____ _____ _____ _____
|     \| _ |    __|   __|
| | |       |   __|__    |
|____/|__|__|__| |_____|
Version : v1.0
Standard : AISC 360 and Design Guide 11 (Published by AISC)
DAFS CODE
# Model
1           S=0,0   E=0,6    RS=M      RE=M
T           350     350      8         200     10   200   10
Bracing     0T      1.5T     3T        4.5T    6T
# Loading
1         DLPRE     PEGG     14ssđc3.85    -0.00
1         DLPRE     PEGG     96.97    -0.25
1         DLPRE     PEGG     96.97    -0.50
1         DLPRE     PEGG     96.97    -0.75
1         DLPRE     PEGG     143.85   -1.00
1         LLPRE     PEGG     5.06     -0.00
1         LLPRE     PEGG     3.d37      -0.25
1         LLPRE     PEGG     3.38     -0.50
1         LLPRE     PEGG     3.3d6      -1.00
1         DLCOM     PEGG     164.d47    -0.25
1         DLCOM     PEGG     110.đá7    -0.50
1         DLCOM     PEGG     110.47   -0.75
1         DLCOM     PEGG     164.1    -1.00
1         LLCOM     PEGG     16.87    -0.00
1         LLCOM     PEGG     11.25    -0.25
1         LLCOM     PEGG     11.25    -0.50
1         LLCOM     PEGG     11.25    -0.75
1         LLCOM     PEGG     16.87    -1.00
CHECKING VIBRATION FLOOR
    Criterion              :   WALKING
    Occupancy              :   PAPER OFFICE
    Accelarate Ratio Limit :   [a/g] = 0.50 %
    The Effecitive Panel W :   W     = 746.48 kN
    The frequency of system:   fn    = 4.64 Hz
    Calculation for a/g    :   a/dedeg   = 0.29*exp(-0.35*fn)/(0.03*W) = 0.26 % =>
Satisfield
CHECKING CAPACITY
***********************************************************************************
*****
Shear Stud Checking
***********************************************************************************
*****
    Factor                       : Rg = 1.00
    Factor                       : Rp = 0.60
    Diameter                     : d = 19.00 mm²
    Modulus of Concrete          : Ec = 4700 x fc^0.5 = 15938.48 MPa
    Tensile strength of stud     : Fu   = 500.00 MPa
    Maximum shear force for stud : V'   = ekN dededeededAISC 360)
    Capacity per stud            : Qn   = min(Rg*Rp*Asc*Fu,0.5*Asc*sqrt(fc*Ec)) =
60.69 kN
    Number of stud               : n    = V'/Qn = 78 pcs
    Stud Spacing                 : d    = L_joist/(n-1) = 77.92 mm   < 250mm => Non-
Satisfiled
***********************************************************************************
*****
Element ID : 1      Type Element : Joist
***********************************************************************************
*****
 I - Section Information :
---------------------------------
 - Section Dimensions :
    Section Type         = Major
    Web Dimension        = 350 mm x 8      mm
    Top Flange           = 200 mm x 10 mm
    Bottom Flange        = 200 mm x 10 mm
    ========
    Compression Flange = 200 mm x 10 mm
    Tension Flange       = 200 mm x 10 mm
ee
 - Section Properties (Referred To Compree       cm²
    Gravity Center    : YG     = 18.50        cm      ( From Bottom Flange )
    Moment Inertia    : Ix     = 15821.d83       cm^4
    Section Modulus   : edSxc = 855.ed23 e³
    Plastic Modulus   : Zx     = 965.00       cm³
    Warping Contants : Cw      = 432000.00 cm^6
    Shear Center      : x0     = 0.d.00          cm
de
 II.2- Allowable Stress in Bending Mn:
        Cm = 1.0 From Code
    - Check Of Web
        hc =   35.00 cm    , hp =   35.00 cm
        Mp = 332.92 kN.m, My = Sx(Min) * Fy = 295.05 kN.m
        Compact Limit          = [(hc/hp)*sqrt(E/Fy)]/[0.54*(Mp/My)-0.09]² = 89.28
        NonCompact Limit       = 5.70*sqrt(E/Fy) = 137.24
