Introduction:
A  transformation  is  a  mathematical  device,  which  converts  one  function  into 
another.  
For example, when a differential operator 
|
\
|
dx
d
D  operates on  (   ) x sin x f   = , it gives a 
new function  (   )   (   ) [   ] x cos x f D x g   = = . 
  Laplace  transform  or  Laplace  transformation  is  widely  used  by  scientists  and 
engineers.  It  is  particularly  effective  in  solving  linear  differential  equations-  ordinary  as 
well as partial. It reduces an ordinary differential equation into an algebraic equation. 
  Laplace  transform  directly  gives  the  solution  of  differential  equations  with  given 
initial  conditions  without  the  necessity  of  first  finding  the  general  solution  and  then 
evaluating the arbitrary constants. 
LAPLACE TRANSFORM:  
Definition: Let f(t) be a function of t defined for all positive values of t.  
Then, the Laplace transforms of f(t), denoted by L{f(t)} is defined by 
1 11 1
st st st st
 Topic Topic Topic Topic 
Laplace Transforms  Laplace Transforms  Laplace Transforms  Laplace Transforms  
Definitions, Properties, Transforms of 
elementary functions 
  Linearity property 
  Shifting property 
  Change of scale property 
Prepared by:  
Dr. Sunil 
NIT Hamirpur (HP)  
(Last updated on 25-10-2007) 
Laplace Transforms: Definitions, Properties, Transforms of elementary functions 
                                                                                             Prepared by: Dr. Sunil, NIT Hamirpur (HP) 
2
( ) {   }   ( )dt t f e t f L
st
0
= . 
The parameter s is a real or complex number. In general, the parameter s is taken to be 
real positive number. 
Now, since L{f(t)} is a function of s , then it can be briefly written as  ) s ( f .  
 i.e.  ( ) {   }   ( ) s f t f L   = . 
Sometimes, we use symbol p for the parameter s. 
Thus,  ( ) {   }   ( )   (   ) p f dt t f e t f L
pt
0
= =
  
. 
Existence of Laplace transforms:  
The Laplace transforms is said to be exist, if the integral  ( ) {   }   ( )dt t f e t f L
st
0
=  is 
convergent for some values of s. 
Otherwise, we may use the following theorem: 
Sufficient conditions for the existence of Laplace Transform of f(t): 
If f(t) is continuous and  ( ) {   } t f e Lt
at
t
 
 is finite, or in other words,  
a.  If  f(t)  is  piecewise  (or  sectionally)  continuous  i.e.  f(t)  is  continuous  in  every 
subinterval and has finite limit at end points of each of these sub-intervals and 
b.  If  f(t)  is  of  exponential  order  of     i.e.,  there  exists  M,     such  that  ( )
t
Me t f
  
< .  In 
other words, functions of exponential order do not grow faster than 
t
e
, 
then the Laplace transform of f(t), i.e.  ( )dt t f e
st
0
exists for  a s > . 
Remarks:  It  should  be  noted  that,  the  above  conditions  are  sufficient  rather  than 
necessary. For example,  |
\
|
t
1
L  exists, though 
t
1
 is infinite at t = 0.  
Similarly, a function f(t) for which  ( ) {   } t f e Lt
at
t
 
 is finite and having a finite discontinuity 
will have a Laplace transform for  a s > . 
Laplace Transforms: Definitions, Properties, Transforms of elementary functions 
                                                                                             Prepared by: Dr. Sunil, NIT Hamirpur (HP) 
3
INVERSE LAPLACE TRANSFORM:  
( ) {   }   ( ) s f t f L   =  can also be written as  ( )   ( ) {   } s f L t f
1 
= . 
Then f(t) is called the inverse Laplace transform of  ) s ( f .  
 
Laplace transformation operator:  
The  symbol  L,  which  transforms  f(t)  into  ) s ( f ,  is  called  the  Laplace 
transformation  operator.  The  operation  of  multiplying  ( ) t f   by 
st
e
  and  integrating 
from 0 to   is called Laplace transformation. 
 
Notation: In various textbooks, authors follow two types of notations: 
(i). Functions are denoted by lower case letter  ( )   ( )   ( ),......... t h , t g , t f  . 
      and their Laplace transforms are denoted by    
       ( )   ( )   ( ),......... s h , s g , s f   respectively or by  (   )   (   )   (   ),......... p h , p g , p f  . 
(ii). Functions are denoted by capital letters  ( )   ( )   ( ),......... t H , t G , t F  
      and their Laplace transforms are denoted by corresponding lower case letters 
       ( )   ( )   ( ),......... s h , s g , s f   respectively or by  (   )   (   )   (   ),......... p h , p g , p f  . 
 
