0% found this document useful (0 votes)
60 views24 pages

(A) - Graphically: F (X) 5 - 5 6 - 2 X Berapa 3 2 1

The document contains information about several numerical analysis methods: 1. Graphical interpolation and forecasting methods are used to find the value of f(x) for x=0.417. 2. Bisection and false position methods are applied to find the root of an equation. For bisection, 5 iterations are done to obtain a root of 0.406 within 10% error. For false position, 3 iterations yield a root of 0.408 within 10% error. 3. Fixed point and Newton-Raphson methods are employed to solve a nonlinear equation numerically. The fixed point method converges after 3 iterations. Newton-Raphson converges faster, requiring only 5 iterations to reach an accuracy

Uploaded by

Willy Liu
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
60 views24 pages

(A) - Graphically: F (X) 5 - 5 6 - 2 X Berapa 3 2 1

The document contains information about several numerical analysis methods: 1. Graphical interpolation and forecasting methods are used to find the value of f(x) for x=0.417. 2. Bisection and false position methods are applied to find the root of an equation. For bisection, 5 iterations are done to obtain a root of 0.406 within 10% error. For false position, 3 iterations yield a root of 0.408 within 10% error. 3. Fixed point and Newton-Raphson methods are employed to solve a nonlinear equation numerically. The fixed point method converges after 3 iterations. Newton-Raphson converges faster, requiring only 5 iterations to reach an accuracy

Uploaded by

Willy Liu
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
You are on page 1/ 24

(a).

Graphically
f(x) =
5 -5 6 -2
x^ berapa 3 2 1

5.00
x f(x) 4.00
0 -2.00 3.00
0.2 -0.96 2.00
0.4 -0.08 1.00
0.6 0.88 0.00
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8 2.16 -1.00
1 4.00 -2.00
-3.00

Interpolasi
x= 0.417 Pakai Rumus
x= 0.417 Pakai Forecast
(b). Bisection
f(x) =

5 -5 6 -2
x^ berapa 3 2 1

iterasi Xu Xl xr f(Xl) f(Xr) f(Xl)*(Xr) Stopping Criterion (%)


1 1 0 0.5 -2 0.375 -0.75
2 0.5 0 0.25 -2 -0.734 1.469 -100%
3 0.5 0.25 0.375 -0.734 -0.189 0.139 33%
4 0.5 0.375 0.438 -0.189 0.087 -0.016 14%
5 0.438 0.375 0.406 -0.189 -0.052 0.010 -8% Error < 10%

x = 0.406
(b). False Position
f(x) =

5 -5 6 -2
x^ berapa 3 2 1

iterasi Xu Xl xr f(Xu) f(Xl) f(Xr) f(Xl)*(Xr)


1 1 0 0.333 4 -2 -0.37 0.74
2 1 0.33 0.390 4 -0.37 -0.12 0.05
3 1 0.39 0.408 4.00 -0.12 -0.04 0.01

Error < 10% x= 0.408


Stopping Criterion (%)

14%
5% Error < 10%
(a) Graphically

f(x) =

x f(x)
0 -5.00 Chart Title
0.1 -3.35 8.00
0.2 -1.91
0.3 -0.69 6.00
0.4 0.34
4.00
0.5 1.18
0.6 1.84 2.00
0.7 2.34
0.8 2.70 0.00
0 0.5 1 1.5 2 2.5 3 3.5 4
0.9 2.91
-2.00
1 3.00
1.1 2.98 -4.00
1.2 2.85
1.3 2.63 -6.00

