0% found this document useful (0 votes)
31 views36 pages

Laplace Transform1

The document provides an introduction to Laplace Transforms, detailing its definition, properties, and applications in engineering. It covers topics such as the Laplace transforms of various functions, the existence theorem, and specific properties related to time and frequency domain transformations. The lecture is developed by the Mathematics Faculty at Goa College of Engineering as part of their Mathematics-III course.

Uploaded by

f09778026
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
31 views36 pages

Laplace Transform1

The document provides an introduction to Laplace Transforms, detailing its definition, properties, and applications in engineering. It covers topics such as the Laplace transforms of various functions, the existence theorem, and specific properties related to time and frequency domain transformations. The lecture is developed by the Mathematics Faculty at Goa College of Engineering as part of their Mathematics-III course.

Uploaded by

f09778026
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 36

GOA COLLEGE OF ENGINEERING

“BHAUSAHEB BANDODKAR TECHNICAL EDUCATION COMPLEX"


FARMAGUDI, PONDA- GOA - INDIA

MATHEMATICS-III
UNIT 2: LAPLACE TRANSFORMS
LECTURE 1

DEVELOPED BY MATHEMATICS FACULTY


DEPARTMENT OF SCIENCE & HUMANITIES
GOA COLLEGE OF ENGINEERING
Introduction
Laplace Transforms named after Pierre-Simon
Laplace is an integral transform that converts a
function of real variable t (often time) to a function of
frequency s. The transform has many application in
engineering. Specifically it transforms a differential
equation to algebraic equation, a convolution of
functions to multiplication of their transform etc. This
transformation enable finding solution and analysis of
the engineering problem dealt with.
LAPLACE TRANSFORMS LECTURE 1

TOPICS TO BE COVERED:

➢Definition of Laplace Transforms.


➢Laplace transforms of exponential, trigonometric,
algrabiac functions.
➢Existence theorem for Laplace transforms.
➢Properties of Laplace transforms.
➢Computation of Laplace transforms using properties.
Definition
• Definition: If f(t) a function defined for t > 0 is piece wise continuous and if

‫׬‬0 𝑒 −𝑠𝑡 𝑓 𝑡 𝑑𝑡 is finite for some s > 0 then it is a function of s, called the Laplace
transform. It is denoted by

L( f(t) )=𝑓 𝑠 = F(s)= ‫׬‬0 𝑒 −𝑠𝑡 𝑓 𝑡 𝑑𝑡
Laplace Transform of standard functions
∞ ∞ −𝑠𝑡 𝑒 −𝑠𝑡 𝑡 = ∞ 1 1
• f(t)=1, L(f(t)) =‫׬‬0 𝑒 −𝑠𝑡 𝑓𝑡 𝑑𝑡 = ‫׬‬0 𝑒 1 𝑑𝑡=
−𝑠 𝑡 = 0
=- 0 − 1 = ; s>0
𝑠 𝑠
∞ −𝑠𝑡 ∞
• f(t)=𝑡 α , L(f(t))=‫׬‬0 𝑒 𝑓 𝑡 𝑑𝑡= ‫׬‬0 𝑒 −𝑠𝑡 𝑡 α 𝑑𝑡 by substituting st=x
∞ −𝑥 𝑥 α 𝑑𝑥 1 ∞ −𝑥 α
= ‫׬‬0 𝑒 = α+1 ‫׬‬0 𝑒 𝑥 𝑑𝑥 where Γα is the gamma function
𝑠α 𝑠 𝑠
1 𝑛!
= α+1 Γ(α + 1) = 𝑛+1 , s > 0. when α=n is a positive integer.
𝑠 𝑠
Laplace Transforms of Standard Functions
1Τ Γ(3Τ2) 1 π
• If f(t)= 𝑡 2 then L(f(t)) = = since Γ(1/2)= π
𝑠 1/2+1 2 𝑠 3ൗ2

3Τ Γ(5Τ2) 31 π 1 1
• f(t)= 𝑡 2 then L(f(t)) = = since Γ(3/2)= Γ(1/2)= π
𝑠 3/2+1 2 2 𝑠 5ൗ2 2 2