Applications of Laplace Transform: 
Laplace  transform  is  very  useful  in  obtaining  solution  of  linear  differential 
equations,  both  ordinary  and  partial,  solution  of  system  of  simultaneous  differential 
equations, solution of integral equations, solution of linear difference equations and in the 
evaluation of definite integrals. 
Advantages of Laplace Transform:  
1.  With  the  application  of  Laplace  transform,  particular  solution  of  differential 
equation  is  obtained  directly  without  the  necessity  of  first  determining  general 
solution  and  then  obtaining  the  particular  solution  (by  substitution  of  initial 
conditions). 
2.  Laplace  transform  solves  non-homogeneous  differential  equation  without  the 
necessity of first solving the corresponding homogeneous differential equation. 
Laplace Transforms: Definitions, Properties, Transforms of elementary functions 
                                                                                             Prepared by: Dr. Sunil, NIT Hamirpur (HP) 
4
3.  Laplace transform is applicable not only to continuous function but also the piecewise 
continuous  functions,  complicated  periodic  functions,  step  function  and  impulse 
functions. 
4.  Laplace transform of various functions are readily available (in tabulated form).  
 
General properties of Laplace transform: 
Although  theoretically  ) s ( f ,  the  Laplace  transform  of  f(t)  is  obtained  from  the 
definition,  but  in  practice,  most  of  the  time  Laplace  transforms  are  obtained  by  the 
judicial application of some of the following important properties. In a nutshell, they are: 
1.  Linearity  property  states  that  Laplace  transform  of  a  linear  combination  (sum)  is  the 
linear combination (sum) of Laplace transforms. 
2.  First shift theorem proves that multiplication of  f(t) by 
at
e  amounts to replacement s 
by  a s   in  ) s ( f . 
3.  In change of scale, where the argument t of f is multiplied by constant a, s is replaced 
by 
a
s
in  ) s ( f and then multiplied by 
a
1
. 
4.  Laplace  transform  of  a  derivative  f    amounts  to  multiplication  of  ) s ( f by  s 
(approximately but for the constant  ) 0 ( f  . 
5.  Laplace transform of an integral f amounts to division of  ) s ( f by s. 
6.  Multiplication  of  f(t)  by  t
n
  amounts  to  differentiation  of  ) s ( f n  times  w.r.t  s  (with 
(   )
n
1  as sign). 
7.  Division of f(t) by t amounts to integration of  ) s ( f between the limits s to  . 
8.  Second  shift  theorem  proves  that  Laplace  transform  of  shifted  function 
(   )   (   ) a t u a t f      is obtained by multiplying  ) s ( f by 
at
e
. 
 
LAPLACE TRANSFORMS OF SOME ELEMENTARY FUNCTIONS: 
  The direct application of the definition gives the following formulae: 
(1)  ( )
s
1
1 L   =                                                                  [   ] 0 s >  
Laplace Transforms: Definitions, Properties, Transforms of elementary functions 
                                                                                             Prepared by: Dr. Sunil, NIT Hamirpur (HP) 
5
(2)  (   )
1 n
n
s
! n
t L
+
= , when n =0, 1, 2, 3, .........                
(   )
(
   + 
+1 n
s
1 n
   Otherwise  
(3)  (   )
a s
1
e L
at
=                                                           [   ] a s >  
(4)  (   )
2 2
a s
a
at sin L
+
=                                                   [   ] 0 s >  
(5)  (   )
2 2
a s
s
at cos L
+
=                                                   [   ] 0 s >  
(6)  (   )
2 2
a s
a
at sinh L
=                                                  [   ] a s >  
(7)  (   )
2 2
a s
s
at cosh L
=                                                  [   ] a s >  
Proofs:  
(1) To show:  ( )
s
1
1 L   = ,  [   ] 0 s >
.
 
Proof:  ( )
s
1
s
e
dt 1 . e 1 L
0
st
st
0
=  = =
,  if  0 s > . 
(2) To show:  (   )
1 n
n
s
! n
t L
+
= , when n =0, 1, 2, 3, ......... .                
Proof:  (   )
s
dp
s
p
. e dt t . e t L
n
p
0
n st
0
n
|
\
|
= =
  
 
, (on putting st = p, dt = dp/s) 
                     
(   )
1 n
n p
0
1 n
s
1 n
dp p . e
s
1
+
+
+ 
= =
, if  0 s   and 1 n   >  > . 
In particular,  (   )
s
s
2
1
t L
2 / 1
2 / 1  
=
|
\
|
;   (   )
2 / 3 2 / 3
2 / 1
s . 2 s
2
3
t L
  
=
|
\
|
= . 
If n be a positive integer,  (   ) ! n 1 n   = +  . 
Therefore,   (   )
1 n
n
s
! n
t L
+
= . 
(3) To show:  (   )
a s
1
e L
at
= ,   [   ] a s > . 
Laplace Transforms: Definitions, Properties, Transforms of elementary functions 
                                                                                             Prepared by: Dr. Sunil, NIT Hamirpur (HP) 
6
Proof:  (   )
  (   )
dt e dt e . e e L
t a s
0
at st
0
at    
 
  = =
(   )
(   ) a s
1
a s
e
0
t a s
=
 
=
 
, if   0 s > . 
(4) To show:  (   )
2 2
a s
a
at sin L
+
= ,  [   ] 0 s >
.
 