        hw/tw                  = 43.75
        hw/tw ≤ λ_pw => Web is Compact
    - Check Of Compression Flange
        kc = 4.0 / sqrt(hw/tw)= 0.60
        Compact Limit          = 0.38*sqrt(E/Fy)       = 9.15
        NonCompact Limit       = 0.95*sqrt(Kc*E/FL) = 21.26
        λ = (b/t)_c                     = 10.00
   + Shear force : 60.06 kN
    - Allowable Stress In Shear Fv:
        Where a/h > 3.00 or a/h > [260/(h/tw)]² = 35.32
        Then kv = 5.00
        Due to hw/tw = 43.75 ≤ 1.1*sqrt(kv*E/Fy) = 59.22
        => Cv   = 1.0
        Then Vn = 0.6 * Fy * Aw * Cv = 612.72 kN
        Take Ω = 0.9
        Vr/(Vn * Ω) = 0.11 (Satisfied)
***********************************************************************************
*****
Element ID : 2      Type Element : Joist
***********************************************************************************
*****
 I - Section Information :
---------------------------------
 - Section Dimensions :
    Section Type        = Major
    Web Dimension       = 350 mm x 8      mm
    Top Flange          = 200 mm x 10 mm
    Bottom Flange       = 200 mm x 10 mm
    ========
    Compression Flange = 200 mm x 10 mm
    Tension Flange      = 200 mm x 10 mm
 - Section Properties   (Referred To Compression Flange):
    Section Area        : Ax    = 68.00       cm²
    Gravity Center      : YG    = 18.50       cm    ( From   Bottom   Flange   )
    Moment Inertia      : Ix    = 15821.67    cm^4
    Moment Inertia      : Iy    = 1334.83     cm^4
    Section Modulus     : Sxc = 855.23        cm³
    Section Modulus     : Sxt = 855.23        cm³
    Plastic Modulus     : Zx    = 965.00      cm³
    Warping Contants    : Cw    = 432000.00 cm^6
    Shear Center        : x0    = 0.00        cm
    Shear Center        : y0    = 0.00        cm
 II.2- Allowable Stress in Bending Mn:
        Cm = 1.0 From Code
    - Check Of Web
        hc =   35.00 cm   , hp =   35.00 cm
        Mp = 332.92 kN.m, My = Sx(Min) * Fy = 295.05 kN.m
        Compact Limit         = [(hc/hp)*sqrt(E/Fy)]/[0.54*(Mp/My)-0.09]² = 89.28
        NonCompact Limit      = 5.70*sqrt(E/Fy) = 137.24
        hw/tw                 = 43.75
        hw/tw ≤ λ_pw => Web is Compact
    - Check Of Compression Flange
        kc = 4.0 / sqrt(hw/tw)= 0.60
        Compact Limit         = 0.38*sqrt(E/Fy)    = 9.15
        NonCompact Limit      = 0.95*sqrt(Kc*E/FL) = 21.26
        λ = (b/t)_c                     = 10.00
        => Flange is Non-Compact
    - Calculate the lateral-torsional buckling modification factor Cb:
        Rm = 1.0 (single curvature bending)
        Cb = (12.5*Mmax)/(2.5*Mmax + 3*Ma + 4*Mb + 3*Mc) = 1.00 ≤ 3.00
    - The nominal flexural strength :
        ---------------------------------------------
        1- Compression Flange Yielding:
        Mn = Fy*Zp                                           = 332.92 kN.m
        2- Lateral-Torsional Buckling:
        Lp = 1.76*ry*sqrt(E/Fy)                              = 187.75 cm
        Lr =
1.95*rts*(E/(0.7*Fy))*sqrt(J/(Sxc*h0))*sqrt(1+sqrt(1+6.76*((0.7*Fy)*Sxc*h0/
(E*J))²));
        Lr =                                                   529.94 cm
        Lb = 0.00 cm
        Due to Lb ≤ Lp => The limit state of lateral-torsional buckling does not
apply
        3- Compression Flange Local Buckling:
        λf = bfc/(2*tfc) = 10.00
        λpf = λ_pf = 9.15
        λrf = λ_pf = 21.26
        For Section with Non-Compact Flanges
        Mn = Mp-(Mp-0.7*Fy*Sxc)*(λ_f - λ_pf)/(λ_rf - λ_pf) = 324.05 kN.m
        Then Mn (Control) = 324.05 kN.m
