0% found this document useful (0 votes)
160 views10 pages

Report 30 Ton

The document provides input parameters and calculations for the design of a monorail/runway beam. It includes the beam section properties, material properties, load assumptions, and calculations to check the beam capacity for bending moment, shear, and torsional effects. The calculations show the beam section chosen (IPE 330) is suitable to resist the bending moment, shear force, and torsional moment effects for the given simply supported span of 2000mm based on the specified loading and material properties.

Uploaded by

MARYA
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
160 views10 pages

Report 30 Ton

The document provides input parameters and calculations for the design of a monorail/runway beam. It includes the beam section properties, material properties, load assumptions, and calculations to check the beam capacity for bending moment, shear, and torsional effects. The calculations show the beam section chosen (IPE 330) is suitable to resist the bending moment, shear force, and torsional moment effects for the given simply supported span of 2000mm based on the specified loading and material properties.

Uploaded by

MARYA
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 10

12/28/21, 9:14 AM MONORAIL/RUNWAY BEAM DESIGN

ECMONORAIL
Monorail/Runway Beam Design Job : Untitled
Licensed to: mary jvnd Powered By:
www.ecplusdesign.com

1.0   INPUT

1.1   Section
Type Type = Standard
Section Section= IPE 330
Overall Height H = 330 mm
Width of Flange B = 160 mm
Thickness of Flange T = 11.5 mm
Thickness of Web t = 7.5 mm
Root Radius r = 18 mm

1.2   Support
Simply Supported Span Ls = 2000 mm
Cantilever Span Lc = 1500 mm
Stopper Distance from Cantilever Edge Ds = 150 mm
Effective Restraint Factor Ks = 1
- Simply Supported
Effective Restraint Factor - Cantilever Kc = 2

1.3   Monorail
Monorail Capacity PL = 30 kN
Hoist Pulley Weight Sh = 2 kN
Dynamic Factor for Vertical Loads Ψv = 10 %
Dynamic Factor for Horizontal Loads Ψh = 0%

1.3.1   Wheel Arrangement

No. of Wheels N = 4
Distance between Wheels along Beam Wd = 158 mm
Distance between Wheels Wg = 100 mm

1.4   Material Properties


Steel Grade fy = 275 N/mm2
Elastic Modulus of Steel E = 200000 N/mm2
Shear Modulus of Steel G = 81000 N/mm2
Def. / Span Ratio - Simply Supported Δlims = 500
Def. / Span Ratio - Cantilever Δlimc = 300

1.5   Partial Safety Factors

https://www.ecplusdesign.com/StaticPages/MyDrive# 1/10
12/28/21, 9:14 AM MONORAIL/RUNWAY BEAM DESIGN

Concentrated Load γQ = 1.5


Distributed Load γG = 1.35
Bottom Flange Resistance γM0 = 1
Buckling Resistance γM1 = 1
Stress Factor γMs = 1.1

2.0   OUTPUT

2.1   Section Properties

2.1.1   I Section [From Section Table]

Cross Sectional Area A = 62.6 cm2


Moment of Inertia - Major Ixx = 11800 cm4
Moment of Inertia - Minor Iyy = 788 cm4
Radius of Gyration - Major Rxx = 13.7 cm
Radius of Gyration - Minor Ryy = 3.6 cm
Elastic Section Modulus - Major Zxx = 713 cm3
Elastic Section Modulus - Minor Zyy = 99 cm3
Plastic Section Modulus - Major Sxx = 804 cm3
Torsional Constant J = 28.1 cm4
Warping Constant Iw = 0.199 dm6

2.2   Section Classification

2.2.1   Outstand Element of Compression Flange EN 1993 - 1 - 1

Parameter e = √(235 / fy) = 0.92


Outstand c = (B - t - 2 * r) / 2 = 58.2 mm
Ratio c't = c / T = 5.1
Class 1 - Plastic

2.2.2   Web Element

Depth between Fillets C = H - 2 * (T + r) = 271 mm


Ratio C't = C / t = 36.1
Class 1 - Plastic

2.3   Calculation for Simply Supported Span


Simply Supported Span Lbs = 2000 mm

2.3.1   Design Moment

Concentrated Load Qv = (1 + Ψv / 100) * (PL + Sh) = 35.2 kN


Horizontal Load Qh = (Ψh / 100) * (PL + Sh) = 0 kN
Distributed Load - Vertical qv = A * 78.5 = 0.5 kN/m
Torsional Moment Tm = Qh * (H / 2 – T) = 0 kN-m

https://www.ecplusdesign.com/StaticPages/MyDrive# 2/10
12/28/21, 9:14 AM MONORAIL/RUNWAY BEAM DESIGN