Proof:  (   ) atdt sin e at sin L
st
0
=   (   )
2 2
0
2 2
st
a s
a
at cos a at sin s
a s
e
+
=  
+
=
. 
(5) To show:  (   )
2 2
a s
s
at cos L
+
=  ,   [   ] 0 s >
.
 
Proof:  (   ) atdt cos e at cos L
st
0
=   (   )
2 2
0
2 2
st
a s
s
at sin a at cos s
a s
e
+
=  
+
=
. 
(6) To show:  (   )
2 2
a s
a
at sinh L
= ,   [   ] a s > . 
Proof:  (   ) dt . at sinh e at sinh L
st
0
= dt
2
e e
e
at at
st
0
|
|
\
|
  
=
 
                            
(   )   (   )
(
(
 =
  + 
 
dt e dt e
2
1
t a s
0
t a s
0
 
                            
2 2
a s
a
a s
1
a s
1
2
1
=
(
= , for a s > . 
(7) To show:  (   )
2 2
a s
s
at cosh L
= ,  [   ] a s > . 
Proof:  (   ) dt . at cosh e at cosh L
st
0
= dt
2
e e
e
at at
st
0
|
|
\
|
  +
=
 
                             
(   )   (   )
(
(
+ =
  + 
 
dt e dt e
2
1
t a s
0
t a s
0
 
                            
2 2
a s
s
a s
1
a s
1
2
1
=
(
+
+
= , for a s > . 
 
 
Laplace Transforms: Definitions, Properties, Transforms of elementary functions 
                                                                                             Prepared by: Dr. Sunil, NIT Hamirpur (HP) 
7
PROPERTIES OF LAPLACE TRANSFORMATIONS: 
(1). Linearity property:  If a, b, c be any constants and f, g, h any functions of t, then  
                                  ( )   ( )   ( ) [   ]   ( ) {   }   ( ) {   }   ( ) {   } t h L c t g L b t f L a t h c t g b t f a L    + =  + . 
or 
Linearity  property  states  that  Laplace  transform  of  a  linear  combination  (sum)  is  the 
linear combination (sum) of Laplace transforms. 
Proof: L.H.S. =  ( )   ( )   ( ) [   ] t h c t g b t f a L    +  
                        ( )   ( )   ( ) {   }dt t ch t bg t af e
st
0
 + =
  
   (by definitions) 
                       ( )   ( )   ( )dt t h e c dt t g e b dt t f e a
st
0
st
0
st
0
  
   + =      
                      ( ) {   }   ( ) {   }   ( ) {   } t h cL t g bL t f aL    + = . 
Thus, linear transform is a linear operator, additive, subtractive and homogeneous. 
This result can easily be generalized to more than three functions.  
Because of the above property of L, it is called a linear operator. 
(2). First shifting or first translation property or s-shift theorem: 
       (Replacement of s by s-a in transform) 
        If  ( ) {   }   ( ) s f t f L   = , then  ( ) {   }   (   ) a s f t f e L
at
 = . 
or 
First shift theorem proves that multiplication of  f(t) by 
at
e  amounts to replacement s 
by  a s   in  ) s ( f . 
Proof: Given  ( ) {   }   ( ) s f t f L   = . 
To show:  ( ) {   }   (   ) a s f t f e L
at
 = . 
Since  ( ) {   }   ( ) (   )
  (   )
( )dt t f e dt t f e e t f e L
t a s
0
at st
0
at    
 
  = =  (by definition) 
                           ( )dt t f e
 t r
0
= , where  a s r    = . 
Laplace Transforms: Definitions, Properties, Transforms of elementary functions 
                                                                                             Prepared by: Dr. Sunil, NIT Hamirpur (HP) 
8
                           ( )   (   ) a s f r f    = = . 
Thus,  if  we  know  the  transform  ) s ( f   of  f(t),  then  we  can  write  the  transform  of  ( ) t f e
at
 
simply replacing s by  a s   to get  (   ) a s f    . 
Application of this property leads to the following useful results: 
(1)  (   )
a s
1
e L
at
=                                                     ( )
(
  =
s
1
1 L Q   
(2)  (   )
(   )
1 n
n at
a s
! n
t e L
+
=                                          (   )
  (
  =
+1 n
n
s
! n
t L Q  
(3)  (   )
(   )
2 2
at
b a s
b
bt sin e L
+ 
=                               (   )
(
+
=
2 2
b s
b
bt sin L Q  
(4)  (   )
(   )
2 2
at
b a s
a s
bt cos e L
+ 
=                              (   )
(
+
=
2 2
b s
s
bt cos L Q  
(5)  (   )
(   )
2 2
at
b a s
b
bt sinh e L
 
