DESIGN OF LOWER PADEYE - connected with spreader Beam bottom
Maximum static sling force, Fstat 20.00 kN
2.04 MT
Sling angle w.r.t horizontal, q1 60.00 Deg
Dynamic effect load factor, Lf1 2.00
Select sling with diameter, ds 12.00 mm
Factored sling force, Ffact=Fstat*Lf1 40.00 kN
4.08 MT
Shackle details :
Select CROSBY G-2130
working load limit 4.75 MT Shackle Ok
Pin diameter, D 22.40 mm Ok
Width of jaw opening, B 31.80 mm
Inside depth of shackle, Hs 70.50 mm
Pin hole diameter, pd = D*1.05 26.00 mm
Minimum = D + 3mm 25.40 mm
Maximum = D + 5mm 27.40 mm
Padeye Plate Details:
Main plate radius, Rm 60.00 mm
Cheek plate radius, Rc1 40.00 mm
Cheek plate radius, Rc2 0.00 mm
Main plate thickness, tm 16.00 mm
Cheek plate thickness (inner), tc1 4.00 mm
Effective cheek plate thickness, tc1eff 0.00 mm
Total plate thickness, t 24.00 mm
Spacer plate thickness,ts 0.00 mm
Yield strength of material, Fy 355.00 N/mm2
Modulus of Elasticity of steel, E 210000.00 N/mm2
Ultimate Tensile Strength, Fu 470.00 N/mm2
Weld strength, Fw 220.00 N/mm2
Factor for combined stress 0.90
(A) Check for clearance:
1)Thickness of padeye > 75% of jaw width of shackle
Total thickness of padeye (not including spacer plate) 24 mm OK
2) Sling clearance (Im)
Main plate radius, Rm 60.00 mm
Dia of sling ds = 12.00 mm
Clearance Im = Hs - ds - (Rm-0.5*hole diameter) = 11.50 mm
lm > 0.5*ds & Ok
3) Clearance between the edge of cheek plate & Shackle (X)
X > 6mm & < 12 mm
Width of jaw opening, B 31.80 mm
Width of main and cheek plates (add spacer plate if reqd) 24.00 mm
Gap on each side, X 3.90 mm
Minimum Gap = 3 mm 3.00 mm
Maximum Gap = 12 mm 12.00 mm
Ok
Safety factors
Safety factor for tension (Ωt) = 1.67 AISC (J4-1)
Safety factor for bearing (Ωbr) = 2.00 AISC (J7-1)
Safety factor for flexure (Ωb) = 1.67 AISC (Section F1)
Safety factor for beam shear (Ωv) = 1.67 AISC (Section G1)
Safety factor for pull-out shear (Ωv1) = 2.00 AISC (J4-4)
Safety factor for weld (Ωw) = 2.00 AISC (Table J2.5)
Allowable stresses
Allowable axial stress, Fa = Fy/(Ωt) 212.57 N/mm2 AISC (J4-1)
2
Allowable bearing stress, Fb = 1.8*Fy/(Ωbr) 319.50 N/mm AISC (J7-1)
2
Allowable bending stress, Fip or Fop = Fy/(Ωb) 212.57 N/mm AISC (Section F1)
2
Allowable beam shear stress, Fv = 0.6*Fy/(Ωv) 127.54 N/mm AISC (Section G1)
Allowable pull-out shear stress, Fv1 = 0.6*Fu/(Ωv1) 141.00 N/mm2 AISC (J4-4)
(B) Check for bearing stress:
Bearing area, Ab = D* (tm+2*tc1eff+2*tc2eff) 358.40 mm2
Bearing stress, fb = (Ffact / Ab) 111.61 N/mm2
Unity check, UC = fb/Fb 0.35 < 1.0, Ok
(C) Check for pull out shear stress:
Section, g - g
Shear area, As =(2*Rm-pd/2)*tm+(2*Rc1-pd/2)*tc1eff*2+(2*Rc2-pd/2 1712.00 mm2
Shear stress, fv = (Ffact / As) 23.36 N/mm2
Unity check, UC = fv/Fv1 0.17 < 1.0, Ok
(D) Check for tear-out failure : (AISC-J4-5)
Enter the dimensions of failure plane
a 60.00 mm
b 60.00 mm
c 60.00 mm
d 60.00 mm
For section, β - β
Available strength, Rn1 = [(0.6*Fy*(a*tm+0.5*pi*Rc1*tm)+1.0*Fu*(b*tm))/(Ωv1)]/1000
Rn1= 434.91 kN
Available strength, Rn1 = [(0.6*Fy*(b*tm+0.5*pi*Rc1*tm)+1.0*Fu*(a*tm))/(Ωv1)]/1000
Rn2= 434.91 kN
Available strength, Minimum of Rn1& Rn2 434.91 kN AISC (J4-5)
Required strength, Ffact 40.00 kN
