0% found this document useful (0 votes)
82 views9 pages

Laplace Transform for Math Students

1) The Laplace transform of a function F(t) is defined as an integral from 0 to infinity of e^-st F(t) dt, where s is a complex number. 2) The Laplace transform can be used to solve linear initial-value problems. 3) Basic formulas for the Laplace transform are derived, including L{a} = a/s, L{e^at} = 1/(s-a), L{t} = 1/s^2, L{t^2} = 2/s^3, and L{t^3} = 6/s^4. The pattern emerges that L{t^n} = n!/(s^(n

Uploaded by

Winter Nai
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
82 views9 pages

Laplace Transform for Math Students

1) The Laplace transform of a function F(t) is defined as an integral from 0 to infinity of e^-st F(t) dt, where s is a complex number. 2) The Laplace transform can be used to solve linear initial-value problems. 3) Basic formulas for the Laplace transform are derived, including L{a} = a/s, L{e^at} = 1/(s-a), L{t} = 1/s^2, L{t^2} = 2/s^3, and L{t^3} = 6/s^4. The pattern emerges that L{t^n} = n!/(s^(n

Uploaded by

Winter Nai
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 9

WEEK1 CHAPTER 1 MAT485/565

LAPLACE TRANSFORM

Definition

The Laplace transform of the function F(t) on [0 ,  ) is f(s), that is

 − st
ℒ {F(t)} = 0 e F( t ) dt = f(s)

provided the improper integral exist.

Note: Laplace transform is a special type of integral transform and it is very useful in solving
linear initial-value problems.

BUILDING THE BASIC FORMULA


a
(1) ℒ{a} =
s

Proof:
 − st m
ℒ {a} = 0 e a dt = lim a
m→ 0
e −st dt
m
e − st
= a lim
m→ − s
0
a
= − lim (e − ms − 1)
s m→
a
= − (0 − 1) if s > 0
s
a
= = f(s)
s

(2)
1
ℒ { e at } =
s−a

Proof:
 − st m − ( s − a )t
0 e m →  0
ℒ { e at } = e at dt = lim e dt

1 m
= lim − e − ( s − a )t
m→ s − a 0
1 m
= − lim e − ( s − a)t
s − a m→ 0
1
= − lim (e − ( s − a)m − 1)
s − a m→
1
= − (0 − 1) if s - a > 0
s−a
1
= = f(s)
s−a

Rusyah/Norma Laplace transform


WEEK1 CHAPTER 1 MAT485/565

 − st m
t e − st dt
0 e m →  0
(3) a) ℒ {t} = t dt = lim

u v
t + e-st
1
1 − e − st
- s
1 − st
0 e
s2
m
t 1 − st
= lim ( − e − st − e )
m→ s s2 0
1 m
= − lim (st + 1)e − st
2 m→ 0
s
= −
s
1

lim (sm + 1)e − ms − 1
2 m→

1
= − (0 − 1) if s > 0
s2
1
=
s2

1
ℒ {t} =
s2

 − st m 2
t e − st dt
0 e m →  0
b) ℒ { t2 } = t 2 dt = lim

u v
t2 + e-st
1
2t − e − st
- s
1 − st
2 + e
s2
1 − st
0 − e
s3

m
 t 2 2t 2  − st
= lim  − − − e
m →  s s 2 s 3 
 0
 m 2 2m 2  
= lim  − − − e − ms + 2 
m →   s s 2 s 3  s 3 

2
=0+
s3
2
=
s3

Rusyah/Norma Laplace transform


WEEK1 CHAPTER 1 MAT485/565

 − st m 3
t e − st dt
0 e m →  0
c) ℒ { t3 } = t 3 dt = lim

u v

t3 e-st
+
1
3t2 − e − st
- s
1 − st
6t e
+ s2
1 − st
6 - − e
s3
1 − st
0 e
s4
m
 t 3 3t 2 6t 6  − st
= lim  − − − − e
m →  s s 2 s 3 s 4 
 0
 m 3
3m 2
6m 6  − ms  6 
= lim  − − − − e −  − 
m →   2 3 4 4 

s s s s   s 
6
=0+
s4
6
=
s4
n!
Observe the pattern (behavior). Hence, ℒ{ tn } = , n = 1, 2, 3……..
n +1
s