=                             (   )
(
=
2 2
b s
b
bt sinh L Q  
(6)  (   )
(   )
2 2
at
b a s
a s
bt cosh e L
 
=                            (   )
(
=
2 2
b s
s
bt cosh L Q  
where in each case  a s > . 
3. Change of scale property: If  ( ) {   }   ( ) s f t f L   = , then  (   ) {   }   |
\
|
=
a
s
f
a
1
at f L . 
or 
In change of scale, where the argument t of f is multiplied by constant a, s is replaced 
by 
a
s
in  ) s ( f and then multiplied by 
a
1
. 
Proof:  (   ) {   }   (   )   (   )
a
du
. u f e dt at f e at f L
a / su
0
st
o
 
  = =                     
(
  =  =
a
du
dt u at   Put  
             (   )   |
\
|
= =
  
a
s
f
a
1
du u f e
a
1
a / su
0
. 
 
Laplace Transforms: Definitions, Properties, Transforms of elementary functions 
                                                                                             Prepared by: Dr. Sunil, NIT Hamirpur (HP) 
9
Now let us find Laplace transform of simple functions where only linearity 
property is using: 
 
Q.No.1.: Find the Laplace transforms of  
               (i)   t 3 sin t 2 sin .   (ii)   t 2 cos
2
.  (iii)  t 2 sin
3
. 
Sol. (i). Since  (   ) t 5 cos t cos
2
1
t 3 sin t 2 sin    = . 
(   )   (   )   (   ) [   ] t 5 cos L t cos L
2
1
t 3 sin t 2 sin L    =                                            (by linearity property)            
                          
(
+
=
2 2 2 2
5 s
s
1 s
s
2
1
 
(   )(   ) 25 s 1 s
s 12
2 2
+ +
= . Ans. 
 (ii) Since  (   ) t 4 cos 1
2
1
t 2 cos
2
+ = . 
(   )   ( )   (   ) {   } t 4 cos L 1 L
2
1
t 2 cos L
2
+ =                                                       (by linearity property)            
                    
|
|
\
|
+
+ =
16 s
s
s
1
2
1
2
. Ans. 
(iii) Since  t 6 sin
4
1
t 2 sin
4
3
t 2 sin t 2 sin 4 t 2 sin 3 t 6 sin
3 3
 =   = . 
(   )   (   )   (   ) t 6 sin L
4
1
t 2 sin L
4
3
t 6 sin
4
1
t 2 sin
4
3
L t 2 sin L
3
 = |
\
|
   =           (by linearity property)            
                    
(   )(   ) 36 s 4 s
48
6 s
6
.
4
1
2 s
2
.
4
3
2 2 2 2 2 2
+ +
=
+
+
= . Ans. 
Q.No.2.: Find the Laplace transform of  t 3 cos 3 t 3 sin 2 t 4 e
3 t 2
+  + . 
Sol.:  (   ) t 3 cos 3 t 3 sin 2 t 4 e L
3 t 2
+  +   (   )   (   )   (   )   (   ) t 3 cos L 3 t 3 sin L 2 t L 4 e L
3 t 2
+  + =  
(by linearity property)            
                                                         
9 s
s 3
9 s
3 . 2
s
! 3 . 4
2 s
1
2 2 4
+
+
+
 +
=  
                                                         
9 s
s 3
9 s
6
s
24
2 s
1
2 2 4
+
+
+
 +
=  
Laplace Transforms: Definitions, Properties, Transforms of elementary functions 
                                                                                             Prepared by: Dr. Sunil, NIT Hamirpur (HP) 
10
                                                         
(   )
9 s
2 s 3
s
24
2 s
1
2 4
+
+ +
= . Ans. 
Q.No.3.: Find the Laplace transform of 
t
3
t 2 1   + + . 
Sol.:  |
\
|
  + +
t
3
t 2 1 L   ( )   (   )   |
\
|
+ + =
t
1
L 3 t L 2 1 L                              (by linearity property)            
                                    
2 / 1 2 / 3
s
1
2
1
3
s
1
2
1
2
s
1
  |
\
|
  +  
+
|
\
|
  + 
+ =
2 / 1 2 / 3
s
3
s
2
1
. 2
s
1   
+
+ =  
                                    |
\
| 
+
+ =
s
3
s
s
1
2 / 3
. Ans. 
Q.No.4.: Find the Laplace transform of  at cos at cosh    . 
Sol.:  (   ) at cos at cosh L      (   )   (   ) at cos L at cosh L    =                                 (by linearity property)            
                                      