𝑎𝑡 ∞ −𝑠𝑡 ∞ −𝑠𝑡 𝑎𝑡 ∞ −(𝑠−𝑎)𝑡


• If f(t)=𝑒 , L(f(t))= ‫׬‬0 𝑒 𝑓 𝑡 𝑑𝑡=‫׬‬0 𝑒 𝑒 𝑑𝑡= ‫׬‬0 𝑒 𝑑𝑡

1 −(𝑠−𝑎)𝑡 𝑡=∞ 1 1
=- 𝑒 =- 0−1 = for s-a > 0
(𝑠−𝑎) 𝑡 = 0 (𝑠−𝑎) (𝑠−𝑎)
Laplace Transforms of standard functions
2𝑡 1
• If f(t)= 𝑒 ; then L(f(t)) = for s > 2
𝑠−2
−3𝑡 1
• If f(t)= 𝑒 ; then L(f(t)) = for s >-3
(𝑠+3)
∞ −𝑠𝑡
• If f(t)=Cos(at) ; L(f(t)) = ‫׬‬0 𝑒 𝑓 𝑡 𝑑𝑡
∞ −𝑠𝑡 𝑒 −𝑠𝑡 𝑡=∞
• =‫׬‬0 𝑒 Cos(at)𝑑𝑡= 𝑠2+𝑎2 −𝑠𝐶𝑜𝑠𝑎𝑡 + 𝑎𝑆𝑖𝑛𝑎𝑡
𝑡=0
1 𝑠
= 2 2 0 − (−𝑠) = 2 2 for s >0
𝑠 +𝑎 𝑠 +𝑎
𝑒 𝑎𝑥
න 𝑒 𝑎𝑥 Cos(bx)𝑑𝑥 = 2 𝑎𝑐𝑜𝑠𝑏𝑥 + 𝑏𝑠𝑖𝑛𝑏𝑥
𝑎 + 𝑏2
Laplace Transforms of standard functions
𝑎𝑥
𝑒 𝑎𝑥
න𝑒 𝑆𝑖𝑛𝑏𝑥 𝑑𝑥 = 2 𝑎𝑆𝑖𝑛𝑏𝑥 − 𝑏𝐶𝑜𝑠𝑏𝑥
𝑎 + 𝑏2

• If f(t)=Sin(at);
∞ −𝑠𝑡 ∞ −𝑠𝑡
L(f(t)) = ‫׬‬0 𝑒 𝑓 𝑡 𝑑𝑡= ‫׬‬0 𝑒 Sin(at)𝑑𝑡
𝑒 −𝑠𝑡 𝑡=∞
= 2 2 −𝑠𝑆𝑖𝑛 𝑎𝑡 − aCos(𝑎𝑡)
𝑠 +𝑎 𝑡=0
1 𝑎
= 2 2 0 − (−𝑎) = 2 2
𝑠 +𝑎 𝑠 +𝑎

𝑠 3
If f(t)= Cos(2t), L(f(t))= If f(t)= Sin(3t), L(f(t))=
𝑠 2 +4 𝑠 2 +9
Laplace Transforms of Standard Functions
The list of functions and their Laplace transforms
Functions Laplace Transforms
α 1
𝑡 Γ(α + 1)
𝑠 α+1
𝑛 𝑛!
𝑡
𝑠 𝑛+1
1
𝑒 𝑎𝑡
𝑠−𝑎
𝑠
Cos at
𝑠 2 +𝑎2
𝑎
Sin at
𝑠 2 +𝑎2
Existence Theorem
• Theorem(Existence): If f(t) is a piece-wise continuous function and
there exist constants M>0,𝛼>0 and such that
𝑓(𝑡) ≤ 𝑀𝑒 𝛼𝑡 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 0.
Then Laplace transform of f(t) exists.
• Proof: Since f(t) is piece wise continuous 𝑒 −𝑠𝑡 𝑓(𝑡) is also piece wise
continuous and therefore integrable. We only have to ensure that
the integral is bounded.
∞ −𝑠𝑡 ∞ −𝑠𝑡 ∞ −𝑠𝑡 𝛼𝑡
. ‫׬‬0 𝑒 𝑓 𝑡 𝑑𝑡 ≤ ‫׬‬0 𝑒 𝑓(𝑡) 𝑑𝑡 ≤ 𝑀 ‫׬‬0 𝑒 𝑒 𝑑𝑡
∞ −(𝑠−𝛼)𝑡 𝑒 −(𝑠−𝛼)𝑡 𝑡 = ∞ 𝑀
≤M ‫׬‬0 𝑒 𝑑𝑡=M = for s>𝛼
−(𝑠−𝛼) 𝑡 = 0 𝑠−𝛼
Existence Theorem
The function 𝑡 𝑛 , 𝑒 𝑎𝑡 , Cosat, Sinat are all continuous and
𝑡𝑛 ≤ 𝑒𝑡, 𝑒 𝑎𝑡 ≤ 2𝑒 𝑎𝑡
Cosat ≤ 1 ≤ 𝑒 0𝑡 , Sinat ≤ 1 ≤ 𝑒 0𝑡
Which Implies that they fulfil the existence condition.
𝑡 2
However the function 𝑒
is one function that does not fulfil the existence
condition. To prove that, lets assume that for some M and 𝛼
𝑡2
𝑒 ≤ 𝑀𝑒 𝛼𝑡 for all t >0. Then for t > 𝑙𝑜𝑔𝑒 𝑀 + 𝛼; 𝑡 2 > (𝑙𝑜𝑔𝑒 𝑀 + 𝛼)t
𝑡2
𝑒 > 𝑒 (𝑙𝑜𝑔𝑒 𝑀+𝛼)𝑡 = 𝑒 𝑙𝑜𝑔𝑒 𝑀𝑡+𝛼𝑡 > 𝑒 𝑙𝑜𝑔𝑒 𝑀+𝛼𝑡 =M 𝑒 𝛼𝑡 for t>1
𝑡 2
Which is a contradiction. Therefore 𝑒 does not satisfy the condition.
Properties of Laplace Transforms
• Suppose functions f(t), g(t) have a Laplace transforms F(s),G(s)
Sr Property Function in time t Function in s
no
1 Linearity 𝛼𝑓 𝑡 + 𝛽𝑔(𝑡) 𝛼𝐹(𝑠) + 𝛽𝐺(𝑠)

