0% found this document useful (0 votes)
135 views7 pages

Lim Lim Lim Lim Lim Lim: Mathematics T (Paper 2)

1) The function f(x) is continuous at x = -3. The left and right hand limits are equal to 0, which is also equal to f(-3). 2) When t = π/6, dy/dx = 1/√3. The slope of the tangent line at (π/6, π/√3) is 1/√3. 3) The points of intersection between the graphs of y = 12 – 4x and y = 12 – x3 are (0,12), (-2,0), and (2,4). There is a point of inflection at x = 0 for y = 12 – x3.

Uploaded by

RebornNg
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
135 views7 pages

Lim Lim Lim Lim Lim Lim: Mathematics T (Paper 2)

1) The function f(x) is continuous at x = -3. The left and right hand limits are equal to 0, which is also equal to f(-3). 2) When t = π/6, dy/dx = 1/√3. The slope of the tangent line at (π/6, π/√3) is 1/√3. 3) The points of intersection between the graphs of y = 12 – 4x and y = 12 – x3 are (0,12), (-2,0), and (2,4). There is a point of inflection at x = 0 for y = 12 – x3.

Uploaded by

RebornNg
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 7

MATHEMATICS T (PAPER 2)

1(i)
lim f ( x ) lim (− 13 x−1) −
1
x →−3− = x →−3− = 3 (-3) – 1 = 0
lim f ( x ) lim √ x+ 3 M1
x →−3+ = x →−3+ = √−3+3 =0
lim f ( x ) lim f ( x )
x →−3− = x →−3+ =0
lim f ( x ) lim f ( x ) A1
x →−3 exists and x →−3 =0
1

f(-3) = 3 (-3) – 1 = 0
lim f ( x ) A1
x →−3 = f(-3) = 0
Hence f(x) is continuous at x = -3.
(ii)

2 π
x = sin t , y = sin (t +)
6
dx dy π 1 (Both correct)
=cos t , =cos(t+ ¿ ) ¿
dt dt 6 dy dx
1 (His dt ÷ dt )
π
cos(t + ) dy 1
dy 6
= 1( = seen, can be implied)
dx cos t dx √ 3
π dy 1
When t = , = 1 √3
6 dx √ 3 1 (or ( , ) seen, can be implied)
2 2
π 1 π π √3
x = sin = , y = sin ( + ) = 1 (y – y1 = m(x – x1) )
6 2 6 6 2
y-
√ 3 = 1 ¿)
2 √3 1 6 marks

y=
√ x + √3
3
3 3

3 y 2  1  sin x

M1

M1

M1(sub sinx) M1(simplify)

A1
dy
2y =cos x
dx
d 2 y dy 2
[
2 y 2 +
dx dx ( )]
=−sin x

d2 y dy 2 ( 2 )
2 y 2 +2
dx dx ( )
=− y −1

d2 y dy 2 2
2 y 2 +2
dx dx ( )
+ ( y −1 ) =0(shown )

4 y = 12 – 4x
y = 12 – x3
12 – x3 = 12 – 4x
x3 – 4x = 0
x(x2 – 4) = 0
x = 0, x = -2, x = 2
y = 12, y = 0, y = 4
Points of intersection are (0,12), (-2,20), (2,4). B3

dy
dx = -3x2 M1
2
d y
dx 2 = -6x = 0
M1
x=0
d3 y
dx 3 = -6 ≠ 0
There is a point of inflexion at x = 0. A1

0
M1
2 3 2
π ∫−2 (12−4 x ) −(12−x ) dx
V1 =
0 3 2 6
π ∫−2 24 x +16 x −96 x−x dx
=
2528
=
π [ ]
21
2 M1
π ∫0 (12−x 3 )2 −(12−4 x)2 dx
V2 =
0
π ∫−2 x 6 +96 x−16 x 2 −24 x 3 dx
=
1504
=
π [ ]
21 M1
A1
2528 1504
The volume =
π [ ]
21 +
π [ ]
21
= 192 π

5(a) 1 6x

6 3x 2  1
dx
M1
1
ln  3x 2  1  c
6 A1
(b)
x dx
x  3sin  , sin    3cos   dx  3cos  d
3 , d B1

∫ √ 9−x2 dx=∫ √ 9−(3sinθ)2(3cosθ dθ ) M1


2
= ∫ 9cos θ dθ
∫ 9 (cos 22θ+1 ) dθ 9
∫ 2 (cos2 θ +1)dθ
= =
9 sin 2θ
= 2 ( 2
+θ +c ) A1
9 9
(sin θ cos θ+ θ)+c (θ+ sinθ √ 1−sin2 θ)+ c
= 2 = 2
2

=
9
2 ( x x
sin−1 +
3 3 ( ) √ ( ) )+c
1−
x
3 M1
9 x x
=
2 (
sin−1 +
3 9 ( )√ ) 9−x 2 +c