4 4
2
2 2 2 2
a s
s a 2
a s
s
a s
s
=
+
= . Ans. 
Q.No.5.: Find the Laplace transform of  (   ) b at cos   + . 
Sol.:  (   ) [   ] b at cos L   +   (   ) b sin at sin b cos at cos L    =                                (by linearity property)            
                                (   )   (   ) at sin bL sin at cos bL cos    =
2 2 2 2
a s
a
b sin
a s
s
b cos
+
+
=  
                               
2 2
a s
b sin a b cos s
+
= . Ans. 
Q.No.6.: Find the Laplace transform of   (   )
2
t cos t sin    . 
Sol.: Since  (   )
2
t cos t sin    t cos t sin 2 t cos t sin
2 2
 + = t 2 sin 1 t cos t sin 2 1    =  = . 
(   )   ( )   (   ) (   ) t 2 sin L 1 L t 2 sin 1 L    =                                                          (by linearity property)            
                      
(   ) 4 s s
s 2 4 s
4 s
2
s
1
2
2
2
+
 +
=
+
 =
(   ) 4 s s
4 s 2 s
2
2
+
+ 
= . Ans.  
Q.No.7.: Find the Laplace transform of  t 3 cos t 2 sin . 
Sol.: Since  t 3 cos t 2 sin   (   ) t sin t 5 sin
2
1
 = . 
Laplace Transforms: Definitions, Properties, Transforms of elementary functions 
                                                                                             Prepared by: Dr. Sunil, NIT Hamirpur (HP) 
11
(   )   (   ) [   ] t sin L t 5 sin L
2
1
2
t sin t 5 sin
L    = |
\
|   
                                         (by linearity property)            
                              
(
+
=
1 s
1
25 s
5
2
1
2 2
 
                             
(   )(   )
(   )
(   )(   ) 25 s 1 s
5 s 2
25 s 1 s
20 s 4
.
2
1
2 2
2
2 2
2
+ +
=
+ +
= . Ans. 
Q.No.8.: Find the Laplace transform of  bt sin at sin . 
Sol.:  (   )   (   )   (   ) [   ] t b a cos t b a cos L
2
1
bt sin at sin L   +   =  
                                (   ) (   )   (   ) (   ) [   ] t b a cos L t b a cos L
2
1
+   =                     (by linearity property)            
                              
(   )   (   ) (
(
+ +
 +
=
2 2 2 2
b a s
s
b a s
s
2
1
(   ) [   ]   (   ) [   ]
2 2 2 2
b a s b a s
abs 2
 + + +
= . Ans. 
Q.No.9.: Find the Laplace transform of  t 3 sin
2
. 
Sol.: Since  (   ) t 6 cos 1
2
1
t 3 sin
2
 = . 
(   )   (   )   ( )   (   ) (   ) t 6 cos L 1 L
2
1
t 6 cos 1 L
2
1
t 3 sin L
2
 =  =                              (by linearity property)            
                   
(   ) 36 s s
18
36 s
s
s
1
2
1
2 2
+
=
(
+
 = . Ans. 
Q.No.10.: Find the Laplace transform of    t 2 cos
3
. 
Sol.: Since  t 2 cos
3
[   ] t 2 cos 3 t 6 cos
4
1
+ = . 
   (   ) t 2 cos L
3
[   ] t 2 cos 3 t 6 cos L
4
1
+ =   (   )   (   ) [   ] t 2 cos 3 L t 6 cos L
4
1
+ =        (by linearity property)            
                    
(
+
+
+
=
4 s
s 3
36 s
s
4
1
2 2
(   )(   )
 (
(
+ +
+ + +
=
4 s 36 s
s 108 s 3 s 4 s
4
1
2 2
3 3
 
                    
(   )(   )
(
(
+ +
+
=
4 s 36 s
s 112 s 4
4
1
2 2
3
(   )
(   )(   ) 4 s 36 s
28 s s
2 2
2
+ +
+
= . Ans. 
Q.No.11.: Find the Laplace transform of    t 2 sinh t  . 
Laplace Transforms: Definitions, Properties, Transforms of elementary functions 
                                                                                             Prepared by: Dr. Sunil, NIT Hamirpur (HP) 
12
Sol.:  (   )   ( )   (   ) t 2 sinh L t L t 2 sinh t L    =                                                 (by linearity property)            
                              
(   )
2 2
2
2 2
s 4 s
s 4
4 s
2
s
1
+
=
 = . Ans. 
Q.No.12.: Find the Laplace transforms of  t 2 cosh
3
. 
Sol.: Since  t 2 cosh 3 t 2 cosh 4 t 6 cosh
3
 =  
t 6 cosh
4
1
t 2 cosh
4
3
t 2 cosh
3
+ =  . 
(   )   (   )   (   ) t 6 cosh L
4
1
t 2 cosh L
4
3
t 6 cosh
4
1
t 2 cosh
4
3
L t 2 cosh L
3
+ = |
\
|
  + =   
                  (by linearity property) 
                    