2 Frequency shift 𝑒 𝛼𝑡 f(t) F(s-𝛼)

3 Time scale f(at) 1 𝑠


F
𝑎 𝑎
4 Time shifting f(t-a)H(t-a) 𝑒 −𝑎𝑠 𝐹(𝑠)
H(t)-Heavyside’s unit step function
Properties of Laplace Transforms
• Suppose functions f(t), g(t) have a Laplace transforms F(s),G(s)
Sr Property Function in Function in frequency s
no time t
5 Time domain 𝑑𝑓 sF(s)-f(0)
derivative 𝑑𝑡
6 Second derivative 𝑑2 𝑓 𝑠 2 F(s)-sf(0)-𝑓 / (0)
𝑑𝑡 2
𝑛
7 General derivative 𝑑𝑛 𝑓
𝑛 𝑛−𝑘 𝑘−1
𝑛 𝑠 𝐹 𝑠 − ෍ 𝑠 𝑓 (0)
𝑑𝑡
𝑘=1
8 Integral of function 𝑡 1
F(s)
න 𝑓 𝑢 𝑑𝑢 𝑠
Properties of Laplace Transforms
• Suppose functions f(t), g(t) have a Laplace transforms F(s),G(s)
Sr Property Function in time t Function in frequency s
no
9 Frequency domain tf(t) 𝑑𝐹
-
𝑑𝑠
derivative
𝑛𝐹
10 Frequency domain 𝑡 𝑛 f(t) 𝑑
(−1)𝑛 𝑛
Higher derivative 𝑑𝑠
𝑡
11 Convolution න 𝑓 𝑡 − 𝑢 𝑔(𝑢)𝑑𝑢 F(s)G(s)
0
𝑝
12 Periodic function f(t+p)=f(t) 1 −𝑠𝑡 𝑓 𝑡 𝑑𝑡
න 𝑒
1 − 𝑒 −𝑠𝑝 0
Properties of Laplace Transforms
• Suppose functions f(t), g(t) have a Laplace transforms F(s),G(s)
Sr Property Function in Function in frequency s
No time t
𝑓(𝑡) ∞
13 Frequency domain
integral න 𝐹 𝑢 𝑑𝑢
𝑡 𝑠
Properties of Laplace Transforms
Proof of properties of Laplace Transforms:
1. Linearity:
∞ −𝑠𝑡
L(𝛼𝑓 𝑡 + 𝛽𝑔(𝑡))=‫׬‬0 𝑒 𝛼𝑓 𝑡 + 𝛽𝑔(𝑡) dt
∞ −𝑠𝑡 ∞ −𝑠𝑡
= 𝛼 ‫׬‬0 𝑒 𝛼𝑓 𝑡 𝑑𝑡+ 𝛽 ‫׬‬0 𝑒 𝑔(𝑡)dt
= 𝛼F(s)+𝛽G(s)
𝛼𝑡 ∞ −𝑠𝑡 𝛼𝑡
2.Frequency Shift: L(𝑒 f(t))= ‫׬‬0 𝑒 𝑒 𝑓 𝑡 dt
∞ −(𝑠−𝛼)𝑡
= ‫׬‬0 𝑒 𝑓 𝑡 dt = F(s- 𝛼) for s- 𝛼 > 𝑎
Properties of Laplace Transforms
∞ −𝑠𝑡
• 3. Time scale . L (f(at))= ‫׬‬0 𝑒 𝑓 𝑎𝑡 dt sub at=x
1 ∞ −𝑠𝑥
=
𝑎
‫׬‬0 𝑒 𝑎 𝑓 𝑥 dx = 𝑎1 F(𝑎𝑠 ) a>0

