𝑠𝑖𝑛𝜃 and
51. (𝑏 2 − 𝑎2 )𝜋
𝑟 = 2𝑏𝑠𝑖𝑛𝜃, (𝑏 > 𝑎)
Find by the double integration the area outside the circle 𝑟 = 𝑎 and inside 𝑎2
52. [8 + 𝜋]
the cardioide. 𝑟 = 𝑎(1 + 𝑐𝑜𝑠𝜃) 4
Find by the double integration the area common to the circles 𝑟 = 𝑎 and 2𝜋𝑎2 √3 2
53. − 𝑎
𝑟 = 2𝑎𝑐𝑜𝑠𝜃. 3 2

Module 05: Multiple Integration II [Triple Integration]


Evaluation of Triple Integral
1 1 1−𝑥
1. Evaluate ∫0 ∫𝑦 2 ∫0 𝑥 𝑑𝑧 𝑑𝑦 𝑑𝑥 4/35
2 2 𝑦𝑧
2. Evaluate ∫0 ∫1 ∫0 𝑥𝑦𝑧 𝑑𝑧 𝑑𝑦 𝑑𝑥 15/2

2 𝑥 2𝑥+2𝑦 𝑒 12 𝑒 6 𝑒 4 4
3. Evaluate ∫0 ∫0 ∫0 𝑒 𝑥+𝑦+𝑧 𝑑𝑧 𝑑𝑦 𝑑𝑥 [
18
− − + 𝑒2 − ]
9 2 9
𝑙𝑜𝑔2 𝑥 𝑥+𝑦 5
4. Evaluate ∫0 ∫0 ∫0 𝑒 𝑥+𝑦+𝑧 𝑑𝑧 𝑑𝑦 𝑑𝑥 [ ]
8
𝑒 𝑙𝑜𝑔𝑦 𝑒𝑥 1
5. Evaluate ∫1 ∫1 ∫1 𝑙𝑜𝑔𝑧 𝑑𝑧 𝑑𝑥 𝑑𝑦 [ (𝑒 2 − 8𝑒 + 13)]
2

10 | P a g e First Year Engineering | Applied Mathematics-II | Handbook


SIES Graduate School of Technology

1 1−𝑥 1−𝑥−𝑦
1 5
1 [ (𝑙𝑜𝑔2 − )]
6. Evaluate ∫0 ∫0 ∫0 (𝑥+𝑦+𝑧+1)3
𝑑𝑧 𝑑𝑦 𝑑𝑥 2 8

𝑎 𝑎−𝑥 𝑎−𝑥−𝑦 𝑎5
7. Evaluate ∫0 ∫0 ∫0 𝑥 2 𝑑𝑧 𝑑𝑦 𝑑𝑥
60
1 𝑧 𝑥+𝑧
8. Evaluate ∫−1 ∫0 ∫𝑥−𝑧 (𝑥 + 𝑦 + 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥 0

1 1−𝑥 𝑥+𝑦
9. Evaluate ∫0 ∫0 ∫0 𝑒 𝑧 𝑑𝑧 𝑑𝑦 𝑑𝑥 1/2
𝑎 𝑥 𝑥+𝑦 𝑎3
10. Evaluate ∫0 ∫0 ∫0√ 𝑧 𝑑𝑧 𝑑𝑦 𝑑𝑥
4
When the region of integration is bounded by planes

Evaluate the integral ∭ 𝑥𝑦𝑧 2 𝑑𝑣 over the region bounded by the 27


11.
planes 𝑥 = 0, 𝑥 = 1, 𝑦 = −1, 𝑦 = 2, 𝑧 = 0, 𝑧 = 3. 4
Evaluate the integral ∭ 𝑧 𝑑𝑥 𝑑𝑦 𝑑𝑧 over the volume of the 𝑎𝑏𝑐 2
12. 𝑥 𝑦 𝑧
tetrahedron bounded by the 𝑥 = 0, 𝑦 = 0, 𝑧 = 0, 𝑎 + 𝑏 + 𝑐 = 1. 24

Evaluate the integral ∭(𝑥 + 𝑦 + 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧 over the tetrahedron 1


13.
bounded by the 𝑥 = 0, 𝑦 = 0, 𝑧 = 0 𝑎𝑛𝑑 𝑥 + 𝑦 + 𝑧 = 1. 8

When the region of integration is not bounded by planes, but by sphere, ellipsoid etc.