(   )
(   )(   ) 36 s 4 s
28 s s
6 s
s
.
4
1
2 s
s
.
4
3
2 2
2
2 2 2 2
 
= . 
Q.No.13.: Find the Laplace transforms of  
bt at
e e    . 
Sol.:  {   }   {   }   (   )
bt at bt at
e L e L e e L    =                                                       (by linearity property) 
                            
(   )(   ) b s a s
b a
b s
1
a s
1
 
= . Ans. 
Q.No.14.: Find the Laplace transforms of   kt cos
2
. 
Sol.:  {   }
)
`
   +
=
2
kt 2 cos 1
L kt cos L
2
{ }   {   } kt 2 cos L
2
1
1 L
2
1
+ =                  (by linearity property) 
                          
2 2
k 4 s
s
2
1
s
1
2
1
+
+ = . Ans. 
Q.No.15.: Find the Laplace transforms of   {   }
2
t 2
3 e 5    . 
Sol.:  (   )   {   } 9 30 e 25 L 3 e 5 L
t 2 t 4
2
t 2
+  =
)
`
    
                                  {   }   {   }   { } 1 L 9 e L 30 e L 25
t 2 t 4
+  =                            (by linearity property) 
                                 
s
1
. 9
2 s
1
30
4 s
1
. 25   +
= . Ans. 
Q.No.16.: Find the Laplace transforms of   t 2 cos 3 t 5 sin 2 e 4 t 2 t 3
t 3 3 4
+  + 
  
. 
Laplace Transforms: Definitions, Properties, Transforms of elementary functions 
                                                                                             Prepared by: Dr. Sunil, NIT Hamirpur (HP) 
13
Sol.:  {   } t 2 cos 3 t 5 sin 2 e 4 t 2 t 3 L
t 3 3 4
+  + 
  
 
          {   }   {   }   {   }   {   }   {   } t 2 cos L 3 t 5 sin L 2 e L 4 t L 2 t L 3
t 3 3 4
+  +  =
  
              (by linearity property) 
        
2 2 2 2 4 5
2 s
s
. 3
5 s
5
. 2
3 s
1
4
t
! 3
. 2
t
! 4
. 3
+
+
+
+
+  = . 
Q.No.17.: Find the Laplace transforms of   t cos . 
Sol.: Expanding in series 
(   )
(   )! n 2
t 1
t cos
n 2
2
1
n
0 n
|
|
|
\
|
=
(   )
(   )
n
n
t
! n 2
1 
=
. 
{   }
  (   )
(   )
  (
(
  
= 
  
n
n
t
! n 2
1
L t cos L
  (   )
(   )
  (
(
 
=
 
n
n
t
! n 2
1
L                           (by linearity property) 
                  
(   )
(   )
  (   )
n
n
0 n
t L
! n 2
1 
=
 
=
(   )
(   )
1 n
n
0 n
s
! n
! n 2
1
+
=
 
. 
Q.No.18.: Find the Laplace transform of 
3
t
1
t   |
\
|
   . 
Sol.: Since   (   )   (   )   (   )   (   )
2 / 3 2 / 1 2 / 1 2 / 3
3
t t 3 t 3 t
t
1
t
   
 +  =
|
|
\
|
    
(   )   (   )   (   )   (   )
2 / 3 2 / 1 2 / 1 2 / 3
3
t L t L 3 t L 3 t L
t
1
t L
   
 +  =
|
|
\
|
                (by linearity property)            
                          
1 2 / 3 1 2 / 1 1 2 / 1 1 2 / 3
s
1
2
3
s
1
2
1
3
s
1
2
1
3
s
1
2
3
+  +  + +
|
\
|
  +  
\
|
  +  
+
|
\
|
  + 
\
|
  + 
=  
                          