9 x 1
 9  x 2 dx  sin 1    x 9  x 2  C
2 3 2 A1

6 dy ( 2 x− y )−1 v−1 B1
Let v=2 x− y; = ¿
dx 2 ( 2 x− y ) +2 2 v+ 2 (Substitute 2x-y)
v=2 x − y
dv dy dy dv
=2− => =2− M1
dx dx dx dx
dy v−1 dv v−1
= => 2− = =>
dx 2 v+2 dx 2 v +2 M1 A1
dv v−1 dv 3 v +5 (Change variable)
=2− => =
dx 2 v +2 dx 2(v +1)
( v +1)
∫ 3 v+ 5 dv=∫ 12 dx
1 2 1 M1
∫ 3 − 3(3 v +5) dv=∫ 2 dx (Integrable form)
1 2 1 A1
[v− ln|3 v+ 5|]= x +c
3 3 2
6 v−4 ln |3 v +5|=9 x+ 18 c

4 ln |3 v +5|=6 v−9 x−18 c ; v=2 x − y

3 9
ln |6 x−3 y +5|= [ x−2 y ] − c
4 2
3 9
( x−2 y)− c
6 x−3 y +5=e 4 2

3 −9 A1
( x−2 y) c
6 x−3 y +5=Ae 4 ; where A=e 2

7(a) y  4 x cos 2 x
dy
 4 x  2sin 2 x   4cos 2 x
dx (M1)
 4  cos 2 x  2 x sin 2 x 
 dy  
x  4  0    2
4 dx  2 (A1)
 
y  0  2  x  
Equation of tangent is  4 (M1)
 
y  2  x  
 4 (A1)
(b)
du
Let u = 4x, dx = 4
dv 1
dx = cos 2x, v = 2 sin2x (M1)


4
 4 x cos 2 x dx
A= o
π π
4
= [ 2 x sin 2 x ] - ∫ 2 sin2 xdx
4
0 0 (M1)
π π
4
= 2 - [ −cos 2 x ]0 (M1) (M1)
π
= 2 1 (A1)


4
   4 x cos 2 x  dx
2

(c) V = o (M1)

4 1
16  x 2  cos 4 x  1 dx
= o 2 (M1)

4
8  x 2 cos 4 x  x 2 dx
= o

   

 2 sin 4 x  4 1 4  x 
3 4

8   x   4 0 2 x sin 4 x dx   3  
 4 0  0 
=   (M1)
  

   cos 4 x  4 4 cos 4 x   3 
0  2   2 x   2 dx   8   
 4  0 0 4   192 
=   (M1)

   sin 4 x  4 4
  (1)      
= 4   4  0 24 (M1)
2 4
 
 
= 4 24
4 2 2  2 
    1
24 4 4  6  or 1.591 cm3
= (A1)

dv k ( 2 2¿
8. = u −valignl¿ ¿ ¿ )
dt v
∫v 2 2¿
dv=∫ kdt (M1)
(u −valignl¿ ¿ ¿)
1 −2v
- ∫ dv=∫ kdt (M1)
2 ( u2−valignl ¿ ¿ 2 ¿¿ )
1
- ln ( u2−v 2 )=kt+c (A1)
2
1
when v= u, let t=t 1
4
2
1 2 1
2 ( ( ))
− ln u − u =kt 1+c
4
1 15 (M1)

( )
− ln u 2 =kt 1+c.............. (1 )
2 16
1
when v= u, let t=t 2
2 (M1)

1 3
( )
− ln u2 =kt 2 +c ............... ( 2 )
2 4
1 3 2 15 2
(2)−(1) −
2 4 ( 16 )
ln u −ln u =k (t 2 −t 1 )

1 3 16
( )
- ln × =k(t 2 −t 1 )
2 4 15
1 5
(t 2−t 1 )= ln (shown)
2k 4
1 1 1 5
The time taken by particle from speed u to speed u is ln (A1)
4 2 2k 4

Let
dv dx
a is acceleration, a = dt ; v is velocity, v = dt (B1)
By applying chain rule,
dv dv dx dv dv
= × = ×v=v
dt dx dt dx dx (A1)
dv k
v = (u2−v 2 )
dx v
v2
∫ 2 2 dv=∫ kdx (M1)
(u −v )
2
∫ −1+ uu 2−v 2 dv=∫ kdx
[ ] (M1)

∫−1 dv + u2∫ 1u2−v 2 dv=∫ kdx


u2 1
∫−1 dv +2 u ∫ u+v +1u−v dv =∫ kdx (M1)

u
−v + [ ln(u+v )−ln(u−v ) ] =kx+c
2
u u+v
−v + ln
2 u−v( ) =kx +c (A1)

1
when v= u . and let x =x1
4
1
u+ u
1 u
− u+ ln
4 2

1 u 5
( )4
1
u− u
4
=kx 1 +c .

4 2 3 ()
− u+ ln =kx 1 +c .. .. . .. .(3) (M1)
1
when v= u. and let x=x 2
2
1
u+ u
1 u
− u+ ln
2 2

1 u
u− u
2
1
2
( ) =kx 2 +c .

(M1)
− u+ ln ( 3 )=kx 2 +c. . .. ..( 4 )
2 2

(4 )−(3 )
1 u
− u+ ln ( 3 )=kx 2 +c. . .. ..( 4 )
2 2
1 u 5
()
− u+ ln =kx 1 +c . .. . .. ..(3 )
4 2 3
u 1 9 1
x 2− x 1 = ( ln −
k 2 5 4 )
u 9 (A1)
hence the distance is
4k (2 ln −1
5 )

You might also like