Vertical Bending Moment Myed = (γQ * Qv * (Lbs/4)) + (γG * qv * (Lbs)2 / 8) = 26.7 kN-m
Horizontal Bending Moment Mzed1 = (γQ * Qh * (Lbs/4)) = 0 kN-m

2.3.2   Capacity of Bottom Flange Resistance EN 1993 - 6

Stress due to Vertical Moments fbv = Myed / Zxx = 37.492 N/mm2


Stress due to Horizontal Moments fbh = Mzed1 / Zyy = 0 N/mm2
Lever Arm m = 0.5 * (B - t) - 0.8 * r – (B / 2 – Wg / 2) Cl 6.7 Eq (6.3)
= 31.8 mm
Effective Length leff = 2√2 * (m + (B / 2 – Wg / 2)) + 0.5 * Wd Table 6.2
= 253.9 mm
Design Resistance of Bottom Flange Ffrd = leff * T2 * fy / γM0 * (1 - (fbv * γM0 / fy)2) Cl 6.7 Eq (6.2)
/ (4 * m) = 71.1 kN
Vertical Crane Wheel Load Fzed = γQ * Qv / N = 13.2 kN
Since Fzed ≤ Ffrd, Design Resistance of Bottom
Flange is Satisfactory

2.3.3   Design Values of Torsional Effects

Torsional Bending Constant a = √((E * Iw) / (G * J)) = 1322.3 mm


Torsional Moment Td = γQ * Qh * (H - 2 * T) / 2 = 0 kN-m
Portion of Length α = 0.5
Distance along Member z = α * Lbs = 1000 mm
Hyperbolic Sine of Alpha L/a t1 = sinh(α * Lbs / a) = 0.8
Hyperbolic Tangent of L/a t2 = tanh(Lbs / a) = 0.9
Hyperbolic Cosine of Alpha L/a t3 = cosh(α * Lbs / a) = 1.3
Hyperbolic Sine of z/a t4 = sinh(z / a) = 0.8
Angle of Twist Φ = Td * a / (G * J) * ((1 - α) * z / a + ((t1 / t2 - t3) * t4)) = 0 rad
Second Derivative of Φ Φ" = -Td / (G * J * a) * ((t1 / t2 - t3) * t4) = 0
Minor Axis Moment Mzed2 = Φ * Myed = 0 kN-m
Design Warping Torsional Moment Mwed = E * Iyy / 2 * (H - T) * Φ" / 200 = 0 kN-m

2.3.4   Torsional Moment

Hyperbolic cosine of 0 t4' = cosh(0) = 1


Term for Φ' Φ' = (1 - α) + (t1 / t2 - t3) * t4 = 0.1
St Venant's Torsional Moment Tted = Td * Φ' = 0 kN-m

2.3.5   Moment Resistance EN 1993 - 1 - 1

Moment Resistance Mcrd = Sxx * fy / γM0 = 221.1 kN-m Cl 6.2 Eq (6.13)


Unity Factor Ucm = Myed / Mcrd = 0.12 Cl 6.2 Eq (6.12)
Since Ucm < 1, Section Chosen is Suitable

2.3.6   Maximum Shear Force due to Vertical Load

Shear Force due to Concentrated Loads Vc = γQ * Qv = 52.8 kN


Shear Force due to Distributed Loads Vd = γG * qv * Lbs / 2 = 0.7 kN
Maximum Shear Force Vzed = Vc + Vd = 53.5 kN

2.3.7   Shear Plastic Resistance EN 1993 - 1 - 1

https://www.ecplusdesign.com/StaticPages/MyDrive# 3/10
12/28/21, 9:14 AM MONORAIL/RUNWAY BEAM DESIGN

Shear Area Avz = A - 2 * B * T + (t + 2 * r) * T = 3080.2 mm2 Cl 6.2 (3)


Shear Plastic Resistance VplRd = Avz * (fy / √3) / γM0 = 489.1 kN Cl 6.2 Eq (6.18)
Unity Factor Ucs = Vzed / VplRd = 0.11 Cl 6.2 Eq (6.17)
Since Ucs < 1, Section Chosen is Suitable