0 𝑡<0
• 4. Time Shifting. For function H(t)=ቊ called Heavyside’s
1 𝑡≥0
unit step function. L(f(t)H(t-a))= 𝑒 −𝑠𝑎 L(f(t+a))
∞ −𝑠𝑡 ∞ −𝑠𝑡
L(f(t-a)H(t-a))= ‫׬‬0 𝑒 f(t-a)H(t-a) dt= ‫𝑒 𝑎׬‬ f(t-a) dt
∞ −𝑠(𝑥+𝑎) −𝑠𝑎 ∞ −𝑠𝑥 −𝑠𝑎
= ‫׬‬0 𝑒 f(x) dx= 𝑒 ‫׬‬0 𝑒 f(x) dx= 𝑒 F(s) sub x=t-a
Properties of Laplace Transforms
𝑑𝑓 ∞ −𝑠𝑡 𝑑𝑓
• 5 Time domain derivative: L = ‫׬‬0 𝑒 dt
𝑑𝑡 𝑑𝑡
𝑡=∞ ∞ −𝑠𝑡
= 𝑒 −𝑠𝑡 𝑓(𝑡)ඌ-
𝑡=0 0
‫׬‬ (−𝑠)𝑒 f(t)dt integration by parts
∞ −𝑠𝑡
= 0-f(0)+s‫׬‬0 𝑒 f(t)dt= -f(0)+sF(s)= sF(s)-f(0)
• 6 Time domain second derivative:
L( 𝑓 // (𝑡))= sL(𝑓 / (𝑡))- 𝑓 / (0)=s(sF(s)-f(0))- 𝑓 / (0)
=𝑠 2 𝐹 𝑠 − 𝑠𝑓 0 − 𝑓 / (0)
Properties of Laplace Transforms
• 7. Time domain general derivative: Continuing from 6, we have
L( 𝑓 /// (𝑡))= 𝑠 3 𝐹 𝑠 − 𝑠 2 𝑓 0 − 𝑠𝑓 / (0)- 𝑓 // (0)
L( 𝑓 𝑛 (𝑡))=𝑠 𝑛 𝐹 𝑠 − σ𝑛𝑘=1 𝑠 𝑛−𝑘 𝑓 𝑘−1 (0) by generalizing.
• 8. Integral of time domain function:
𝑡
define g(t)= ‫׬‬0 𝑓 𝑢 𝑑𝑢 then g(0)=0 and 𝑔/ (t)=f(t)
/ 𝑡
L(𝑔 (t)) = L(f(t))= sL(g(t))-g(0)= sL(‫׬‬0 𝑓 𝑢 𝑑𝑢)-0
𝑡 𝑡 1
sL(‫׬‬0 𝑓 𝑢 𝑑𝑢)=L(f(t))=F(s) therefore L(‫׬‬0 𝑓 𝑢 𝑑𝑢)= 𝐹(𝑠)
𝑠
Properties of Laplace Transforms
• 9 Frequency domain derivative
𝑑𝐹 𝑑 ∞ −𝑠𝑡 ∞ 𝑑
= ‫׬‬0
𝑒 𝑓 𝑡 dt = ‫׬‬0 (𝑒 −𝑠𝑡 ) 𝑓 𝑡 dt
𝑑𝑠 𝑑𝑠 𝑑𝑠
∞ ∞ −𝑠𝑡
= ‫׬‬0 −𝑡𝑒 −𝑠𝑡 𝑓 𝑡 dt = − ‫׬‬0 𝑒 t 𝑓 𝑡 dt =- L(tf(t))
10 Frequency domain higher order derivative
𝑑𝑛𝐹 𝑑𝑛 ∞ −𝑠𝑡 ∞ 𝑑𝑛 −𝑠𝑡
𝑛 = 𝑛 ‫׬‬0
𝑒 𝑓 𝑡 dt = ‫׬‬0 𝑛 (𝑒 ) 𝑓 𝑡 dt
𝑑𝑠 𝑑𝑠 𝑑𝑠
∞ 𝑛 −𝑠𝑡 𝑛 ∞ −𝑠𝑡 𝑛
= ‫׬‬0 (−𝑡) 𝑒 𝑓 𝑡 dt =(−1) ‫׬‬0 𝑒 𝑡 𝑓 𝑡 dt
𝑛 𝑛
= (−1) 𝐿(𝑡 f(t))
Properties of Laplace Transforms
• 11 Convolution Theorem.
𝑡 ∞ −𝑠𝑡 𝑡
L(‫׬‬0 𝑓 𝑡 − 𝑢 𝑔(𝑢)𝑑𝑢)= ‫׬‬0 𝑒 ‫׬‬0 𝑓 𝑡 − 𝑢 𝑔(𝑢)𝑑𝑢 dt
∞ 𝑡 −𝑠𝑡
=‫׬‬0 ‫׬‬0 𝑒 𝑓 𝑡 − 𝑢 𝑔(𝑢)𝑑𝑢 dt changing the order of integration
∞ ∞ −𝑠𝑡
= ‫׬‬0 ‫ 𝑡 𝑓 𝑒 𝑢׬‬− 𝑢 𝑑𝑡 𝑔(𝑢) du sub x=t-u
∞ ∞ −𝑠(𝑥+𝑢)
= ‫׬‬0 ‫׬‬0 𝑒 𝑓 𝑥 𝑑𝑥 g(u)du
∞ −𝑠𝑥 ∞ −𝑠𝑢
= ‫׬‬0 𝑒 𝑓 𝑥 𝑑𝑥 ‫׬‬0 𝑒 𝑔(𝑢) du = F(s)G(s)
Properties of Laplace Transforms
• 12 Periodic function: f(t+p)=f(t) for all t>0.
∞ −𝑠𝑡 𝑝 −𝑠𝑡 ∞ −𝑠𝑡
L(f(t))=‫׬‬0 𝑒 𝑓 𝑡 dt= ‫׬‬0 𝑒 𝑓 𝑡 dt+ ‫𝑒 𝑝׬‬ 𝑓 𝑡 dt
𝑝 −𝑠𝑡 ∞ −𝑠𝑡
= ‫׬‬0 𝑒 𝑓 𝑡 dt+ ‫𝑒 𝑝׬‬ 𝑓 𝑡 dt by sub t-p=x in second integral
𝑝 −𝑠𝑡 ∞ −𝑠(𝑥+𝑝)
=‫𝑒 ׬‬ 𝑓 𝑡 dt+ ‫׬‬ 𝑒 𝑓 𝑥 + 𝑝 dx
0 0
𝑝 −𝑠𝑡 −𝑠𝑝 ∞ −𝑠𝑥
= ‫׬‬0 𝑒 𝑓 𝑡 dt+ 𝑒 ‫׬‬0 𝑒 𝑓 𝑥 dx; since f(x+p)=f(x)
−𝑠𝑝 ∞ −𝑠𝑡 𝑝 −𝑠𝑡
(1- 𝑒 ) ‫׬‬0 𝑒 𝑓 𝑡 dt= ‫׬‬0 𝑒 𝑓 𝑡 dt
∞ −𝑠𝑡 1 𝑝 −𝑠𝑡
Hence ‫׬‬0 𝑒 𝑓 𝑡 dt = ‫׬‬0 𝑒 𝑓 𝑡 dt
(1− 𝑒 )−𝑠𝑝
Properties of Laplace Transforms
• 13 Integration in the frequency domain:
∞ ∞ ∞ −𝑢𝑡 ∞ ∞ −𝑢𝑡
• ‫𝐹 𝑠׬‬ 𝑢 𝑑𝑢= ‫𝑠׬‬ ‫׬‬0 𝑒 𝑓 𝑡 𝑑𝑡 𝑑𝑢=‫׬ 𝑠׬‬0 𝑒 𝑓 𝑡 𝑑𝑡𝑑𝑢
∞ ∞ −𝑢𝑡
= ‫׬‬0 ‫𝑓 𝑒 𝑠׬‬ 𝑡 𝑑𝑢𝑑𝑡 by changing the order of integration