 II.3- Unity Check For Axial and Bending:
        ------------------------------------
        Mr = 0.00 kN.m
        Mct = Mnt * Ω = 291.64 kN.m
    Ratio check = M/Mct = 0.00 ≤ 1 => Satisfield
 III - Check for Shear:
   + Shear force : 121.72 kN
    - Allowable Stress In Shear Fv:
        Where a/h > 3.00 or a/h > [260/(h/tw)]² = 35.32
        Then kv = 5.00
        Due to hw/tw = 43.75 ≤ 1.1*sqrt(kv*E/Fy) = 59.22
        => Cv   = 1.0
        Then Vn = 0.6 * Fy * Aw * Cv = 612.72 kN
        Take Ω = 0.9
        Vr/(Vn * Ω) = 0.22 (Satisfied)
***********************************************************************************
*****
Element ID : 3      Type Element : Joist
***********************************************************************************
*****
 I - Section Information :
---------------------------------
 - Section Dimensions :
    Section Type        = Major
    Web Dimension       = 350 mm x 8      mm
    Top Flange          = 200 mm x 10 mm
    Bottom Flange       = 200 mm x 10 mm
    ========
    Compression Flange = 200 mm x 10 mm
    Tension Flange      = 200 mm x 10 mm
 - Section Properties   (Referred To Compression Flange):
    Section Area        : Ax    = 68.00       cm²
    Gravity Center      : YG    = 18.50       cm    ( From   Bottom   Flange   )
    Moment Inertia      : Ix    = 15821.67    cm^4
    Moment Inertia      : Iy    = 1334.83     cm^4
    Section Modulus     : Sxc = 855.23        cm³
    Section Modulus     : Sxt = 855.23        cm³
    Plastic Modulus     : Zx    = 965.00      cm³
    Warping Contants    : Cw    = 432000.00 cm^6
    Shear Center      :   x0   =   0.00     cm
    Shear Center      :   y0   =   0.00     cm
 II.2- Allowable Stress in Bending Mn:
        Cm = 1.0 From Code
    - Check Of Web
        hc =   35.00 cm   , hp =   35.00 cm
        Mp = 332.92 kN.m, My = Sx(Min) * Fy = 295.05 kN.m
        Compact Limit         = [(hc/hp)*sqrt(E/Fy)]/[0.54*(Mp/My)-0.09]² = 89.28
        NonCompact Limit      = 5.70*sqrt(E/Fy) = 137.24
        hw/tw                 = 43.75
        hw/tw ≤ λ_pw => Web is Compact
    - Check Of Compression Flange
        kc = 4.0 / sqrt(hw/tw)= 0.60
        Compact Limit         = 0.38*sqrt(E/Fy)    = 9.15
        NonCompact Limit      = 0.95*sqrt(Kc*E/FL) = 21.26
        λ = (b/t)_c                     = 10.00
        => Flange is Non-Compact
    - Calculate the lateral-torsional buckling modification factor Cb:
        Rm = 1.0 (single curvature bending)
        Cb = (12.5*Mmax)/(2.5*Mmax + 3*Ma + 4*Mb + 3*Mc) = 1.00 ≤ 3.00
    - The nominal flexural strength :
        ---------------------------------------------
        1- Compression Flange Yielding:
        Mn = Fy*Zp                                           = 332.92 kN.m
        2- Lateral-Torsional Buckling:
        Lp = 1.76*ry*sqrt(E/Fy)                              = 187.75 cm
        Lr =
1.95*rts*(E/(0.7*Fy))*sqrt(J/(Sxc*h0))*sqrt(1+sqrt(1+6.76*((0.7*Fy)*Sxc*h0/
(E*J))²));
        Lr =                                                   529.94 cm
        Lb = 0.00 cm
        Due to Lb ≤ Lp => The limit state of lateral-torsional buckling does not
apply
        3- Compression Flange Local Buckling:
        λf = bfc/(2*tfc) = 10.00
        λpf = λ_pf = 9.15
        λrf = λ_pf = 21.26
        For Section with Non-Compact Flanges
        Mn = Mp-(Mp-0.7*Fy*Sxc)*(λ_f - λ_pf)/(λ_rf - λ_pf) = 324.05 kN.m
        Then Mn (Control) = 324.05 kN.m
 II.3- Unity Check For Axial and Bending:
        ------------------------------------
        Mr = 0.00 kN.m