2.3.8   Reduced Shear Resistance in the Presence of Torsion EN 1993 - 1 - 1

Torsional Shear Stress tted = Tted * t / J = 0 N/mm2 Cl 6.2 Eq (6.20)


Reduction Factor tr = √(1 - tted * √3 / (1.25 * fy) / γM0) = 1
Reduced Shear Plastic Resistance Vtrd = tr * VplRd = 489.1 kN Cl 6.2 Eq (6.26)
Since Vzed < Vtrd, Section is OK

2.3.9   Shear Buckling

Depth between the Flanges hw = H - 2 * T = 307 mm


Buckling Ratio hw't = hw / t = 40.93 Cl 6.2 (6)
Since hw't ≤ 72 * e / 1.2, No Check for Shear
Buckling is Required

2.3.10   Lateral Torsional Buckling EN 1993 - 1 - 1

Effective Length of Beam Le = Lbs * Ks = 2000 mm

2.3.10.1   Terms for Critical Moment

Euler Term Et = π2 * E * Iyy / (Le2) = 3888624.1 N


Load to Shear Center Distance Zg = H / 2 = 165 mm
Shear Modulus Term Gt = (Le2 * G * J) / (π2 * E * Iyy) = 5853.2 mm2
Square Root Term Sr = √(Iw / (Iyy + Gt)) = 176.4 mm
Coefficient C1 C1 = 1.4
Critical Moment Mcr = C1 * Et * Sr = 927.3 kN-m
Non Dimensional Slenderness λlt = √(Sxx * fy / Mcr) = 0.5
Limiting Slenderness Value λlt0 = 0.4 Cl 6.3.2.3
Ratio h'b = H / B = 2.1
Imperfection Value αlt = 0.49 Table 6.5
Factor Φlt = 0.5 * (1 + αlt * (λlt - λlt0) + 0.75 * λlt2)
= 0.61
Modification Factor Ψlt 2 2
= 1 / (Φlt + √(Φlt - 0.75 * λlt )) = 0.95 Cl 6.3.2.2 Eq (6.56)
Correction Factor kc = 1 / √C1 = 0.86 Table 6.6
Moment Distribution Factor f = 1 - 0.5 * (1 - kc) * (1 - 2 * (λlt - 0.8)2) = 0.94
Modified Ψlt Factor Ψlt' = Ψlt / f = 1.01 Cl 6.3.2.3 Eq (6.58)
Design Buckling Resistance Moment Mbrd = Ψlt' * Sxx * fy / γM1 = 222.7 kN-m Cl 6.3.2.3 Eq (6.55)
Unity Factor Ucb = Myed / Mbrd = 0.12
Since Ucb < 1, Section Chosen is Suitable

2.3.11   Local Bending Stresses in the Bottom Flange due to Wheel Loads EN 1993 - 6

Ratio μ = 2 * (B /2 - Wg / 2) / (B - t) = 0.39 Cl 5.8 Eq (5.7)

2.3.11.1   Stress Points are at i = 0, 1, 2

Coefficient 1 Cx0 = 0.05 - 0.58 * μ + 0.148e3.015μ = 0.31 Table 5.2

https://www.ecplusdesign.com/StaticPages/MyDrive# 4/10
12/28/21, 9:14 AM MONORAIL/RUNWAY BEAM DESIGN

Coefficient 2 Cx1 = 2.23 - 1.49 * μ + 1.39e-18.33μ = 1.64 Table 5.2


Coefficient 3 Cx2 = 0.73 - 1.58 * μ + 2.91e-6.33μ = 0.35 Table 5.2
Coefficient 4 Cy0 = -2.11 + 1.977 * μ + 0.0076e6.530μ = -1.23 Table 5.2
Coefficient 5 Cy1 = 10.108 - 7.408 * μ - 10.108e-1.364μ = 1.28 Table 5.2
Coefficient 6 Cy2 = 0 Table 5.2
Local Longitudinal Bending Stress σoxed = Cx * Fzed / T2 = 164.169 N/mm2 Cl 5.8 Eq (5.5)
Local Transverse Bending Stress σoyed = Cy * Fzed / T2 = 128.08 N/mm2 Cl 5.8 Eq (5.6)