∞ 𝑒 −𝑢𝑡 𝑢 = ∞ ∞ 𝑒 −𝑢𝑡 𝑢 = ∞
=‫׬‬ ඌ f(t)dt= ‫׬‬0 ඌ f(t)dt
0 −𝑡 𝑢=𝑠 −𝑡 𝑢=𝑠
∞ 0−𝑒 −𝑠𝑡 ∞ 𝑒 −𝑠𝑡 ∞ −𝑠𝑡 f(t) f(t)
= ‫׬‬0 −𝑡 f(t)dt= ‫׬‬0 𝑡 f(t)dt= ‫׬‬0 𝑒 𝑡
dt= L
𝑡
Computation of Laplace transform
• Find the Laplace transform of L(𝑡 𝑛 ) =
𝑛!
𝑠 𝑛+1
a) 2Sin3t+4𝑒 −𝑡 -2 t3 b) 2Cos 2 t-3e3𝑡 c) 2e2𝑡 Cos3tSin5t-3 t3 L(Cosat)= 2 2
𝑠
𝑠 +𝑎
Solution: L(𝑒 𝑎𝑡 ) =
1
By Property of Linearity 𝑠−𝑎
a)L(2Sin3t+4𝑒 −𝑡 -2 t3 ) L(Sinat)= 2 2
𝑎
𝑠 +𝑎
−𝑡 3 3 1 3!
=2L(Sin3t)+4L(𝑒 )-2L( t )=2 2 +4 − 2 4
𝑠 +9 𝑠+1 𝑠
6 4 12
= 2 + − 4
𝑠 +9 𝑠+1 𝑠

b)L(2Cos 2 t−2e3𝑡 ) =L( 1+Cos2t-2e3𝑡 )= L(1)+L(Cos2t)-2L(e3𝑡 )