2 / 1 2 / 1 2 / 3 2 / 5
s
2
1
s
2
1
3
s
2
1
2
1
3
s
2
3
2
3
\
|
 
\
|
+
|
\
|
\
|
=     
                           s 2
s
3
s
2
3
s
4
3
2 / 1 2 / 3 2 / 5
   +
=     
(
    = |
\
|
   = |
\
|
 2
2
1
   ,
2
1
Q  
                           |
\
|
  + + 
=
 2 / 1 2 / 1 2 / 3 2 / 5
s
8
s
12
s
6
s
3
4
. Ans. 
Laplace Transforms: Definitions, Properties, Transforms of elementary functions 
                                                                                             Prepared by: Dr. Sunil, NIT Hamirpur (HP) 
14
Now  let  us  find  Laplace  transform  of  some  functions  where  shifting 
property is also using: 
Q.No.19.: Show that  (i)  (   )
(   )
2
2 2
a s
as 2
at sin t L
+
= ,  (ii)   (   )
(   )
2
2 2
2 2
a s
a s
at cos t L
+
= . 
Sol.: Since  ( )
2
s
1
t L   = .      
(   )
(   )
(   )
(   )(   ) [   ]
2
2
2
 t a i
ia s ia s
ia s
ia s
1
t e L
+ 
+
=
=  .                                          (by shifting property) 
(   ) [   ]
  (   )   (   )
(   )
2
2 2
2 2
a s
as 2 i a s
at sin i at cos t L
+
+ 
= +   . 
Equating the real and imaginary parts from both sides, we get 
(   )
(   )
2
2 2
a s
as 2
at sin t L
+
=  and  (   )
(   )
2
2 2
2 2
a s
a s
at cos t L
+
= . 
Q.No.20.: Find the Laplace transform of    bt sinh e
t a 
. 
Sol.:  (   )
(   )
2 2
t a
b a s
b
bt sinh e L
 +
=
. Ans.                                           (by shifting property) 
Q.No.21.: Find the Laplace transform of   
t 3 3
e . t  
. 
Sol.:  (   )
  (   )
(   )   (   )   (   )
4 4 4
t 3 3
3 s
6
3 s
! 3
3 s
4
e . t L
+
=
+
=
+
. Ans.                          (by shifting property) 
Q.No.22.: Find the Laplace transform of    t 4 sin e
t 2 
. 
Sol.:  (   )
(   ) 20 s 4 s
4
16 2 s
4
t 4 sin e L
2 2
t 2
+ +
=
+ +
=
. Ans.                      (by shifting property) 
Q.No.23.: Find the Laplace transforms of  at sin t
2
. 
Sol.: Since  (   )
3 3
2
s
2
s
! 2
t L   = = . 
   {   }
(   )
(   )
(   )(   ) [   ]
3
3
3
iat 2
ia s ia s
ia s 2
ia s
2
e t L
+ 
+
=
=                                           (by shifting property) 
Laplace Transforms: Definitions, Properties, Transforms of elementary functions 
                                                                                             Prepared by: Dr. Sunil, NIT Hamirpur (HP) 
15
(   ) {   }
  (   )   (   ) [   ]
(   )
3
2 2
3 2 2 3
2
a s
a as 3 i s a 3 s 2
at sin i at cos t L
+
 + 
= +   
Equating the imaginary parts on both sides, we get 
{   }
  (   )
(   )
3
2 2
2 2
2
a s
a s 3 a 2
at sin t L
+
= . Ans. 
Q.No.24.: Find the Laplace transforms of   t 3 sin te
t 4 
. 
Sol.: Since   { }
2
t
1
t L   = . 
   {   }
(   )
(   )
(   )(   ) [   ]
2
2
2
it 3
i 3 s i 3 s
i 3 s
i 3 s
1
te L
+ 
+
=
=                                             (by shifting property) 
(   ) {   }
  (   )
(   )
2
2
2
9 s
is 6 9 s
t 3 sin i t 3 cos t L
+
+ 
= +  . 
Equating the imaginary parts on both sides, we get 
[   ]
(   )
2
2
9 s
s 6
t 3 sin t L
+
= . 
Again applying the first shifting theorem, we have 
{   }
  (   )
(   ) [   ]
(   )
(   )
2
2
2
2
t 4
25 s 8 s
4 s 6
9 4 s
4 s 6
t 3 sin t . e L
+ +
+
=
+ +
+
=
. Ans. 
Q.No.25.: Find the Laplace transforms of   ( )
t 3
2
7
e t t f   = . 
Sol.: 
2
9
2
9
1
2
7
2
7
s 16
105
s
2
1
2
1
.
2
3
.
2
5
.
2
7
s
1
2
7
t L
  
=
|
\
|
=
|
\
|
  + 
=
+
. 
3 - s s at
2
9
2
7
t 3
s 16
105
t . e L
=
                                                             (by shifting property) 
                     (   )
2
9
3 s 16
105
= . 
Laplace Transforms: Definitions, Properties, Transforms of elementary functions 
                                                                                             Prepared by: Dr. Sunil, NIT Hamirpur (HP) 
16
Q.No.26.: Find the Laplace transforms of  
                 (i)  (   ) t 5 sin 3 t 5 cos 2 e
t 3
.  (ii)  t sin e
2 t 3
. (iii)  t cos t 2 sin e
t 4
. 
Sol.: (i)  (   ) {   }   (   )   (   ) t 5 sin e L 3 t 5 cos e L 2 t 5 sin 3 t 5 cos 2 e L
t 3 t 3 t 3     
 =    (by linearity property)            
                                                      
(   )   (   )
2 2 2 2
5 3 s
5
. 3
5 3 s
3 s
. 2
+ +
+ +
+
=  (by shifting property)            
                                                      