1.4 2.34
1.5 1.98
1.6 1.56 Akar akar persamaannya
1.7 1.10 x1 = 0.367
1.8 0.62 x2 = 1.922
1.9 0.11 x3 = 3.561
2 -0.40
2.1 -0.91
2.2 -1.39
2.3 -1.85
2.4 -2.26
2.5 -2.63
2.6 -2.92
2.7 -3.14
2.8 -3.26
2.9 -3.29
3 -3.20
3.1 -2.99
3.2 -2.63
3.3 -2.13
3.4 -1.46
3.5 -0.62
3.6 0.40
3.7 1.62
3.8 3.06
3.9 4.71
4 6.60
(b) Fixed point iteration method

f(x) =
x0 = 3

tle x (i+1) = 5 - 2x^3 + 11.7x^2


17.7

iterasi x x(i+1) Error


0 3 3.18
1 3.18 3.33 4.59%
2 3.33 3.44 3.15%
2.5 3 3.5 4 4.5 3 3.44 3.51 1.82%
(c) Newton - Raphson Method (d) Secant Method

f(x) = f(x) =
f'(x) =

x0 = 3 x-1 = 3

iterasi x f(x) f'(x) X(i+1) Error iterasi x(i-1)


0 3 -3.2 1.5 5.13 0 3
1 5.13 48.09 55.69 4.27 -20.2% 1 4
2 4.27 12.96 27.17 3.79 -12.6% 2 3.33
3 3.79 2.95 15.26 3.60 -5.4% 3 3.48
4 3.60 0.40 11.22 3.56 -1.0% 4 3.59
5 3.56 0.01 10.52 3.56 0.0% 5 3.56
x0 = 4

x f(xi-1) f(x) X(i+1) Error


4 -3.2 6.6 3.33
3.33 6.6 -1.97 3.48 4.4%
3.48 -1.968853 -0.795915 3.59 2.9%
3.59 -0.795915 0.247869 3.56 -0.7%
3.56 0.247869 -0.019082 3.56 0.1%
3.56 -0.019082 -0.000401 3.56 0.0%
8x1 + 4x2 - x3 = 11
-2x1 + 5x2 + x3 = 4
2x1 - x2 + 6x3 = 7

(a) Eliminasi Gauss


[A] [X] = [C]
- 8 x1 4 x2 -1 x3 = 11
- -2 x1 5 x2 1 x3 = 4
- 2 x1 -1 x2 6 x3 = 7

8 4 -1 x1 11
[A] = -2 5 1 [X] = x2 [C] = 4
2 -1 6 x3 7

1. Mencari Matriks [L] dan [U]

u11 u12 u13


[U] = 0 u22 u23 [L] =
0 0 u33

a11 a12 a13 huruf kecil L21 =


[U] = 0 a22 a23 huruf kecil L31 =
0 0 a33 huruf kecil L32 =

8 4 -1 kalikan baris pertama dengan -2/8 [L] =


-2 5 1 baris kedua kurangi hasil baris pertama
2 -1 6 yang sudah dikali -2/8

8 4 -1 kalikan baris pertama dengan 1/8


0 6 0.75 baris ketiga kurangi hasil baris pertama
2 -1 6 yang sudah dikali 1/8

8 4 -1 kalikan baris kedua dengan -2/6


0 6 0.75 baris ketiga kurangi hasil baris kedua
0 -2.0 6.25 yang sudah dikali -2/6
8 4 -1
0 6 0.75
0 0 6.5

2. Pembuktian
[A] = [L][U] U L

8 4 -1 1 0 0 8 4 -1
-2 5 1 = -0.25 1 0 0 6.0 0.8
2 -1 6 0.25 -0.333 1 0 0 6.50

8 4 -1 8 4 -1
-2 5 1 = -2 5 1
2 -1 6 2 -1 6
(b) Dekomposisi LU
[A] [X] = [C]
- 8 x1 4 x2 -1 x3 = 11
- -2 x1 5 x2 1 x3 = 4
- 2 x1 -1 x2 6 x3 = 7