Unity check, UC 0.09 < 1.0, Ok
For section, a - a
Available strength, Rn3 = [(0.6*Fy*(c*tm+d*tm)+1.0*Fu*(2*Rc1*tm))/(Ωv1)]/1000
Rn3= 505.28 kN AISC (J4-5)
Required strength, Ffact 40.00 kN
Unity check, UC 0.08 < 1.0, Ok
Summary
CHECK UC / Ratio REMARKS
Bearing 0.35 < 1.0, Ok
Pull-Out shear 0.17 < 1.0, Ok
Tear-out failure 0.09 < 1.0, Ok
(E) Stress check at base of padeye :
0
y
150
z
z
y
H= 150
Force due to out of plane load, FV*sin q2 0.00 kN
Total out of plane load, Fop = 10% of Ffact+FV*sin q2 4.00 kN
Stiffener thickness, ts 0.00 mm
Effective Width, Be =2*(ts*0.38*(E/Fy)0.5) = 0.00 150.00 mm
Effective area, Ae = H*tm+2*Be*ts 2400.00 mm2
Elastic modulus, Syy 6.00E+04 mm3
Elastic modulus, Szz 6.83E+02 mm3
Check for Axial stress
Axial stress, fa = FV / Ae 14.43 N/mm2
Unity check, UC = fa/Fa 0.07 < 1.0, Ok
Check for Bending stress
In-plane Bending
Distance of C.O.G from top fibre, Z1 75.00 mm
Distance of pin hole from top fibre, Z2 75.00 mm
Lever arm dist.b/w centre of pin hole and base of padeye,Lah 275.00 mm
Lever arm dist.b/w centre of pin hole and C.O.G,Lav 0.00 mm
In-plane Bending moment, Mip = FH*Lah-FV*Lav 5.50 kNm
In-plane Bending stress, fip = Mip / Syy 91.67 N/mm2
Unity check, UC = fip/Fip 0.43 < 1.0, Ok
Out-of-plane Bending
Out-of-plane Bending moment, Mop = Fop*Lah 1.10 kNm
Out-of-plane Bending stress, fop = Mop / Szz 1611.33 N/mm2
AISC(H1-1b)
Unity check, UC = fop/Fop 7.58 > 1.0 Not ok
Utilisation ratio-Combined axial & bending
fa/Fa < 0.2, (fa/2Fa)+((fip/Fip)+(fop/Fop)) ≤ 1.0 8.05 > 1.0 Not Ok
Out of plane shear stress
Shear area, asm=(2*(Be*ts)) 0.0 mm2
Shear stress, fvm = (Fop / asm) 0.00 N/mm2
Unity check, UC = fvm/Fv 0.00 < 1.0, Ok
Horizontal shear stress
Horizontal shear area, avs=(H*tm) 2400.00 mm2
Horizontal shear stress, fvs= (FH/avs) 8.33 N/mm2
Unity check, UC = fvs/Fv 0.07 < 1.0, Ok
Resultant shear stress, tr = (fvm^2+fvs^2) 0.5 8.33 N/mm2
Combined stresses check
Von-mises stress = ( sx2 + sy2 - sx sy + 3 tr2 ) 0.5
sx= fa + fip + fop = 1717.43 N/mm2
sy = 0.0 N/mm2
tr = 8.33 N/mm2
Combined stress, 1717.49 N/mm2
Allowable combined stress =0.90* Fy 319.50 N/mm2
Unity check, UC 5.38 > 1.0 Not Ok
Summary
Stress check at base of padeye
Axial tension 0.07 < 1.0, Ok
Bending (flexure-Inplane) 0.43 < 1.0, Ok
Bending (flexure-out-of-plane) 7.58 > 1.0, Not Ok
Combined Axial & Bending 8.05 > 1.0, Not Ok
Shear (Out-of plane) 0.00 < 1.0, Ok
Shear (Horizontal plane) 0.07 < 1.0, Ok
Combined (Von-mises) check 5.38 > 1.0, Not Ok
(F) Stress check at section A-A :
Out of Plane
Total out of plane load, Fop = 5% of Ffact+FV*sin q2 4.00 kN
Effective area, Aeff = (H-pd)*tm+((2*Rc1-pd)*2*tc1eff)+((2*Rc2-pd)*2*tc2eff)
1984 mm2
Check for Axial stress
Axial stress, fa = FV / Aeff 17.46 N/mm2
Unity check, UC = fa/Fa 0.08 < 1.0, Ok
Out of plane shear stress
Shear area, Aeff 1984.00 mm2
Shear stress, fv = (Fop / Aeff) 2.02 N/mm2
Unity check, UC = fv/Fv 0.02 < 1.0, Ok
y
z
16
y
150
Horizontal shear stress
Shear area, Aeff 1984.00 mm2
Horizontal shear stress, fvs= (FH/Aeff) 10.08 N/mm2
Unity check, UC = fvs/Fh 0.08 < 1.0, Ok
Resultant shear stress, tr = (fv^2+fvs^2) 0.5 10.28 N/mm2
Combined stresses check
Von-mises stress = ( sx2 + sy2 - sx sy + 3 tr2 ) 0.5