2.3.11.2   Serviceability Limit State Stress Check EN 1993 - 6

Global Shear Stress ved = Vzed / (H * t) = 21.601 N/mm2


Shear Resistance vRd = fy / √3 * γMs = 144.338 N/mm2 Cl 7.5 Eq (7.2b)
Since Ved ≤ VRd, Shear Stress is OK
Global Bending Stress σxed = fbv = 37.492 N/mm2 Cl 7.5 Eq (7.2a)
Since σxed ≤ fy / ƳMs, OK
Reversible behaviour due to Secondary effects induced by deformations are limited by the following expressions :
Expression 7.2c exp7.2c = √(σxed2 + 3 * ved2) = 52.967 N/mm2 Cl 7.5 Eq (7.2c)
Since exp7.2c ≤ fy / ƳMs, OK
Expression 7.2e exp7.2e = √(((σxed + σoxed)2 + σoyed2) - ((σxed + σoxed)
* σoyed)+ (3 * ved2)) = 180.673 N/mm2 Cl 7.5 Eq (7.2e)
Since exp7.2e ≤ fy / ƳMs, OK

2.3.12   Combined Bending and Torsion Check EN 1993 - 6

Total Minor Axis Design Moment Mzed = Mzed1 + Mzed2 = 0 kN-m


Minor Axis Resistance Moment Mzrd = fy * Zyy / γM1 = 27.2 kN-m
Warping Torsional Resistance Moment Mwrd = Mzrd / 2 = 13.6 kN-m
Coefficient 7 kw = 0.7 - 0.2 * Mwed / Mwrd = 0.7 Annex A
Coefficient 8 kzw = 1 - (Mzed / Mzrd) = 1
Coefficient 9 ka = 1 / (1 - Myed / Mcr) = 1.03
Equivalent Uniform Moment Factor Cmz = 0.9
Unity Factor Uccm = Myed / Mbrd + (Cmz * Mzed) / Mzrd + (kw *
kzw * ka * Mwed)/ Mwrd = 0.12 Annex A Eq (A1)

2.3.13   Check for Deflection EN 1993 - 6

Deflection due to Concentrated Loads δ1 = (Qv * Lbs3) / (48 * E * Ixx) = 0.2 mm


Deflection due to Distributed Loads δ2 = 5 / 384 * qv * Ls4 / (E * Ixx) = 0 mm
Total Deflection δ = δ1 + δ2 = 0.3 mm
Allowable Deflection δallow = Ls / Δlims = 4 mm Cl 7.3 Table 7.2
Since δ ≤ δallow, Deflection OK

2.3.14   Check for Vibration EN 1993 - 6

In order to limit the lateral vibration of the bottom flange the slenderness ratio is calculated as below :
Bottom Flange Inertia lzf = 3940000 mm4
Radius of Gyration of the Flange iz = (lzf / (B * T))0.5 = 46.3 mm
Slenderness of Bottom Flange Sbf = Lbs / iz = 43.2 Cl 7.6 (2)

https://www.ecplusdesign.com/StaticPages/MyDrive# 5/10
12/28/21, 9:14 AM MONORAIL/RUNWAY BEAM DESIGN

Allowable Slenderness Ratio of Bottom


Sbfallow = 250 Cl 7.6 (2)
Flange
Since Sbf ≤ Sbfallow, Vibration is Satisfactory

2.4   Calculation for Cantilever Span


Cantilever Span LbcC = Lc - Ds = 1350 mm

2.4.1   Design Moment

Concentrated Load QvC = (1 + Ψv / 100) * (PL + Sh) = 35.2 kN


Horizontal Load QhC = (Ψh / 100) * (PL + Sh) = 0 kN
Distributed Load - Vertical qvC = A * 78.5 = 0.5 kN/m
Torsional Moment TmC = QhC * (H / 2 – T) = 0 kN-m
Vertical Bending Moment MyedC = (γQ * QvC * LbcC) + (γG * qvC * (LbcC)2 / 2) = 71.9 kN-m
Horizontal Bending Moment Mzed1C = (γQ * QhC * 0.9 * LbcC) = 0 kN-m