1 𝑠 2
= + 2 - 2𝐶𝑜𝑠 2 𝑡 = (1 + 𝐶𝑜𝑠2𝑡)
𝑠 𝑠 +4 𝑠−3
Computation of Laplace transform
• c) L(2 e2𝑡 Cos3tSin5t-3 t3 )=
2SinACosB=Sin(A+B)+Sin(A-B)
=L(2e2𝑡 Cos3tSin5t)-3L( t3 ) 2SinASinB=Cos(A-B)+Cos(A+B)
2CosACosB=Cos(A-B)-Cos(A+B)
=L(e2𝑡 (Sin8t+Sin(-2t))-3L( t3 )
=L(e2𝑡 Sin8t- e2𝑡 Sin2t)-3L(t3 )=L(e2𝑡 Sin8t)-L(e2𝑡 Sin2t)-3L(t3 )
8 2 3!
= 2 − -3 If L(f(t))= F(s) then L(eα𝑡 𝑓(𝑡)) = 𝐹(𝑠 − α)
(𝑠−2) +64 (𝑠−2)2 +4 𝑠4 𝑎
L(Sinat)= 2 2 , L(eα𝑡 Sinat)=
𝑎
𝑠 +𝑎 2 2
(𝑠−α) +𝑎
8 2 18 𝑠
L(Cosat)= 2 2 , L(eα𝑡 Cosat)=
𝑠−α
= 2 − 2 - 𝑠 +𝑎 (𝑠−α)2 +𝑎2
𝑠 −4𝑠+68 𝑠 −4𝑠+8 𝑠4
Computation of Laplace Transforms
• Find the Laplace transform of
𝑆𝑖𝑛3𝑡 𝑡
a) tCos2t b) c)‫׬‬0 𝑆𝑖𝑛𝑥 + 2𝑥 2 𝑑𝑥
𝑡
Solution:
𝑑 𝑑 𝑠 If L(f(t))=F(s) then
a)L( tCos2t)= - 𝐿(Cos2t ) = - 𝑑𝐹
𝑑𝑠 𝑑𝑠 𝑠 2 +4 L(tf(t))= -
𝑑𝑠
𝑓(𝑡) ∞
(𝑠 2 +4).1−2𝑠.𝑠 𝑠 2 −4 L =‫𝐹 𝑠׬‬ 𝑠 𝑑𝑠
=- 2 2 = 2 2 𝑡
𝑡 1
(𝑠 +4) (𝑠 +4) L ‫׬‬0 𝑓 𝑥 𝑑𝑥 = F(s)
𝑠
Computation of Laplace Transforms
𝑆𝑖𝑛3𝑡 ∞ ∞ 3
b) L = ‫𝑛𝑖𝑆(𝐿 𝑠׬‬3𝑡) 𝑑𝑠= ‫ 𝑠׬‬2 𝑑𝑥
𝑡 𝑥 +9
1 −1 𝑥 𝑥 = ∞ 𝜋 𝑠
=3 Tan ฬ = − Tan−1
3 3 𝑥=𝑠 2 3
𝑡 2 1 2 1 1 2!
c) L ‫׬‬0 𝑆𝑖𝑛𝑥 + 2𝑥 𝑑𝑥 = L 𝑆𝑖𝑛𝑥 + 2𝑥 = 2 +2 3
𝑠 𝑠 𝑠 +1 𝑠
1 4
= 2 + 4
𝑠(𝑠 +1) 𝑠
Computation of Laplace transforms

• Find the Laplace transform of the following


(a,1) (2a,1)
a)
y-axix

. . . . . .

a x-axis

b)
(1,1) (3,1)
. . . . . .

