MATHEMATICS T (PAPER 2)
1(i)
          lim f ( x )         lim (− 13 x−1)               −
                                                               1
          x →−3−          =    x →−3−                 =        3 (-3) – 1 = 0
          lim f ( x )         lim √ x+ 3                                                                    M1
          x →−3+          =    x →−3+             =   √−3+3        =0
          lim f ( x )         lim f ( x )
          x →−3−        =     x →−3+             =0
          lim f ( x )                   lim f ( x )                                                         A1
           x →−3        exists and       x →−3        =0
                  1
                −
        f(-3) =   3 (-3) – 1 = 0
          lim f ( x )                                                                                       A1
           x →−3       = f(-3) = 0
        Hence f(x) is continuous at x = -3.
(ii)
    2                         π
        x = sin t , y = sin (t +)
                              6
        dx           dy         π                                               1 (Both correct)
           =cos t ,     =cos(t+ ¿ ) ¿
        dt           dt         6                                                      dy dx
                                                                                1 (His dt ÷ dt )
                     π
             cos(t + )                                                             dy 1
        dy           6
           =                                                                    1( =        seen, can be implied)
        dx     cos t                                                               dx √ 3
                  π dy     1
        When t = ,       =                                                             1 √3
                  6 dx √ 3                                                      1 (or ( , ) seen, can be implied)
                                                                                       2 2
                                   π 1           π π    √3
                        x = sin     = , y = sin ( + ) =                         1 (y – y1 = m(x – x1) )
                                   6 2           6 6     2
        y-
           √ 3 = 1 ¿)
            2    √3                                                             1       6 marks
        y=
           √ x + √3
             3
              3         3
3       y 2  1  sin x
                                                                                M1
                                                                                M1
                                                                                M1(sub sinx) M1(simplify)
                                                                                A1
         dy
      2y     =cos x
         dx
          d 2 y dy 2
          [
      2 y 2 +
          dx     dx   ( )]
                      =−sin x
         d2 y     dy 2 ( 2 )
      2 y 2 +2
         dx       dx   ( )
                      =− y −1
         d2 y     dy 2 2
      2 y 2 +2
         dx       dx   ( )
                      + ( y −1 ) =0(shown )
4   y = 12 – 4x
    y = 12 – x3
    12 – x3 = 12 – 4x
    x3 – 4x = 0
    x(x2 – 4) = 0
    x = 0, x = -2, x = 2
    y = 12, y = 0, y = 4
    Points of intersection are (0,12), (-2,20), (2,4).   B3
      dy
      dx = -3x2                                          M1
          2
      d y
      dx 2 = -6x = 0
                                                         M1
    x=0
      d3 y
      dx 3 = -6 ≠ 0
    There is a point of inflexion at x = 0.              A1
                  0
                                                         M1
                              2         3 2
              π ∫−2 (12−4 x ) −(12−x ) dx
    V1 =
                  0      3     2          6
              π ∫−2 24 x +16 x −96 x−x dx
      =
                  2528
      =
              π   [ ]
                  21
                  2                                      M1
              π ∫0 (12−x 3 )2 −(12−4 x)2 dx
    V2 =
                  0
              π ∫−2 x 6 +96 x−16 x 2 −24 x 3 dx
      =
               1504
    =
           π   [ ]
               21                                                                                                  M1
                                                                                                                   A1
                               2528                   1504
    The volume =
                           π   [ ]
                               21         +
                                                  π   [ ]
                                                      21
               = 192 π
    5(a)        1   6x
                    
                6 3x 2  1
                           dx
                                                                                 M1
                1
                  ln  3x 2  1  c
                6                                                                A1
    (b)
                                              x dx
                x  3sin  , sin                    3cos   dx  3cos  d
                                              3 , d                                            B1
                    ∫ √ 9−x2 dx=∫ √ 9−(3sinθ)2(3cosθ dθ )                                        M1
                                              2
                               =   ∫ 9cos θ dθ
                                   ∫ 9 (cos 22θ+1 ) dθ              9
                                                                  ∫ 2 (cos2 θ +1)dθ
                               =                              =
                                   9 sin 2θ
                               =   2  ( 2
                                            +θ +c      )                                             A1
                                 9                                  9
                                   (sin θ cos θ+ θ)+c                 (θ+ sinθ √ 1−sin2 θ)+ c
                               = 2                                = 2
                                                                    2
                               =
                                   9
                                   2  (   x x
                                     sin−1 +
                                          3 3         ( ) √ ( ) )+c
                                                             1−
                                                                x
                                                                3                                    M1
                                 9      x x
                               =
                                 2    (
                                   sin−1 +
                                        3 9           ( )√ ) 9−x 2 +c
                                    9       x 1
                       9  x 2 dx  sin 1    x 9  x 2  C
                                    2       3 2                                               A1
6                              dy ( 2 x− y )−1     v−1                                                      B1
      Let v=2 x− y;              =               ¿
                               dx 2 ( 2 x− y ) +2 2 v+ 2                                             (Substitute 2x-y)
      v=2 x − y
        dv     dy    dy    dv
           =2−    => =2−                                                                                   M1
        dx     dx    dx    dx
        dy v−1          dv v−1
           =      => 2− =         =>
        dx 2 v+2        dx 2 v +2                                                                         M1 A1
       dv          v−1     dv 3 v +5                                                              (Change variable)
           =2−           => =
       dx         2 v +2   dx 2(v +1)
          ( v +1)
       ∫ 3 v+ 5 dv=∫ 12 dx
          1         2          1                                                                         M1
       ∫ 3 − 3(3 v +5) dv=∫ 2 dx                                                                  (Integrable form)
       1       2             1                                                                           A1
         [v− ln|3 v+ 5|]= x +c
       3       3             2
       6 v−4 ln |3 v +5|=9 x+ 18 c
       4 ln |3 v +5|=6 v−9 x−18 c ; v=2 x − y
                       3           9
       ln |6 x−3 y +5|= [ x−2 y ] − c
                       4           2
                            3            9
                                ( x−2 y)− c
       6 x−3 y +5=e 4                    2
                                 3                            −9                                         A1
                                     ( x−2 y)                    c
       6 x−3 y +5=Ae 4                          ; where A=e   2
7(a)               y  4 x cos 2 x
                   dy
                       4 x  2sin 2 x   4cos 2 x
                   dx                                                                 (M1)
                         4  cos 2 x  2 x sin 2 x 
                               dy         
                   x               4  0    2
                        4       dx         2                                        (A1)
                                                                        