sx= fa + fip + fop = 17.46 N/mm2
sy = 0.00 N/mm2
tr = 10.28 N/mm2
Combined stress, 24.9 N/mm2
Allowable combined stress =0.90* Fy 319.50 N/mm2
Unity check, UC 0.08 < 1.0, Ok
Summary
Stress check at section A-A :
Axial tension 0.08 < 1.0, Ok
Shear (Out-of plane) 0.02 < 1.0, Ok
Shear (Horizontal plane) 0.08 < 1.0, Ok
Combined (Von-mises) check 0.08 < 1.0, Ok
SECTIONAL PROPERTIES
DIMENSIONS (uncorroded):
Width Depth Offset Corrosion allowance, Cal = 0 [mm]
[mm] [mm] [mm] Yield stress, Fy = 345 [Mpa]
0 0
150.0 0.0 0.0 Elastic section modulus, E = 2.1E+05 [Mpa]
16.0 150.0 0.0
150.0 0.0 0.0 100
Depth, H = 150.00 mm
DIMENSIONS (corroded):
Width Depth
Type
[mm] [mm] 0
150.0 0.0 #DIV/0! -100 0 100
16.0 150.0 Compact
150.0 0.0 #DIV/0!
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
-100
Summary:
Area
Axial 2400.0 mm2
Y-Shear 0.0 mm2
Z-Shear 2400.0 mm2
Elastic section properties
Moment of inertia (y-y) 4500000.0 mm4 Section modulus (y-y) 60000.0 mm3
Moment of inertia (z-z) 51200 mm4 Section modulus (z-z) 682.7 mm3
Torsional constant (x-x) 204800.0 mm4
Plastic section properties
Section modulus (y-y) 90000.0 mm3
Section modulus (z-z) #VALUE! mm3
Elastic section properties :
Total cross-sectional area, Ax = 24.00 [cm2]
Area in Y-direction, Ay = 0.00 [cm2]
Area in Z-direction, Az = 24.00 [cm2]
St.Venant's torisonal constant, J or Ixx = 20.48 [cm4]
Moment of inertia about Y-axis, Iyy = 450.00 [cm4]
Moment of inertia about Z-axis, Izz = 5.12 [cm4]
Radius of gyration about Y-axis, ryy = 4.33 [cm]
Radius of gyration about Z-axis, rzz = 0.46 [cm]
Distance of COG from top fibre, y1 = 7.50 [cm]
Distance of COG from botttom fibre, y2 = 7.50 [cm]
Section modulus, Wy1 = 60.00 [cm3]
Section modulus, Wy2 = 60.00 [cm3]
Distance of COG, z1 = 7.50 [cm]
Distance of COG, z2 = 7.50 [cm]
Section modulus, Wz1 = 0.68 [cm3]
Section modulus, Wz2 = 0.68 [cm3]
Plastic section properties :
Location of Equal Area axis from the top fibre, y = 7.50 [cm]
Equal Area axis for this section lies Outside the top flange
Plastic section modulus about Y-axis, Zpy = 90.00 [cm3]
Plastic section modulus about Z-axis, Zpz = [cm3]
Criteria (as per table B4.1)
For FLANGES
0.38 √(E/Fy) = 9.38 Case 2 (flexure in flanges of doubly & singly symmetric
0.95√(kc E/FL) = 24.42 shaped built-up sections)
kc = 4 /√(h/tw) = 1.31
Min Kc = 0.35
Max Kc = 0.76 Note [a] of table B4.1
Govrn.Kc = 0.76
ratio, Wy1/Wy2 = 1.00
Note [b] of table B4.1
FL = 241.50 [Mpa]
For WEBS
Twice the distance between centroidal axis & bottom
= 15.00 [cm] Assuming the top flange is under compression
edge of compression flange,hc
hc/tw = 9.38 Case 11 (flexure in webs of singly symmetric I-shapes)
Twice the distance between equal area axis &
= 15.00 [cm] Assuming the top flange is under compression
bottom edge of compression flange, h p
Mp = 31050000.0 [N-mm]
My = 20700000.0 [N-mm]
(hc/hp) √(E/Fy)
= 47.59
(0.54 (Mp/My) - 0.09)2
5.70 √(E/Fy) = 140.63
ECTIONAL PROPERTIES
Case 2 (flexure in flanges of doubly & singly symmetric I-
shaped built-up sections)
Assuming the top flange is under compression
Case 11 (flexure in webs of singly symmetric I-shapes)
Assuming the top flange is under compression