2.4.2   Capacity of Bottom Flange Resistance EN 1993 - 6

Stress due to Vertical Moments fbvC = MyedC / Zxx = 100.8 N/mm2


Stress due to Horizontal Moments fbhC = Mzed1C / Zyy = 0 N/mm2
Lever Arm mC = 0.5 * (B - t) - 0.8 * r – (B / 2 – Wg / 2) Cl 6.7 Eq (6.3)
= 31.8 mm
Effective Length leffC = 2 * (mC + (B / 2 – Wg / 2)) Table 6.2
= 123.7 mm
Design Resistance of Bottom Flange FfrdC = leffC * T2 * fy / γM0 * (1 - (fbvC * γM0 / fy)2) Cl 6.7 Eq (6.2)
/ (4 * mC) = 30.6 kN
Vertical Crane Wheel Load FzedC = γQ * QvC / N = 13.2 kN
Since FzedC ≤ FfrdC, Design Resistance of
Bottom Flange is Satisfactory

2.4.3   Design Values of Torsional Effects

Torsional Bending Constant aC = √((E * Iw) / (G * J)) = 1322.3 mm


Torsional Moment TdC = γQ * QhC * (H - 2 * T) / 2 = 0 kN-m
Portion of Length αC = 0.9
Distance along Member zC = αC * LbcC = 1215 mm
Hyperbolic Sine of Alpha L/a t1C = sinh(αC * LbcC / aC) = 1.1
Hyperbolic Tangent of L/a t2C = tanh(LbcC / aC) = 0.8
Hyperbolic Cosine of Alpha L/a t3C = cosh(αC * LbcC / aC) = 1.5
Hyperbolic Sine of z/a t4C = sinh(zC / aC) = 1.1
Angle of Twist ΦC = TdC * aC / (G * J) * ((1 - αC) * zC / aC + ((t1C / t2C
- t3C) * t4C)) = 0 rad
Second Derivative of Φ Φ"C = -TdC / (G * J * aC) * ((t1C / t2C - t3C) * t4C) = 0
Minor Axis Moment Mzed2C = ΦC * MyedC = 0 kN-m
Design Warping Torsional Moment MwedC = E * Iyy / 2 * (H - T) * Φ"C / 200 = 0 kN-m

2.4.4   Torsional Moment

Hyperbolic cosine of 0 t4C' = cosh(0) = 1

https://www.ecplusdesign.com/StaticPages/MyDrive# 6/10
12/28/21, 9:14 AM MONORAIL/RUNWAY BEAM DESIGN

Term for Φ' Φ'C = (1 - αC) + (t1C / t2C - t3C) * t4C = 0


St Venant's Torsional Moment TtedC = TdC * Φ'C = 0 kN-m

2.4.5   Moment Resistance EN 1993 - 1 - 1

Moment Resistance McrdC = Sxx * fy / γM0 = 221.1 kN-m Cl 6.2 Eq (6.13)


Unity Factor UcmC = MyedC / McrdC = 0.33 Cl 6.2 Eq (6.12)
Since UcmC < 1, Section Chosen is Suitable

2.4.6   Maximum Shear Force due to Vertical Load

Shear Force due to Concentrated Loads VcC = γQ * QvC = 52.8 kN


Shear Force due to Distributed Loads VdC = γG * qvC * LbcC = 0.9 kN
Maximum Shear Force VzedC = VcC + VdC = 53.7 kN

2.4.7   Shear Plastic Resistance EN 1993 - 1 - 1

Shear Area AvzC = A - 2 * B * T + (t + 2 * r) * T = 3080.2 mm2 Cl 6.2 (3)


Shear Plastic Resistance VplRdC = AvzC * (fy / √3) / γM0 = 489.1 kN Cl 6.2 Eq (6.18)
Unity Factor UcsC = VzedC / VplRdC = 0.11 Cl 6.2 Eq (6.17)
Since UcsC < 1, Section Chosen is Suitable

2.4.8   Reduced Shear Resistance in the Presence of Torsion EN 1993 - 1 - 1

Torsional Shear Stress ttedC = TtedC * t / J = 0 N/mm2 Cl 6.2 Eq (6.20)


Reduction Factor trC = √(1 - ttedC * √3 / (1.25 * fy) / γM0) = 1
Reduced Shear Plastic Resistance VtrdC = trC * VplRdC = 489.1 kN Cl 6.2 Eq (6.26)
Since VzedC < VtrdC, Section is OK

2.4.9   Shear Buckling

Depth between the Flanges hwC = H - 2 * T = 307 mm


Buckling Ratio hw'tC = hwC / t = 40.93 Cl 6.2 (6)
Since hw'tC ≤ 72 * e / 1.2, No Check for Shear
Buckling is Required