(1,0) (2,0) (3,0) x-axis


Computation of Laplace transforms
a)The saw tooth function is periodic with period a the function is defined by
𝑥
f(x)= ; 0≤ 𝑥 ≤ 𝑎 𝑎𝑛𝑑 𝑓 𝑥 + 𝑎 = 𝑓(𝑥).
𝑎
1 𝑎 −𝑠𝑥 1 𝑎 −𝑠𝑥 𝑥
L(f(x)) = −𝑎𝑠 ‫׬‬0 𝑒 𝑓 𝑥 𝑑𝑥= ‫𝑒 ׬‬ 𝑑𝑥
1−𝑒 1−𝑒 −𝑎𝑠 0 𝑎
1 1 𝑒 −𝑠𝑥 𝑥 = 𝑎 𝑎 𝑒 −𝑠𝑥
= 𝑥 ฬ − ‫׬‬0 𝑑𝑥 1 𝑝
1−𝑒 −𝑎𝑠 𝑎 −𝑠 𝑥 = 0 −𝑠 𝐿 𝑓 𝑡 = න 𝑒 −𝑠𝑡 𝑓 𝑡 𝑑𝑡
1−𝑒 −𝑠𝑝
1 1 𝑒 −𝑠𝑥 𝑥 = 𝑎 1 𝑒 −𝑠𝑥 𝑥 = 𝑎 0
= 𝑥 ฬ + ฬ
1−𝑒 −𝑎𝑠 𝑎 −𝑠 𝑥 = 0 𝑠 −𝑠 𝑥 = 0
1 1 𝑒 −𝑠𝑎 1 −𝑠𝑎
= 𝑎 − 0 − (𝑒 −1
1−𝑒 −𝑎𝑠 𝑎 −𝑠 𝑠2
(1−𝑎𝑠𝑒 −𝑠𝑎 −𝑒 −𝑠𝑎 )
=
𝑎 1−𝑒 −𝑎𝑠 𝑠2
Computation of Laplace transforms
𝑡 ;0 ≤ 𝑡 ≤ 1
b)The function is defined as f(t)=൜ , f(t+2)=f(t)
2 − 𝑡;1 < 𝑡 ≤ 2
1 1 2
L(f(t))= −2𝑠
1−𝑒
‫׬‬0 𝑡𝑒 −𝑠𝑡 𝑑𝑡 + ‫׬‬1 (2 − 𝑡)𝑒 −𝑠𝑡 𝑑𝑡
1 𝑒 −𝑠𝑡 𝑒 −𝑠𝑡 𝑡 =1 𝑒 −𝑠𝑡 𝑒 −𝑠𝑡 𝑡 =2
= 𝑡 − ቤ + 2−𝑡 + ቤ
1−𝑒 −2𝑠 −𝑠 𝑠2 𝑡 =0 −𝑠 𝑠2 𝑡 =1
1 𝑒 −𝑠 𝑒 −𝑠 −1 𝑒 −𝑠 𝑒 −2𝑠 −𝑒 −𝑠
= −2𝑠 − 2 −0+ +
1−𝑒 −𝑠 𝑠 𝑠 𝑠2
1 𝑒 −𝑠 𝑒 −𝑠 −1−𝑒 −2𝑠 +𝑒 −𝑠 1 1−2𝑠𝑒 −𝑠 +𝑒 −2𝑠
= −2𝑠 2 − 2 =
1−𝑒 𝑠 𝑠 1−𝑒 −2𝑠 𝑠2
Computation of Laplace transforms
• Find the Laplace transform of
a) H(t-1)(𝑡 2 +2𝑡 − 4) b) H(t-𝜋2)Sint L(H(t-a)f(t-a))=𝑒 −𝑎𝑠 𝐿(𝑓 𝑡 )

Solution: L(f(t)H(t-a))= 𝑒 −𝑎𝑠 L(f(t+a))

L(u(t-1)(𝑡 2 +2𝑡 − 4) )=𝑒 −𝑠 L((𝑡 + 1)2 +2(t+1)-4)