        Mct = Mnt * Ω = 291.64 kN.m
    Ratio check = M/Mct = 0.00 ≤ 1 => Satisfield
 III - Check for Shear:
   + Shear force : 121.72 kN
    - Allowable Stress In Shear Fv:
        Where a/h > 3.00 or a/h > [260/(h/tw)]² = 35.32
        Then kv = 5.00
        Due to hw/tw = 43.75 ≤ 1.1*sqrt(kv*E/Fy) = 59.22
        => Cv   = 1.0
        Then Vn = 0.6 * Fy * Aw * Cv = 612.72 kN
        Take Ω = 0.9
        Vr/(Vn * Ω) = 0.22 (Satisfied)
***********************************************************************************
*****
Element ID : 4      Type Element : Joist
***********************************************************************************
*****
 I - Section Information :
---------------------------------
 - Section Dimensions :
    Section Type        = Major
    Web Dimension       = 350 mm x 8      mm
    Top Flange          = 200 mm x 10 mm
    Bottom Flange       = 200 mm x 10 mm
    ========
    Compression Flange = 200 mm x 10 mm
    Tension Flange      = 200 mm x 10 mm
 - Section Properties   (Referred To Compression Flange):
    Section Area        : Ax    = 68.00       cm²
    Gravity Center      : YG    = 18.50       cm    ( From   Bottom   Flange   )
    Moment Inertia      : Ix    = 15821.67    cm^4
    Moment Inertia      : Iy    = 1334.83     cm^4
    Section Modulus     : Sxc = 855.23        cm³
    Section Modulus     : Sxt = 855.23        cm³
    Plastic Modulus     : Zx    = 965.00      cm³
    Warping Contants    : Cw    = 432000.00 cm^6
    Shear Center        : x0    = 0.00        cm
    Shear Center        : y0    = 0.00        cm
 II.2- Allowable Stress in Bending Mn:
        Cm = 1.0 From Code
    - Check Of Web
        hc =   35.00 cm   , hp =   35.00 cm
        Mp = 332.92 kN.m, My = Sx(Min) * Fy = 295.05 kN.m
        Compact Limit         = [(hc/hp)*sqrt(E/Fy)]/[0.54*(Mp/My)-0.09]² = 89.28
        NonCompact Limit      = 5.70*sqrt(E/Fy) = 137.24
        hw/tw                 = 43.75
        hw/tw ≤ λ_pw => Web is Compact
    - Check Of Compression Flange
        kc = 4.0 / sqrt(hw/tw)= 0.60
        Compact Limit         = 0.38*sqrt(E/Fy)    = 9.15
        NonCompact Limit      = 0.95*sqrt(Kc*E/FL) = 21.26
        λ = (b/t)_c                     = 10.00
        => Flange is Non-Compact
    - Calculate the lateral-torsional buckling modification factor Cb:
        Rm = 1.0 (single curvature bending)
        Cb = (12.5*Mmax)/(2.5*Mmax + 3*Ma + 4*Mb + 3*Mc) = 1.00 ≤ 3.00
    - The nominal flexural strength :
        ---------------------------------------------
        1- Compression Flange Yielding:
        Mn = Fy*Zp                                           = 332.92 kN.m
        2- Lateral-Torsional Buckling:
        Lp = 1.76*ry*sqrt(E/Fy)                              = 187.75 cm
        Lr =
1.95*rts*(E/(0.7*Fy))*sqrt(J/(Sxc*h0))*sqrt(1+sqrt(1+6.76*((0.7*Fy)*Sxc*h0/
(E*J))²));
        Lr =                                                   529.94 cm
        Lb = 0.00 cm
        Due to Lb ≤ Lp => The limit state of lateral-torsional buckling does not
apply
        3- Compression Flange Local Buckling:
        λf = bfc/(2*tfc) = 10.00
        λpf = λ_pf = 9.15
        λrf = λ_pf = 21.26
        For Section with Non-Compact Flanges
        Mn = Mp-(Mp-0.7*Fy*Sxc)*(λ_f - λ_pf)/(λ_rf - λ_pf) = 324.05 kN.m
        Then Mn (Control) = 324.05 kN.m
 II.3- Unity Check For Axial and Bending:
        ------------------------------------
        Mr = 0.00 kN.m
        Mct = Mnt * Ω = 291.64 kN.m
    Ratio check = M/Mct = 0.00 ≤ 1 => Satisfield
 III - Check for Shear:
   + Shear force : 121.72 kN