 − st m − st
0 e m →  0
(4) ℒ { cos at } = cos at dt = lim e cos at dt

− st
Consider e cos at dt

u v

cos at e-st
+
1 − st
- a sin at − e
- s

1
e − st
+
- a2 cos at
2
s
1 − st a − st a2
 e − st cos at dt = − e cos at + e sin at − e − st cos at dt 
s 2 2
s s
s2 + a2 − st 1 a − st
e cos at dt = − e − st cos at + e sin at
2
s s s2

Rusyah/Norma Laplace transform


WEEK1 CHAPTER 1 MAT485/565

m
m s2  1 a  − st
 L{cos at } = lim  e − st
cos at dt = lim 2  − cos at + 2 sin at e
m→ s + a2
m→ 0
 s s  0

s2  1 a   1 
= lim  − cos ma + sin ma e − sm −  − 
s 2 + a 2 m →   s s2   s 
s2 1
= 0 + 
2 2 s
s +a
s
=
s2 + a2

s
ℒ {cos at } =
s + a2
2

 − st m − st
0 e m →  0
(5) ℒ { sin at } = sin at dt = lim e sin at dt

− st
Consider e sin at dt

u v

sin at + e-st

1 − st
a cos at − e
- s

1
e − st
+
- a2 sin at
2
s
1 − st a − st a2
 e − st sin at dt = − e sin at − e cos at − e − st sin at dt 
s 2 2
s s
s2 + a2 − st 1 a − st
e sin at dt = − e − st sin at − e cos at
2
s s s2

m
m  1 s2 a  −st

−st
 L{sin at } = lim e sin at dt = lim 2  − sin at − 2 cos at e
m → 0 m → s + a  s
2
s  0

s2  1 a   a 
= lim  − sin ma + cos ma e − sm −  − 
s 2 + a 2 m →   s s2   s2 
 s2 a 
=  0 + 
2 2
s +a  s2 
a
=
s2 + a2
a
ℒ {sin at } =
s + a2
2

Rusyah/Norma Laplace transform


WEEK1 CHAPTER 1 MAT485/565

e x − e −x e at − e −at
(6) By definition : sinh x =  sinh at =
2 2
 − st m − st  e at − e − at 
ℒ { sinh at } =  e sinh at dt = lim e   dt
0 m→ 0  2 
 
1 m − ( s − a )t
= lim e  − e − ( s + a)t dt
2 m→ 0
m
1  1 1 
= lim  − e − ( s − a )t + e − ( s + a )t 
2 m →  s − a s+a 0

1  1 1   1 1 
= lim  − e − ( s − a)m + e − ( s + a)m  −  − + 
2 m →  s − a s+a   s−a s+a

1 1 1 
= 0 + − 
2 s−a s+a
1  2a 
=  
2  s 2 − a 2 
a
=
2
s − a2

a
ℒ {sinh at } =
s − a2
2

e x + e− x eat + e−at
(7) By definition : cosh x =  cosh at =
2 2
 m  e at + e −at 
ℒ { cosh at } =  0
e −st cosh at dt = lim
m→ 0  e −st 
 2
dt


1 m
= lim
2 m→  0
e −( s−a )t + e −( s+a )t dt
m
1  1 1 
= lim  − e −( s−a )t − e −( s+a )t 
2 m →   s−a s+a 0

1  1 1   1 1 
= lim  − e −( s−a )m − e −( s+a )m  −  − − 
2 m →  s − a s+a   s − a s + a

1 1 1 
= 0 + + 
2 s−a s+a
1  2s 
=  
2  s2 − a2 
s
=
s − a2
2

s
ℒ {cosh at} =
s2 − a2

Rusyah/Norma Laplace transform


WEEK1 CHAPTER 1 MAT485/565

Example
Use the basic Laplace transform for the following:

5
a) ℒ {5} =
𝑠
−7
b) ℒ {-7} =
𝑠
3t 1
c) ℒ {e } =
𝑠−3
-4t 1
d) ℒ {e } =
𝑠+4
𝑠
e) ℒ {cos 6t} =
𝑠 2 +36
10
f) ℒ {sin 10t} =
𝑠 2 +100
1
1 12 12
g) ℒ {sinh12 𝑡 } = 1 =
𝑠2 − 144𝑠2 −1
144
𝑠
h) ℒ {cosh 2t} =
𝑠 2 −4
5!
i) ℒ {t5} = 𝑠6

LAPLACE TRANSFORM OF A PIECEWISE CONTINUOUS FUNCTION

Example
Use the definition to find ℒ{F(t)}.

0 0≤𝑡<3
a) F(t) = {
2 𝑡≥3

𝑡 0≤𝑡<1
b) F(t) = {
1 𝑡≥1

𝑠𝑖𝑛𝑡 0≤𝑡<𝜋
c) F(t) = {
0 𝑡≥𝜋

d)

F(t)

(2,2)
1

0 1
t

Rusyah/Norma Laplace transform


WEEK1 CHAPTER 1 MAT485/565

F(t)
e)

Solution
∞ 3 ∞
a) ℒ{F(t)} = ∫0 𝑒 −𝑠𝑡 𝐹(𝑡)𝑑𝑡 = ∫0 𝑒 −𝑠𝑡 (0)𝑑𝑡 + ∫3 𝑒 −𝑠𝑡 (2)𝑑𝑡
2
= lim 𝑒 −𝑠𝑡 |𝑚
3
𝑚→∞ −𝑠
−2
= lim (𝑒 −𝑠𝑚 − 𝑒 −3𝑠 )
𝑠 𝑚→∞
−2
= (0 − 𝑒 −3𝑠 ) , s > 0
𝑠
2
= 𝑠 𝑒 −3𝑠

∞ 1 ∞
b) ℒ{F(t)} = ∫0 𝑒 −𝑠𝑡 𝐹(𝑡)𝑑𝑡 = ∫0 𝑒 −𝑠𝑡 (𝑡)𝑑𝑡 + ∫1 𝑒 −𝑠𝑡 𝑑𝑡

u v
t 𝑒 −𝑠𝑡
+

−1
1 𝑒 −𝑠𝑡
𝑠
-
1
0 𝑒 −𝑠𝑡
𝑠2

1 𝑚
−𝑡 1 𝑒 −𝑠𝑡
= ( 𝑠 − 𝑠2 ) 𝑒 −𝑠𝑡 | + lim |
0 𝑚→∞ −𝑠 1

1 1 1 1
= − [(𝑠 + 𝑠2 ) 𝑒 −𝑠 ] + 𝑠2 + [− 𝑠 lim (𝑒 −𝑚𝑠 − 𝑒 −𝑠 )]
𝑚→∞

1 1 1 1
= − [(𝑠 + 𝑠2 ) 𝑒 −𝑠 ] + 𝑠2 + [− 𝑠 (0 − 𝑒 −𝑠 )] , s > 0

1
= 𝑠2 (1 − 𝑒 −𝑠 )

∞ 𝜋 ∞
c) ℒ{F(t)} = ∫0 𝑒 −𝑠𝑡 𝐹(𝑡)𝑑𝑡 = ∫0 𝑒 −𝑠𝑡 (sin 𝑡)𝑑𝑡 + ∫𝜋 𝑒 −𝑠𝑡 (0)𝑑𝑡
𝜋
= ∫0 𝑒 −𝑠𝑡 (sin 𝑡)𝑑𝑡