2 1 1
=𝑒 −𝑠 𝐿 𝑡2 + 4𝑡 − 1 = 𝑒 −𝑠 + 4 2 −
𝑠3 𝑠 𝑠
𝜋 𝜋 𝜋
𝜋 −2𝑠 𝜋 −2𝑠 −2𝑠 𝑠
b)L(H(t- )Sint)=𝑒 𝐿 𝑆𝑖𝑛 𝑡 + =𝑒 𝐿 𝐶𝑜𝑠𝑡 =𝑒
2 2 𝑠2 +1
Computation of Laplace transform
Verify convolution theorem for Laplace transform for the functions
f(t)=t; g(t)= 𝑒 2𝑡
𝑡 𝑡
(f*g)(t)=‫׬‬0 𝑓 𝑡 − 𝑢 𝑔 𝑢 𝑑𝑢 = ‫׬‬0 𝑡 − 𝑢 𝑒 2𝑢 𝑑𝑢
𝑒 2𝑢 𝑢 =𝑡 𝑡 𝑒 2𝑢 𝑡 𝑒 2𝑢 𝑢 = 𝑡 𝑡 𝑒 2𝑡 1
= 𝑡−𝑢 ฬ + ‫׬‬0 𝑑𝑢 =0 - + ฬ =- + −
2 𝑢 =0 2 2 4 𝑢 =0 2 4 4
𝑡 𝑒 2𝑡 1 1 1 2𝑡 1 1 1 1
L(- + − )= - 𝐿 𝑡 + 𝐿(𝑒 )- 𝐿 1 =− 2 + −
2 4 4 2 4 4 2𝑠 4(𝑠−2) 4𝑠
−2 𝑠−2 +𝑠2 −𝑠(𝑠−2) −2𝑠+4+𝑠 2 −𝑠2 +2𝑠 −2𝑠+4+𝑠 2 −𝑠2 +2𝑠 1
= 2 = 2 = 2 = 2
4𝑠 (𝑠−2) 4𝑠 (𝑠−2) 4𝑠 (𝑠−2) 𝑠 (𝑠−2)
Computation of Laplace transform
1
• L((f*g)(t))=
𝑠 2 (𝑠−2)
1 2𝑡 1
• L(f(t))=L(t)= L(g(t))=L(𝑒 ) =
𝑠2 (𝑠−2)
1 1 1
• L(f(t))L(g(t))= 2 = 2 = L((f*g)(t))
𝑠 (𝑠−2) 𝑠 (𝑠−2)
• Which is as per convolution theorem. Hence it is verified.
Use of Laplace transforms to compute
Integrals
Using Laplace transforms compute the integrals
∞ −2𝑡 ∞ −3𝑡 𝑆𝑖𝑛2𝑡
a)‫׬‬0 𝑒 𝑡𝐶𝑜𝑠3𝑡𝑑𝑡 b) ‫׬‬0 𝑒 𝑑𝑡
𝑡
𝑑 𝑑 𝑠 𝑠2 −9
a)L(𝑡𝐶𝑜𝑠3𝑡)= - 𝐿(𝐶𝑜𝑠3𝑡) = − = 2 2
𝑑𝑠 𝑑𝑠 𝑠 2 +9 (𝑠 +9)
∞ −𝑠𝑡 𝑠2 −9 ∞ −2𝑡 22 −9 −5
‫׬‬0 𝑒 𝑡𝐶𝑜𝑠3𝑡𝑑𝑡= (𝑠2 +9)2 therefore ‫׬‬0 𝑒 𝑡𝐶𝑜𝑠3𝑡𝑑𝑡= (22 +9)2= 169
𝑆𝑖𝑛2𝑡 ∞ 2 −1 𝑢 𝑢=∞ 𝜋 −1 𝑠
b)L =‫ 𝑠׬‬2 𝑑𝑢=𝑇𝑎𝑛 ฬ = - 𝑇𝑎𝑛
𝑡 𝑢 +4 2 𝑢=𝑠 2 2
∞ −𝑠𝑡 𝑆𝑖𝑛2𝑡 𝜋 −1 𝑠 ∞ −3𝑡 𝑆𝑖𝑛2𝑡 𝜋 −1 3
‫׬‬0 𝑒 𝑡
𝑑𝑡=
2
- 𝑇𝑎𝑛
2
therefore ‫׬‬0 𝑒 𝑡
𝑑𝑡=
2
- 𝑇𝑎𝑛
2
Problems on Laplace transforms
Compute the Laplace transform of
1)3𝑒 2𝑡 − 2𝐶𝑜𝑠𝑡 + 5𝑆𝑖𝑛3𝑡 2) 3𝑆𝑖𝑛2 3𝑡 − 2𝑡 2 𝑒 −𝑡
2𝑡 𝑡
3)3Cos2tCos4t+5𝑒 𝐶𝑜𝑠𝑡 4)‫׬‬0 2 𝑥 2 +4Sin3xdx
𝐶𝑜𝑠2𝑡−𝐶𝑜𝑠3𝑡 2
5) 6)3𝑡 𝑆𝑖𝑛2𝑡
𝑡
𝑒 −𝑡 −𝑒 −2𝑡
7) 8) H(t-2)Sin3t
𝑡
𝑆𝑖𝑛𝑡 0 < 𝑡 < 𝜋
9) f(t)=ቊ f(t+2𝜋)=f(t)
0 1 ≤ 𝑡 ≤ 2𝜋
Problems on Laplace transforms
Verify Convolution theorem for the functions f(t)=𝑒 2𝑡 , g(t)=Cost .

Using Laplace transforms evaluate the integrals


∞ −𝑡 1−𝐶𝑜𝑠𝑡 ∞ −2𝑡
a)‫׬‬0 𝑒 𝑑𝑡 b) ‫׬‬0 𝑒 𝑡𝑆𝑖𝑛3𝑡 dt
𝑡
THANK YOU!

You might also like