    - Allowable Stress In Shear Fv:
        Where a/h > 3.00 or a/h > [260/(h/tw)]² = 35.32
        Then kv = 5.00
        Due to hw/tw = 43.75 ≤ 1.1*sqrt(kv*E/Fy) = 59.22
        => Cv   = 1.0
        Then Vn = 0.6 * Fy * Aw * Cv = 612.72 kN
        Take Ω = 0.9
        Vr/(Vn * Ω) = 0.22 (Satisfied)
***********************************************************************************
*****
Element ID : 5      Type Element : Joist
***********************************************************************************
*****
 I - Section Information :
---------------------------------
 - Section Dimensions :
    Section Type        = Major
    Web Dimension       = 350 mm x 8      mm
    Top Flange          = 200 mm x 10 mm
    Bottom Flange       = 200 mm x 10 mm
    ========
    Compression Flange = 200 mm x 10 mm
    Tension Flange      = 200 mm x 10 mm
 - Section Properties   (Referred To Compression Flange):
    Section Area        : Ax    = 68.00       cm²
    Gravity Center      : YG    = 18.50       cm    ( From   Bottom   Flange   )
    Moment Inertia      : Ix    = 15821.67    cm^4
    Moment Inertia      : Iy    = 1334.83     cm^4
    Section Modulus     : Sxc = 855.23        cm³
    Section Modulus    :   Sxt   =   855.23      cm³
    Plastic Modulus    :   Zx    =   965.00      cm³
    Warping Contants   :   Cw    =   432000.00   cm^6
    Shear Center       :   x0    =   0.00        cm
    Shear Center       :   y0    =   0.00        cm
 II.2- Allowable Stress in Bending Mn:
        Cm = 1.0 From Code
    - Check Of Web
        hc =   35.00 cm   , hp =   35.00 cm
        Mp = 332.92 kN.m, My = Sx(Min) * Fy = 295.05 kN.m
        Compact Limit         = [(hc/hp)*sqrt(E/Fy)]/[0.54*(Mp/My)-0.09]² = 89.28
        NonCompact Limit      = 5.70*sqrt(E/Fy) = 137.24
        hw/tw                 = 43.75
        hw/tw ≤ λ_pw => Web is Compact
    - Check Of Compression Flange
        kc = 4.0 / sqrt(hw/tw)= 0.60
        Compact Limit         = 0.38*sqrt(E/Fy)    = 9.15
        NonCompact Limit      = 0.95*sqrt(Kc*E/FL) = 21.26
        λ = (b/t)_c                     = 10.00
        => Flange is Non-Compact
    - Calculate the lateral-torsional buckling modification factor Cb:
        Rm = 1.0 (single curvature bending)
        Cb = (12.5*Mmax)/(2.5*Mmax + 3*Ma + 4*Mb + 3*Mc) = 1.00 ≤ 3.00
    - The nominal flexural strength :
        ---------------------------------------------
        1- Compression Flange Yielding:
        Mn = Fy*Zp                                           = 332.92 kN.m
        2- Lateral-Torsional Buckling:
        Lp = 1.76*ry*sqrt(E/Fy)                              = 187.75 cm
        Lr =
1.95*rts*(E/(0.7*Fy))*sqrt(J/(Sxc*h0))*sqrt(1+sqrt(1+6.76*((0.7*Fy)*Sxc*h0/
(E*J))²));
        Lr =                                                   529.94 cm
        Lb = 0.00 cm
        Due to Lb ≤ Lp => The limit state of lateral-torsional buckling does not
apply
        3- Compression Flange Local Buckling:
        λf = bfc/(2*tfc) = 10.00
        λpf = λ_pf = 9.15
        λrf = λ_pf = 21.26
        For Section with Non-Compact Flanges
        Mn = Mp-(Mp-0.7*Fy*Sxc)*(λ_f - λ_pf)/(λ_rf - λ_pf) = 324.05 kN.m
        Then Mn (Control) = 324.05 kN.m
 II.3- Unity Check For Axial and Bending:
        ------------------------------------
        Mr = 0.00 kN.m
        Mct = Mnt * Ω = 291.64 kN.m
    Ratio check = M/Mct = 0.00 ≤ 1 => Satisfield
 III - Check for Shear:
   + Shear force : 60.06 kN
    - Allowable Stress In Shear Fv:
        Where a/h > 3.00 or a/h > [260/(h/tw)]² = 35.32