                                                        y  0  2  x  
                   Equation of tangent is                               4           (M1)
                                                                    
                                                        y  2  x  
                                                                    4               (A1)
(b)
                        du
          Let u = 4x,   dx = 4
        dv                1
        dx = cos 2x, v = 2 sin2x                                              (M1)
             
             4
              4 x cos 2 x dx
       A=    o
                             π                  π
                                                4
         =       [ 2 x sin 2 x ] - ∫ 2 sin2 xdx
                             4
                             0                  0                                    (M1)
                 π                 π
                                   4
         =       2 - [ −cos 2 x ]0                                                    (M1) (M1)
                 π
         =       2 1                (A1)
                        
                        4
                            4 x cos 2 x  dx
                                                    2
             (c) V =    o                                                             (M1)
                                
                                4   1
                        16  x 2      cos 4 x  1 dx
                    =           o   2                                                  (M1)
                            
                            4
                        8  x 2 cos 4 x  x 2 dx
                    =       o
                                                                        
                                                                             
                          2   sin  4 x  4 1 4                    x   
                                                                       3 4
                                                                             
                      8   x             4 0 2 x sin 4 x dx   3  
                                 4     0                         0 
                    =                                                                (M1)
                                                   
                                                                    
                                 cos 4 x  4 4 cos 4 x                    3 
                      0  2   2 x                 2         dx    8       
                                        4  0 0          4                192 
                    =                                                                (M1)
                                                       
                                         sin 4 x  4  4
                       (1)                      
                    = 4                     4      0 24                            (M1)
                            2       4
                               
                             
                    =       4 24
                      4 2 2  2    
                                  1
                      24 4  4  6       or 1.591 cm3
                    =                                                                  (A1)
      dv k ( 2                2¿
8.       = u −valignl¿ ¿ ¿ )
      dt v
     ∫v 2            2¿
                            dv=∫ kdt                           (M1)
       (u −valignl¿ ¿ ¿)
      1 −2v
     - ∫                        dv=∫ kdt                       (M1)
      2 ( u2−valignl ¿ ¿ 2 ¿¿ )
    1
   - ln ( u2−v 2 )=kt+c                                        (A1)
    2
            1
  when v= u, let t=t 1
            4
                  2
 1 2 1
 2     ( ( ))
− ln u − u =kt 1+c
            4
 1 15                                                                        (M1)
       ( )
− ln u 2 =kt 1+c.............. (1 )
 2 16
         1
  when v= u, let t=t 2
         2                                                                   (M1)
 1 3
       ( )
− ln u2 =kt 2 +c ............... ( 2 )
 2 4
                1 3 2 15 2
 (2)−(1)       −
                2 4    (       16   )
                    ln u −ln u =k (t 2 −t 1 )
               1 3 16
                           (   )
              - ln × =k(t 2 −t 1 )
               2 4 15
                           1    5
                (t 2−t 1 )= ln      (shown)
                           2k 4
                                        1         1     1    5
  The time taken by particle from speed u to speed u is   ln      (A1)
                                        4         2     2k 4
Let
                       dv                      dx
a is acceleration, a = dt ; v is velocity, v = dt          (B1)
By applying chain rule,
 dv dv dx dv                dv
    = × = ×v=v
 dt dx dt dx                dx                          (A1)
  dv k
 v = (u2−v 2 )
  dx v
   v2
 ∫ 2 2 dv=∫ kdx                                           (M1)
   (u −v )
          2
 ∫ −1+ uu 2−v 2 dv=∫ kdx
      [            ]                                      (M1)
 ∫−1 dv + u2∫ 1u2−v 2 dv=∫ kdx
           u2 1
 ∫−1 dv +2 u ∫ u+v +1u−v dv =∫ kdx                       (M1)
      u
 −v + [ ln(u+v )−ln(u−v ) ] =kx+c
      2
      u u+v
 −v + ln
      2 u−v( )   =kx +c                                  (A1)
            1
  when v= u . and let x =x1
            4
                1
              u+ u
   1 u
 − u+ ln
   4 2
   1 u 5
             ( )4
                1
              u− u
                4
                     =kx 1 +c .
   4 2 3     ()
 − u+ ln =kx 1 +c .. .. . .. .(3)                        (M1)
       1
when v= u. and let x=x 2
       2
              1
          u+ u
 1 u
− u+ ln
 2 2
 1 u
          u− u
              2
              1
              2
               ( )  =kx 2 +c .
                                          (M1)
− u+ ln ( 3 )=kx 2 +c. . .. ..( 4 )
 2 2
(4 )−(3 )
   1 u
− u+ ln ( 3 )=kx 2 +c. . .. ..( 4 )
   2 2
   1 u 5
               ()
− u+ ln =kx 1 +c . .. . .. ..(3 )
   4 2 3
           u 1 9 1
x 2− x 1 = (  ln −
           k 2 5 4      )
                       u          9       (A1)
 hence the distance is
                       4k   (2 ln −1
                                  5   )