Rusyah/Norma Laplace transform


WEEK1 CHAPTER 1 MAT485/565

u v
−𝑠𝑡
sin t 𝑒
+

−1
cos t - 𝑠
𝑒 −𝑠𝑡

+ 1
- sin t 𝑒 −𝑠𝑡
𝑠2

𝜋 sin 𝑡 cos 𝑡 1
∫0 𝑒 −𝑠𝑡 (sin 𝑡)𝑑𝑡 = − ( 𝑠
+ 𝑠2
) 𝑒 −𝑠𝑡 − 𝑠2
∫ 𝑒 −𝑠𝑡 𝑠𝑖𝑛𝑡 𝑑𝑡

𝑠2 +1 sin 𝑡 cos 𝑡
𝑠2
∫ 𝑒 −𝑠𝑡 sin 𝑡 𝑑𝑡 = − ( 𝑠
+ 𝑠2
) 𝑒 −𝑠𝑡 + 𝐶

−𝑠2 sin 𝑡 cos 𝑡 𝜋


∴ ℒ{𝐹(𝑡)} = ( + ) 𝑒 −𝑠𝑡 |
𝑠2 +1 𝑠 𝑠2 0
𝑠2 1 −𝑠𝜋 1
= − 𝑠2 +1 [(0 − 𝑠2 ) 𝑒 − (0 + )]
𝑠2
𝑠2 1 𝑒 −𝑠𝜋 +1
= 𝑠2 +1 (𝑒 −𝑠𝜋 + 1) =
𝑠2 𝑠2 +1

0 , 0≤𝑡 ≤1
d) F(t) = {
𝑡 , 𝑡 ≥1
∞ 1 ∞
ℒ{F(t)} = ∫0 𝑒 −𝑠𝑡 𝐹(𝑡)𝑑𝑡 = ∫0 𝑒 −𝑠𝑡 (0)𝑑𝑡 + ∫1 𝑒 −𝑠𝑡 (𝑡)𝑑𝑡

u v
−𝑠𝑡
t 𝑒
+

−1
1 𝑒 −𝑠𝑡
𝑠
-
1
0 𝑒 −𝑠𝑡
𝑠2

𝑡 1 𝑚
= lim − (𝑠 + 𝑠2) 𝑒 −𝑠𝑡 |
𝑚→∞ 1

𝑚 1 1 1
= lim − [( 𝑠 + 𝑠2) 𝑒 −𝑠𝑚 − (𝑠 + 𝑠2) 𝑒 −𝑠 ]
𝑚→∞

1 1 𝑠+1 −𝑠
= − [(0) − (𝑠 + 𝑠2 ) 𝑒 −𝑠 ] = 𝑠2
𝑒 , s>0

1−𝑡 , 0≤𝑡 ≤ 1
e) F(t) = { 0 , 𝑡 ≥ 1

∞ 1 ∞
ℒ{F(t)} = ∫0 𝑒 −𝑠𝑡 𝐹(𝑡)𝑑𝑡 = ∫0 𝑒 −𝑠𝑡 (1 − 𝑡)𝑑𝑡 + ∫1 𝑒 −𝑠𝑡 (0)𝑑𝑡

Rusyah/Norma Laplace transform


WEEK1 CHAPTER 1 MAT485/565

u v
−𝑠𝑡
1-t 𝑒
+

−1
-1 𝑒 −𝑠𝑡
𝑠
-
1
0 𝑒 −𝑠𝑡
𝑠2

1 1 1
= − (1 − 𝑡) 𝑠 𝑒 −𝑠𝑡 + 𝑠2 𝑒 −𝑠𝑡 |
0

1 1 1
= 𝑠2 𝑒 −𝑠 + 𝑠 − 𝑠2

TRY THIS
Find ℒ{𝐹(𝑡)} using the definition of Laplace transformation, given that:
3𝑡 2 , 0 < 𝑡 < 𝜋
𝐹(𝑡) = {
cos 𝑡 , 𝑡≥ 𝜋

6 3𝜋2 6𝜋 6 𝑠
(Ans: − 𝑒 −𝜋𝑠 ( + + + ))
𝑠3 𝑠 𝑠2 𝑠3 𝑠 2 +1

Rusyah/Norma Laplace transform

You might also like