Evaluate ∭ 𝑥𝑦𝑧(𝑥 2 + 𝑦 2 + 𝑧 2 ) 𝑑𝑥 𝑑𝑦 𝑑𝑧 over the first octant 𝑎8


14. [ ]
of the sphere 𝑥 2 + 𝑦 2 + 𝑧 2 = 𝑎2 . 64
Evaluate ∭ 𝑥𝑦𝑧 𝑑𝑥 𝑑𝑦 𝑑𝑧 over the positive octant of the 𝑎6
15.
sphere 𝑥 2 + 𝑦 2 + 𝑧 2 = 𝑎2 48
Evaluate ∭(𝑥 2 + 𝑦 2 + 𝑧 2 ) 𝑑𝑥 𝑑𝑦 𝑑𝑧 over the first octant of 𝑎5
16. 𝜋⋅
the sphere 𝑥 2 + 𝑦 2 + 𝑧 2 = 𝑎2 10
𝑑𝑥 𝑑𝑦 𝑑𝑧
Evaluate ∭ (𝑥 2 +𝑦 2+𝑧 2) throughout the volume of the sphere
17. [4𝜋𝑎]
2 2 2 2
𝑥 +𝑦 +𝑧 = 𝑎 .
𝑧 2 𝑑𝑥 𝑑𝑦 𝑑𝑧
Evaluate ∭ (𝑥 2 +𝑦 2+𝑧 2) throughout the volume of the sphere 𝜋√2
18. 8⋅
2 2 2 9
𝑥 + 𝑦 + 𝑧 = 2.
𝑑𝑥 𝑑𝑦 𝑑𝑧
Evaluate ∭ (𝑥 2+𝑦 2+𝑧 2)3/2 throughout the volume bounded by 𝑏
19. 4𝜋 log ( )
2 2 2 2
sphere 𝑥 + 𝑦 + 𝑧 = 𝑎 𝑎𝑛𝑑 𝑥 + 𝑦 + 𝑧 = 𝑏 , (𝑏 > 𝑎) 2 2 2 2 𝑎
When the region of integration is bounded by cone or a cylinder or a paraboloid

Evaluate ∭ √𝑥 2 + 𝑦 2 𝑑𝑥 𝑑𝑦 𝑑𝑧 over the volume bounded by the 𝜋


21. [ ]
right circular cone 𝑥 2 + 𝑦 2 = 𝑧 2 , 𝑧 > 0 and the planes 𝑧 = 0, 𝑧 = 1. 6
Evaluate ∭ 𝑧 2 𝑑𝑥 𝑑𝑦 𝑑𝑧 over the volume common to the 2 𝜋𝑎5
22. [ ]
sphere 𝑥 2 + 𝑦 2 + 𝑧 2 = 𝑎2 and the cylinder 𝑥 2 + 𝑦 2 = 𝑎𝑥. 15
Volume of solids
Find the volume of tetrahedron bounded by the planes 𝑎3
1
𝑥 = 0, 𝑦 = 0, 𝑧 = 0, 𝑥 + 𝑦 + 𝑧 = 𝑎 6

11 | P a g e First Year Engineering | Applied Mathematics-II | Handbook


SIES Graduate School of Technology

Find the volume bounded by the paraboloid 𝑥 2 + 𝑦 2 = 𝑎𝑧 and 𝜋𝑎3


2
the cylinder 𝑥 2 + 𝑦 2 = 𝑎2 2
Find the volume bounded by the cylinder 𝑥 2 + 𝑦 2 = 𝑎2 and the
3 𝜋𝑎2 𝑏
planes 𝑧 = 0, 𝑦 + 𝑧 = 𝑏
Find the volume bounded by the cone 𝑧 2 = 𝑥 2 + 𝑦 2 and
4 𝜋/6
paraboloid 𝑥 2 + 𝑦 2 = 𝑧

Module 06: Numerical solution of ordinary differential equations of first order


and first degree and Numerical Integration
Euler’s Method
Using Euler’s method find approximate value of 𝑦 𝑎𝑡 𝑥 = 1 in five steps
1. 𝑑𝑦 [2.97664]
taking ℎ = 0.2. Given 𝑑𝑥 = 𝑥 + 𝑦 𝑎𝑛𝑑 𝑦(0) = 1.
Using Euler’s method find approximate value of
𝑑𝑦
2. 𝑦 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑡𝑜 𝑓𝑜𝑢𝑟 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑝𝑙𝑎𝑐𝑒𝑠 𝑓𝑜𝑟 𝑥 = 0.1 Given 𝑑𝑥 = [0.9113]
𝑥−𝑦 2 𝑎𝑛𝑑 𝑦(0) = 1. Take ℎ = 0.2.
Using Euler’s method find approximate value of 𝑦 𝑎𝑡 𝑥 = 2 in five steps
3. 𝑑𝑦 𝑦−𝑥 [2.7088]
taking ℎ = 0.2. Given 𝑑𝑥 = 𝑥 𝑎𝑛𝑑 𝑦(1) = 2.
Using Euler’s method find approximate value of 𝑦 𝑎𝑡 𝑥 = 1 in five steps
4. 𝑑𝑦 [2.9186]
taking ℎ = 0.2. Given = 𝑥𝑦 𝑎𝑛𝑑 𝑦(0) = 2.
𝑑𝑥