8 4 -1 x1
[A] = -2 5 1 [X] = x2 [C] =
2 -1 6 x3

1. Mencari Matriks [L] dan [U]

1 0 0 1 0 0 u11 u12
l21 1 0 [L] = l21 1 0 [U] = 0 u22
l31 l32 1 l31 l32 1 0 0

a21/a11 = -0.25 [A] = [L] [U]


a31/a11 = 0.25 u11 = 8 u12 = 4
a'32/a'22 = -0.33 l21 = -0.25 u22 = 6
l31 = 0.25 l32 = -0.333
1 0 0
-0.25 1 0
0.25 -0.33 1
2. Mencari Matriks D

[L] {D} = {C}

1 0 0 d1 c1
-0.25 1 0 d2 = c2
0.25 -0.333 1 d3 c3

d1 = 11
d2 = 6.75
d3 = 6.5
3. Mencari Akar Persamaan [X]

[U][X] = [D]

8 4 -1 x1 11.00
0 6 0.75 x2 = 6.75
0 0 6.5 x3 6.50

x1 = 1
x2 = 1
x3 = 1
11
4
7

u13
u23
u33

u13 = -1
u23 = 0.75
u33 = 6.50
(a) Metode Analitis (b)

dy/dt = 3yt2-2.5y i
dy/dt = y(3t2-2.5) 0
1/y dy = (3t2-2.5)dt 1
ln y + c = t3-2.5t + c 2
y = e^(t3-2.5t + c) 3
y(0) = e^((0)3-2.5(0) + c) 4
1= e^c
c = 0
y = e^(t3-2.5t)

t y
0 1
0.5 0.325
1 0.223
1.5 0.687
2 20.086

0 1
0.5 -1.125 0.325
1 -1.5 0.223
1.5 -0.375 0.687
2 3 20.086
t y analit y euler y heun y RK
0 1
0.5 0.325
1 0.223
1.5 0.687
2 20.086
dx 0.5 dx 0.5

Metode Euler, h-0.5 (c) Metode Heun tanpa iterasi, h=0.5

t_i f(x,y) / y' y_i (euler) i xi yi


0 -2.500 1 0 0 1.000
0.5 0.438 -0.25 1 0.5 0.484
1 -0.016 -0.031 2 1 0.280
1.5 -0.166 -0.039 3 1.5 0.687
2 -1.160 -0.122 4 2 6.515
eun tanpa iterasi, h=0.5

f(xi,yi) = k1 xi+h yi + k1 h f(xi+h , yi+k1h) =k2 yi+1


-2.500 0.500 -0.250 0.438 0.484
-0.848 1.000 0.061 0.030 0.280
0.140 1.500 0.350 1.488 0.687
2.920 2.000 2.147 20.394 6.515
61.895 2.500 37.463 608.770 174.181

25
25

20

15

10

y
5

0
0 0.5

-5
dx 0.5

(d) Metode Fourth-Order Runge-Kutta, h = 0.5

i xi yi f(xi,yi) = k1 xi+1/2h yi+1/2k1h f(xi+1/2h, yi+1/2k1h) = k2 yi+1/2k2h


0 0 1.000 -2.500 0.250 0.375 -0.867 0.783
1 0.5 0.332 -0.580 0.750 0.186 -0.152 0.294
2 1 0.227 0.113 1.250 0.255 0.559 0.367
3 1.5 0.686 2.914 1.750 1.414 9.457 3.050
4 2 14.520 137.943 2.250 49.006 621.763 169.961

Result on the same graph


Result on the same graph

Analytically
Euler's method with h = 0.5
Heun's method without iteration h
4th Order RK Methods h = 0.5

0 0.5 1 1.5 2 2.5

t
k3 xi+h yi+k3h k4 yi+1
-1.811 0.500 0.094 -0.165 0.332
-0.239 1.000 0.212 0.106 0.227
0.802 1.500 0.628 2.669 0.686
20.396 2.000 10.884 103.395 14.520
2156.380 2.500 1092.710 17756.539 1968.751
ytically
r's method with h = 0.5
n's method without iteration h = 0.5
Order RK Methods h = 0.5 ganti nama grafik di " "

You might also like