        Then kv = 5.00
        Due to hw/tw = 43.75 ≤ 1.1*sqrt(kv*E/Fy) = 59.22
        => Cv   = 1.0
        Then Vn = 0.6 * Fy * Aw * Cv = 612.72 kN
        Take Ω = 0.9
        Vr/(Vn * Ω) = 0.11 (Satisfied)
***********************************************************************************
*****
Element ID : 6      Type Element : Girder
***********************************************************************************
*****
 I - Section Information :
---------------------------------
 - Section Dimensions :
    Section Type        = Major
    Web Dimension       = 350 mm x 8      mm
    Top Flange          = 200 mm x 10 mm
    Bottom Flange       = 200 mm x 10 mm
    ========
    Compression Flange = 200 mm x 10 mm
    Tension Flange      = 200 mm x 10 mm
 - Section Properties   (Referred To Compression Flange):
    Section Area        : Ax    = 68.00       cm²
    Gravity Center      : YG    = 18.50       cm    ( From   Bottom   Flange   )
    Moment Inertia      : Ix    = 15821.67    cm^4
    Moment Inertia      : Iy    = 1334.83     cm^4
    Section Modulus     : Sxc = 855.23        cm³
    Section Modulus     : Sxt = 855.23        cm³
    Plastic Modulus     : Zx    = 965.00      cm³
    Warping Contants    : Cw    = 432000.00 cm^6
    Shear Center        : x0    = 0.00        cm
    Shear Center        : y0    = 0.00        cm
 II.2- Allowable Stress in Bending Mn:
        Cm = 1.0 From Code
    - Check Of Web
        hc =   35.00 cm   , hp =   35.00 cm
        Mp = 332.92 kN.m, My = Sx(Min) * Fy = 295.05 kN.m
        Compact Limit         = [(hc/hp)*sqrt(E/Fy)]/[0.54*(Mp/My)-0.09]² = 89.28
        NonCompact Limit      = 5.70*sqrt(E/Fy) = 137.24
        hw/tw                 = 43.75
        hw/tw ≤ λ_pw => Web is Compact
    - Check Of Compression Flange
        kc = 4.0 / sqrt(hw/tw)= 0.60
        Compact Limit         = 0.38*sqrt(E/Fy)    = 9.15
        NonCompact Limit      = 0.95*sqrt(Kc*E/FL) = 21.26
        λ = (b/t)_c                     = 10.00
        => Flange is Non-Compact
    - Calculate the lateral-torsional buckling modification factor Cb:
        Rm = 1.0 (single curvature bending)
        Cb = (12.5*Mmax)/(2.5*Mmax + 3*Ma + 4*Mb + 3*Mc) = 1.92 ≤ 3.00
    - The nominal flexural strength :
        ---------------------------------------------
        1- Compression Flange Yielding:
        Mn   = Fy*Zp                                         = 332.92 kN.m
        2- Lateral-Torsional Buckling:
        Lp = 1.76*ry*sqrt(E/Fy)                              = 187.75 cm
        Lr =
1.95*rts*(E/(0.7*Fy))*sqrt(J/(Sxc*h0))*sqrt(1+sqrt(1+6.76*((0.7*Fy)*Sxc*h0/
(E*J))²));
        Lr =                                                   529.94 cm
        Lb = 150.00 cm
        Due to Lb ≤ Lp => The limit state of lateral-torsional buckling does not
apply
        3- Compression Flange Local Buckling:
        λf = bfc/(2*tfc) = 10.00
        λpf = λ_pf = 9.15
        λrf = λ_pf = 21.26
        For Section with Non-Compact Flanges
        Mn = Mp-(Mp-0.7*Fy*Sxc)*(λ_f - λ_pf)/(λ_rf - λ_pf) = 324.05 kN.m
        Then Mn (Control) = 324.05 kN.m
 II.3- Unity Check For Axial and Bending:
        ------------------------------------
        Mr = 226.62 kN.m
        Mct = Mnt * Ω = 291.64 kN.m
    Ratio check = M/Mct = 81596.25 ≤ 1 => Satisfield
 III - Check for Shear:
   + Shear force : 181.78 kN
    - Allowable Stress In Shear Fv:
        Where a/h > 3.00 or a/h > [260/(h/tw)]² = 35.32
        Then kv = 5.00
        Due to hw/tw = 43.75 ≤ 1.1*sqrt(kv*E/Fy) = 59.22
        => Cv   = 1.0