2.4.10   Lateral Torsional Buckling EN 1993 - 1 - 1

Effective Length of Beam LeC = LbcC * Kc = 2700 mm

2.4.10.1   Terms for Critical Moment

Euler Term EtC = π2 * E * Iyy / (LeC2) = 2133675.8 N


Load to Shear Center Distance ZgC = H / 2 = 165 mm
Shear Modulus Term GtC = (LeC2 * G * J) / (π2 * E * Iyy) = 10667.5 mm2
Square Root Term SrC = √(Iw / (Iyy + GtC)) = 189.5 mm
Coefficient C1 C1C = 1.4
Critical Moment McrC = C1C * EtC * SrC = 546.7 kN-m
Non Dimensional Slenderness λltC = √(Sxx * fy / McrC) = 0.6
Limiting Slenderness Value λlt0C = 0.4 Cl 6.3.2.3
Ratio h'bC = H / B = 2.1
Imperfection Value αltC = 0.49 Table 6.5
Factor ΦltC = 0.5 * (1 + αltC * (λltC - λlt0C) + 0.75 * λltC2) = 0.71

https://www.ecplusdesign.com/StaticPages/MyDrive# 7/10
12/28/21, 9:14 AM MONORAIL/RUNWAY BEAM DESIGN

Modification Factor ΨltC = 1 / (ΦltC + √(ΦltC2 - 0.75 * λltC2)) = 0.86 Cl 6.3.2.2 Eq (6.56)
Correction Factor kcC = 1 / √C1C = 0.86 Table 6.6
Moment Distribution Factor fC = 1 - 0.5 * (1 - kcC) * (1 - 2 * (λltC - 0.8)2) = 0.93
Modified Ψlt Factor ΨltC' = ΨltC / fC = 0.93 Cl 6.3.2.3 Eq (6.58)
Design Buckling Resistance Moment MbrdC = ΨltC' * Sxx * fy /γM1 = 204.7 kN-m Cl 6.3.2.3 Eq (6.55)
Unity Factor UcbC = MyedC / MbrdC = 0.35
Since UcbC < 1, Section Chosen is Suitable

2.4.11   Local Bending Stresses in the Bottom Flange due to Wheel Loads EN 1993 - 6

Ratio μC = 2 * (B /2 - Wg / 2) / (B - t) = 0.39 Cl 5.8 Eq (5.7)

2.4.11.1   Stress Points are at i = 0, 1, 2

Coefficient 1 Cx0C = 0.05 - 0.58 * μC + 0.148e3.015μC = 0.31 Table 5.2


Coefficient 2 Cx1C = 2.23 - 1.49 * μC + 1.39e-18.33μC = 1.64 Table 5.2
Coefficient 3 Cx2C = 0.73 - 1.58 * μC + 2.91e-6.33μC = 0.35 Table 5.2
Coefficient 4 Cy0C = -2.11 + 1.977 * μC + 0.0076e6.530μC = -1.23 Table 5.2
Coefficient 5 Cy1C = 10.108 - 7.408 * μC - 10.108e-1.364μC = 1.28 Table 5.2
Coefficient 6 Cy2C = 0 Table 5.2
Local Longitudinal Bending Stress σoxedC = CxC * FzedC / T2 = 164.169 N/mm2 Cl 5.8 Eq (5.5)
Local Transverse Bending Stress σoyedC = CyC * FzedC / T2 = 128.08 N/mm2 Cl 5.8 Eq (5.6)

2.4.11.2   Serviceability Limit State Stress Check EN 1993 - 6

Global Shear Stress vedC = VzedC / (H * t) = 21.695 N/mm2


Shear Resistance vRdC = fy / √3 * γMs = 144.338 N/mm2 Cl 7.5 Eq (7.2b)
Since VedC ≤ VRdC, Shear Stress is OK
Global Bending Stress σxedC = fbvC = 100.82 N/mm2 Cl 7.5 Eq (7.2a)
Since σxedC ≤ fy / ƳMs, OK
Reversible behaviour due to Secondary effects induced by deformations are limited by the following expressions :
Expression 7.2c exp7.2cC = √(σxedC2 + 3 * vedC2) = 107.595 N/mm2 Cl 7.5 Eq (7.2c)
Since exp7.2cC ≤ fy / ƳMs, OK
Expression 7.2e exp7.2eC= √(((σxedC + σoxedC)2 + σoyedC2) - ((σxedC + σoxedC)
* σoyedC)+ (3 * vedC2)) = 232.585 N/mm2 Cl 7.5 Eq (7.2e)
Since exp7.2eC ≤ fy / ƳMs, OK

