FOR EDEXCEL
GCE Examinations
Advanced Subsidiary
Core Mathematics C4
Paper B
MARKING GUIDE
This guide is intended to be as helpful as possible to teachers by providing
concise solutions and indicating how marks could be awarded. There are
obviously alternative methods that would also gain full marks.
Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.
                           Written by Shaun Armstrong
                                 Solomon Press
   These sheets may be copied for use solely by the purchaser’s institute.
                                            © Science Exam Papers
                                                                  C4 Paper B – Marking Guide
1.   u = x2, u′ = 2x, v′ = sin x, v = −cos x                                                                                      M1
     I = −x2 cos x − ∫ −2x cos x dx = −x2 cos x +                                                    ∫       2x cos x dx          A2
     u = 2x, u′ = 2, v′ = cos x, v = sin x                                                                                        M1
     I = −x2 cos x + 2x sin x − ∫ 2 sin x dx                                                                                      A1
          = −x2 cos x + 2x sin x + 2 cos x + c                                                                                    A1      (6)
              1
2.    ∫       y2
                       dy =         ∫           x dx                                                                              M1
                            3
     −y−1 =        2
                   3
                        x2 + c                                                                                                    M1 A1
     x = 1, y = −2 ⇒                            1
                                                2
                                                    =   2
                                                        3
                                                             + c,           c=   − 16                                             M1 A1
                            3                                                3                         3
          1        2                    1           1         1         2             1
     −        =    3
                        x − 2
                                        6
                                            ,            =    6
                                                                  −     3
                                                                            x =
                                                                             2
                                                                                      6
                                                                                           (1 − 4x )   2
                                                                                                                                  M1
          y                                         y
                   6
     y=                 3
                                                                                                                                  A1      (7)
              1 − 4x 2
                 dy       dy
3.   8x − 2y − 2x    − 2y     =0                                                                                                  M1 A2
                 dx       dx
                             dy     dy          dy
     (−1, −3) ⇒ −8 + 6 + 2      +6      = 0,       =                                                     1
                                                                                                         4
                                                                                                                                  M1 A1
                             dx     dx          dx
     grad of normal = −4                                                                                                          M1
     ∴ y + 3 = −4(x + 1)        [ y = −4x − 7 ]                                                                                   M1 A1   (8)
                                                          ( −3)( −4)                   ( −3)( −4)( −5)
4.   (a)           = 1 + (−3)(ax) +                           2
                                                                       (ax)2 +              3× 2
                                                                                                           (ax)3 + …              M1 A1
                                                    2 2                3 3
                   = 1 − 3ax + 6a x − 10a x + …                                                                                   A1
                        6− x
     (b)                                    = (6 − x)( 1 − 3ax + 6a2x2 + …)
                       (1 + ax)3
                   coeff. of x2 = 36a2 + 3a = 3                                                                                   M1
                   12a2 + a − 1 = 0                                                                                               A1
                   (4a − 1)(3a + 1) = 0                                                                                           M1
                   a = − 13 , 14                                                                                                  A1
                                                    6− x
     (c)           a = − 13 ∴                                 = (6 − x)(… +                 2
                                                                                            3
                                                                                                x2 +     10
                                                                                                         27
                                                                                                                 x3 + …)          M1
                                                 (1 + ax)3
                   coeff. of x3 = (6 ×                       10
                                                             27
                                                                  ) + (−1 ×        2
                                                                                   3
                                                                                          )=    20
                                                                                                9
                                                                                                     −       2
                                                                                                             3
                                                                                                                 =   14
                                                                                                                      9
                                                                                                                                  A1      (9)
                                5        1                                        1
5.   (a)           =     ∫1             3x + 1
                                                     dx = [ 23 (3x + 1) 2 ] 15                                                    M1 A1