        Then Vn = 0.6 * Fy * Aw * Cv = 612.72 kN
        Take Ω = 0.9
        Vr/(Vn * Ω) = 0.33 (Satisfied)
***********************************************************************************
*****
Element ID : 7      Type Element : Girder
***********************************************************************************
*****
 I - Section Information :
---------------------------------
 - Section Dimensions :
    Section Type        = Major
    Web Dimension       = 350 mm x 8      mm
    Top Flange          = 200 mm x 10 mm
    Bottom Flange       = 200 mm x 10 mm
    ========
    Compression Flange = 200 mm x 10 mm
    Tension Flange      = 200 mm x 10 mm
 - Section Properties (Referred To Compression Flange):
    Section Area      : Ax    = 68.00       cm²
    Gravity Center    : YG    = 18.50       cm    ( From   Bottom   Flange   )
    Moment Inertia     :   Ix    =   15821.67    cm^4
    Moment Inertia     :   Iy    =   1334.83     cm^4
    Section Modulus    :   Sxc   =   855.23      cm³
    Section Modulus    :   Sxt   =   855.23      cm³
    Plastic Modulus    :   Zx    =   965.00      cm³
    Warping Contants   :   Cw    =   432000.00   cm^6
    Shear Center       :   x0    =   0.00        cm
    Shear Center       :   y0    =   0.00        cm
 II.2- Allowable Stress in Bending Mn:
        Cm = 1.0 From Code
    - Check Of Web
        hc =   35.00 cm   , hp =   35.00 cm
        Mp = 332.92 kN.m, My = Sx(Min) * Fy = 295.05 kN.m
        Compact Limit         = [(hc/hp)*sqrt(E/Fy)]/[0.54*(Mp/My)-0.09]² = 89.28
        NonCompact Limit      = 5.70*sqrt(E/Fy) = 137.24
        hw/tw                 = 43.75
        hw/tw ≤ λ_pw => Web is Compact
    - Check Of Compression Flange
        kc = 4.0 / sqrt(hw/tw)= 0.60
        Compact Limit         = 0.38*sqrt(E/Fy)    = 9.15
        NonCompact Limit      = 0.95*sqrt(Kc*E/FL) = 21.26
        λ = (b/t)_c                     = 10.00
        => Flange is Non-Compact
    - Calculate the lateral-torsional buckling modification factor Cb:
        Rm = 1.0 (single curvature bending)
        Cb = (12.5*Mmax)/(2.5*Mmax + 3*Ma + 4*Mb + 3*Mc) = 1.92 ≤ 3.00
    - The nominal flexural strength :
        ---------------------------------------------
        1- Compression Flange Yielding:
        Mn = Fy*Zp                                           = 332.92 kN.m
        2- Lateral-Torsional Buckling:
        Lp = 1.76*ry*sqrt(E/Fy)                              = 187.75 cm
        Lr =
1.95*rts*(E/(0.7*Fy))*sqrt(J/(Sxc*h0))*sqrt(1+sqrt(1+6.76*((0.7*Fy)*Sxc*h0/
(E*J))²));
        Lr =                                                   529.94 cm
        Lb = 150.00 cm
        Due to Lb ≤ Lp => The limit state of lateral-torsional buckling does not
apply
        3- Compression Flange Local Buckling:
        λf = bfc/(2*tfc) = 10.00
        λpf = λ_pf = 9.15
        λrf = λ_pf = 21.26
        For Section with Non-Compact Flanges
        Mn = Mp-(Mp-0.7*Fy*Sxc)*(λ_f - λ_pf)/(λ_rf - λ_pf) = 324.05 kN.m
        Then Mn (Control) = 324.05 kN.m
 II.3- Unity Check For Axial and Bending:
        ------------------------------------
        Mr = 226.62 kN.m
        Mct = Mnt * Ω = 291.64 kN.m
    Ratio check = M/Mct = 81596.25 ≤ 1 => Satisfield
 III - Check for Shear:
+ Shear force : 181.78 kN
 - Allowable Stress In Shear Fv:
     Where a/h > 3.00 or a/h > [260/(h/tw)]² = 35.32
     Then kv = 5.00
     Due to hw/tw = 43.75 ≤ 1.1*sqrt(kv*E/Fy) = 59.22
     => Cv   = 1.0
     Then Vn = 0.6 * Fy * Aw * Cv = 612.72 kN
     Take Ω = 0.9
     Vr/(Vn * Ω) = 0.33 (Satisfied)