2.4.12   Combined Bending and Torsion Check EN 1993 - 6

Total Minor Axis Design Moment MzedC = Mzed1C + Mzed2C = 0 kN-m


Minor Axis Resistance Moment MzrdC = fy * Zyy / γM1 = 27.2 kN-m
Warping Torsional Resistance Moment MwrdC = MzrdC / 2 = 13.6 kN-m
Coefficient 7 kwC = 0.7 - 0.2 * MwedC / MwrdC = 0.7 Annex A
Coefficient 8 kzwC = 1 - (MzedC / MzrdC) = 1
Coefficient 9 kaC = 1 / (1 - MyedC / McrC) = 1.15
Equivalent Uniform Moment Factor CmzC = 0.9
Unity Factor UccmC = MyedC / MbrdC + (CmzC * MzedC) / MzrdC + (kwC *
kzwC * kaC * MwedC) / MwrdC = 0.35 Annex A Eq (A1)

https://www.ecplusdesign.com/StaticPages/MyDrive# 8/10
12/28/21, 9:14 AM MONORAIL/RUNWAY BEAM DESIGN

2.4.13   Check for Deflection EN 1993 - 6

Deflection due to Concentrated Loads δ1C = ((QvC * (LbcC)2 * ((LbcC) + Ls)) / (3 * E * Ixx)) = 3 mm
Deflection due to Distributed Loads δ2C = (qvC * (LbcC)4) / (8 * E * Ixx) = 0 mm
Total Deflection δC = δ1C + δ2C = 3.1 mm
Allowable Deflection δallowC = LbcC / Δlimc = 4.5 mm Cl 7.3 Table 7.2
Since δC ≤ δallowC, Deflection OK

2.4.14   Check for Vibration EN 1993 - 6

In order to limit the lateral vibration of the bottom flange the slenderness ratio is calculated as below :
Bottom Flange Inertia lzfC = 3940000 mm4
Radius of Gyration of the Flange izC = (lzfC / (B * T))0.5 = 46.3 mm
Slenderness of Bottom Flange SbfC = LbcC / izC = 29.2 Cl 7.6 (2)
Allowable Slenderness Ratio of Bottom
SbfallowC = 250 Cl 7.6 (2)
Flange
Since SbfC ≤ SbfallowC, Vibration is Satisfactory

3.0   SUMMARY

Critical Section : Cantilever Span

3.1   Bottom Flange Resistance


Description Actual Allowable Status
Vertical Crane Load (kN) FzedC = 13.2 FfrdC <= 30.6 PASS

3.2   Moment and Shear Resistance


Description Actual Allowable Status
Vertical Moment (kN-m) MyedC = 71.9 McrdC <= 221.1 PASS
Torsional Buckling Moment (kN-m) MyedC = 71.9 MbrdC <= 204.7 PASS
Shear Force (kN) VzedC = 53.7 VtrdC <= 489.1 PASS

3.3   Serviceability Limit State Check


Description Actual Allowable Status
2
Global Bending Stress (N/mm ) σxedC = 100.82 <= 250 PASS
Reversible Behaviour Stresses - exp 7.2c (N/mm2) exp7.2cC =107.595 <= 250 PASS
2
Reversible Behaviour Stresses - exp 7.2e (N/mm ) exp7.2eC =232.585 <= 250 PASS

3.4   Combined Bending and Torsion Check


Description Actual Allowable Status
Unity Factor UccmC = 0.35 <= 1 PASS

3.5   Deflection

https://www.ecplusdesign.com/StaticPages/MyDrive# 9/10
12/28/21, 9:14 AM MONORAIL/RUNWAY BEAM DESIGN

Description Actual Allowable Status


Total Deflection (mm) δC = 3.1 δallowC <= 4.5 PASS

3.6   Vibration Check


Description Actual Allowable Status
Slenderness of Bottom Flange SbfC = 29.2 SbfallowC <= 250 PASS

https://www.ecplusdesign.com/StaticPages/MyDrive# 10/10

You might also like