                            2                       4
                   =        3
                                (4 − 2) =           3
                                                                                                                                  M1 A1
                                    5     1
     (b)           = π∫                             dx                                                                            M1
                                1       3x + 1
                   = π[ 13 ln3x + 1] 15                                                                                         M1 A1
                            1                                     1                    2                                  2
                   =        3
                                π(ln 16 − ln 4) =                 3
                                                                      π ln 4 =         3
                                                                                           π ln 2                [k=      3
                                                                                                                              ]   M1 A1   (9)
                                                                                            Solomon Press
C4B MARKS page 2
                                                                                                                 © Science Exam Papers
6.   (a)   15 − 17x ≡ A(1 − 3x)2 + B(2 + x)(1 − 3x) + C(2 + x)
           x = −2    ⇒      49 = 49A      ⇒      A=1                                               B1
           x= 31
                     ⇒       28
                             3
                                   7
                                = 3C      ⇒      C=4                                               B1
           coeffs x2 ⇒                     0 = 9A − 3B ⇒                      B=3                  M1 A1
                 0         1                3                4
     (b)   =   ∫ −1   (
                          2+ x
                                  +
                                         1 − 3x
                                                   +
                                                       (1 − 3x)2
                                                                   ) dx
           = [ln2 + x − ln1 − 3x +                        4
                                                              3
                                                                 (1    − 3x)−1] 0−1                M1 A3
                                    4
           = (ln 2 + 0 +            3
                                        ) − (0 − ln 4        + 13 )                                M1
           = 1 + ln 8                                                                              M1 A1    (11)
7.   (a)   x = 1 ∴ −1 + 4 cos θ = 1, cos θ =                              1
                                                                          2
                                                                              , θ =   π
                                                                                      3
                                                                                          ,   5π
                                                                                               3
                                                                                                   M1
           y > 0 ∴ sin θ > 0 ∴ θ =                           π
                                                             3
                                                                                                   A1
           dx                                      dy
     (b)       = −4 sin θ,                            = 2 2 cos θ                                  M1
           dθ                                      dθ
              dy
           ∴      = 2 2 cos θ                                                                      M1 A1
              dx     −4sin θ
                                        2 2 × 12           2
           at P, grad = −                     3
                                                   =−                                              M1
                                        4×               2 3
                                             2
                                             2 3        2
           grad of normal =                        ×         =     6                               A1
                                               2        2
           ∴ y−            6 =           6 (x − 1)                                                 M1
                y=         6 x,            when x = 0, y = 0 ∴ passes through origin               A1
                           x +1                         y
     (c)   cos θ =              ,       sin θ =                                                    M1
                             4                         2 2
                 ( x + 1)2          y2
           ∴                 +             =1                                                      M1 A1    (12)
                    16              8
8.   (a)   AB = (7i − j + 12k) − (−3i + 3j + 2k) = (10i − 4j + 10k)                                M1
           ∴ r = (−3i + 3j + 2k) + λ(5i − 2j + 5k)                                                 A1
     (b)   OC = [µ i + (5 − 2µ)j + (−7 + 7µ)k]
           AC = OC − OA = [(3 + µ)i + (2 − 2µ)j + (−9 + 7µ)k]                                      M1 A1
           BC = OC − OB = [(−7 + µ)i + (6 − 2µ)j + (−19 + 7µ)k]                                    A1
           AC . BC = (3 + µ)(−7 + µ)+(2 − 2µ)(6 − 2µ)+(−9 + 7µ)(−19 + 7µ) = 0                      M1
                     µ 2 − 4µ + 3 = 0                                                              A1
                     (µ − 1)(µ − 3) = 0                                                            M1
           µ = 1, 3          ∴ OC = (i + 3j) or (3i − j + 14k)                                     A2
     (c)   AC =           16 + 0 + 4 = 2 5 , BC =                       36 + 16 + 144 = 14         M1
                      1
           area =     2
                           × 2 5 × 14 = 14 5                                                       M1 A1    (13)
                                                                                                   Total    (75)
                                                                        Solomon Press
                                                                                                        C4B MARKS page 3
                                                                                      © Science Exam Papers
                             Performance Record – C4 Paper B
Question no.       1             2              3              4           5            6            7          8       Total
  Topic(s)     integration   differential differentiation   binomial   integration    partial    parametric   vectors
                              equation                        series                 fractions   equations
   Marks           6             7              8              9           9           11           12         13        75
Student
                                                     Solomon Press
C4B MARKS page 4
                                                                © Science Exam Papers