Euler’s Modified Method / Runge-Kutta Method of Second Degree


Use Euler’s modified method to find the value of y satisfying the equation
𝑑𝑦 (𝑖) 𝑦(0.05) = 1.1635
5. = log(𝑥 + 𝑦) , 𝑦(1) = 2 for (𝑖) 𝑥 = 1.2 and (𝑖𝑖) 𝑥 = 1.4 correct to four [
(𝑖𝑖) 𝑦(0.1) = 1.3548
]
𝑑𝑥
decimal places by taking ℎ = 0.05.
Use Euler’s modified method to find the value of y satisfying the equation
𝑑𝑦 (𝑖) 𝑦(1.2) = 2.2332
6. = 𝑥 + 3𝑦, 𝑦(0) = 1 for (𝑖) 𝑥 = 0.05 and (𝑖𝑖) 𝑥 = 0.1 correct to four [
(𝑖𝑖)𝑦(1.4) = 2.4924
]
𝑑𝑥
decimal places by taking ℎ = 0.2.
Use Euler’s modified method to find the value of y satisfying the equation
𝑑𝑦 (𝑖) 𝑦(1.4) = 2.3625
7. = 2 + √𝑥𝑦, 𝑦(1.2) = 1.6403 for (𝑖) 𝑥 = 1.4 and (𝑖𝑖) 𝑥 = 1.6 correct [
(𝑖𝑖)𝑦(1.6) = 3.1695
]
𝑑𝑥
to four decimal places by taking ℎ = 0.2.
Runge-Kutta Method/ Runge-Kutta Method of Fourth order
Use Runge-Kutta method to find an approximate value of y when 𝑥 = 0.2
8. 𝑑𝑦 [𝑦(0.2) = 1.2428]
given that 𝑑𝑥 = 𝑥 + 𝑦 𝑤ℎ𝑒𝑛 𝑦 = 1 𝑎𝑡 𝑥 = 0.
Use Runge-Kutta method to find an approximate value of y when 𝑥 = 0.2
9. 𝑑𝑦 [𝑦(0.2) = 2.4432]
given that 𝑑𝑥 = 𝑥 3 + 𝑦 𝑤ℎ𝑒𝑛 𝑦 = 2 𝑎𝑡 𝑥 = 0.

12 | P a g e First Year Engineering | Applied Mathematics-II | Handbook


SIES Graduate School of Technology

Use Runge-Kutta method to find an approximate value of y when 𝑥 = 1.2 (𝑖) 𝑦(1.1) = 1.1272
10. 𝑑𝑦 [ ]
given that 𝑑𝑥 = 𝑥𝑦 𝑤ℎ𝑒𝑛 𝑦 = 1 𝑎𝑡 𝑥 = 1 taking ℎ = 0.1 (𝑖𝑖)𝑦(1.2) = 1.2374

Use Runge-Kutta method to find an approximate value of y when 𝑥 = 1 (𝑖) 𝑦(0.5) = 1.3571
11. 𝑑𝑦 1 [ ]
given that 𝑑𝑥 = (𝑥+𝑦) 𝑤ℎ𝑒𝑛 𝑦 = 1 𝑎𝑡 𝑥 = 0 taking ℎ = 0.5 (𝑖𝑖)𝑦(1.0) = 1.5837

Numerical Integration
1 𝑥2
Find the value of the integral ∫0 𝑑𝑥, using (i) Trapezoidal rule and (ii) [
(𝑖) 0.2311
]
12. 1+𝑥 3
(𝑖𝑖)0.2311
Simpson’s (1/3)rd rule.
𝜋

13. Evaluate ∫02 √𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥 𝑑𝑥 by Simpson’s (3/8)th rule by dividing into [1.7702]
six intervals.
4
Find the approximate value of ∫0 𝑒 𝑥 𝑑𝑥 by using (i) Trapezoidal and (ii) [
(𝑖) 57.9905
]
14. (𝑖𝑖)53.5961
Simpson’s (1/3)rd rule.
1 1 (𝑖) 1.5615
Find the value of the integral ∫−1 1+𝑥 2 𝑑𝑥, using (i) Trapezoidal rule, (ii)
15. [ (𝑖𝑖)1.5709 ]
Simpson’s (1/3)rd rule, (iii) Simpson’s (3/8)th rule (𝑖𝑖𝑖)1.5692
1.4 (𝑖) 4.0715
Compute the values of the integral ∫0.2 (𝑠𝑖𝑛𝑥 − 𝑙𝑜𝑔𝑒 𝑥 + 𝑒 𝑥 ) 𝑑𝑥 , using (i) [ (𝑖𝑖)4.0521 ]
16. Trapezoidal rule, (ii) Simpson’s (1/3)rd rule, (iii) Simpson’s (3/8)th rule (𝑖𝑖𝑖)4.0530

13 | P a g e First Year Engineering | Applied Mathematics-II | Handbook

You might also like