34 s 6 s
9 s 2
2
+ +
= . Ans. 
(ii) Since  (   )   (   )   ( )   (   ) (   ) t 2 cos L 1 L
2
1
t 2 cos 1 L
2
1
t sin L
2
 =  =                  (by linearity property)            
                              
)
`
+
 =
4 s
s
s
1
2
1
2
. 
  (   )
(   )   
)
=
4 3 s
3 s
3 s
1
2
1
t sin e L
2
2 t 3
. Ans.                                  (by shifting property)            
(iii) Since   (   )   (   )   (   )   (   ) (   ) t sin L t 3 sin L
2
1
t sin t 3 sin L
2
1
t cos t 2 sin L   + = + = (by linearity property)            
                                       
)
`
+
+
+
=
2 2 2 2
1 s
1
3 s
3
2
1
. 
  (   )
(   )   (   )   
)
+ 
+
+ 
=
1 4 s
1
9 4 s
3
2
1
t cos t 2 sin e L
2 2
t 4
. Ans.              (by shifting property)            
Q. No.27.: If  ( ) {   }   ( ) s f t f L   = , show that 
                   (   )  ( ) [   ]   (   )   (   ) [   ] a s f a s f
2
1
t f at sinh L   +   =  
                   (   )  ( ) [   ]   (   )   (   ) [   ] a s f a s f
2
1
t f at cosh L   + +  =    
                  Hence evaluate   (i)  (   ) t 3 sin t 2 sinh L    (ii)   (   ) t 2 cos t 3 cosh L  . 
Sol. We have  (   )  ( ) {   }   (   ) ( )
(
   =
  
t f e e
2
1
L t f at sinh L
at at
 
                                                ( ) {   }   ( ) {   } [   ] t f e L t f e L
2
1
at at   
 =                 (by linearity property)            
Laplace Transforms: Definitions, Properties, Transforms of elementary functions 
                                                                                             Prepared by: Dr. Sunil, NIT Hamirpur (HP) 
17
                                                 (   )   (   ) [   ] a s f a s f
2
1
+   = .                        (by shifting property) 
Similarly,    (   )  ( ) {   }   (   ) ( )
(
  + =
  
t f e e
2
1
L t f at cosh L
at at
 
                                            ( ) {   }   ( ) {   } [   ] t f e L t f e L
2
1
at at   
+ =                     (by linearity property)            
                                            (   )   (   ) [   ] a s f a s f
2
1
+ +  = .                             (by shifting property) 
(i) Since  (   )
2 2
3 s
3
t 3 sin L
+
= , the first result gives 
(   )
(   )   (   ) 169 s 10 s
s 12
3 2 s
3
3 2 s
3
2
1
t 3 sin t 2 sinh L
2 4 2 2 2 2
+ +
=
+ +
+ 
= . Ans. 
(ii) Since  (   )
2 2
2 s
s
t 2 cos L
+
= , the second result gives 
(   )
(   )   (   )
(   )
169 s 10 s
5 s s 2
2 3 s
3 s
2 3 s
3 s
2
1
t 2 cos t 3 cosh L
2 4
2
2 2 2 2
+ 
+ +
+
+
+ 
= . Ans. 
Q.No.28.: Find the Laplace transform of    (   )
t 2
e . 2 t + . 
Sol.:  (   ) [   ]   (   )   (   )   (   ) 4 e L t 4 e L t e L e 4 t 4 t L
t t 2 t t 2
+ + = + +                            (by linearity property) 
                                    
(   )   (   )
  (   ) 1 s
4
1 s
4
1 s
! 2
2 3
=                             (by shifting property) 
                                   (   )   (   )
  (   ) 1 s
4
1 s
4
1 s
2
2 3
=  
                                    
(   )   (   )
(   )
3
2
1 s
1 s 4 1 s 4 2
 +  +
=
  (   )
(   )
3
2
1 s
1 s 2 s 2 2
+ 
= . Ans. 
Q.No.29.: Find the Laplace transform of  t sin e
2 t 
. 
Sol.:  (   ) t sin e L
2 t 
(   ) {   } t 2 cos 1 e L
2
1
t
 =
  
  
                            (   )   (   ) (   ) t 2 cos e L 1 e L
2
1
t t    
 =                                     (by linearity property) 
Laplace Transforms: Definitions, Properties, Transforms of elementary functions 
                                                                                             Prepared by: Dr. Sunil, NIT Hamirpur (HP) 
18
                           
(   )
(   )   (
(
+ +
+
+
=
4 1 s
1 s
1 s
1
2
1
2
                                          (by shifting property) 
                             
(   )(   ) 5 s 2 s 1 s
2
2
+ + +
= . Ans. 
Q.No.30.: Find the Laplace transform of  at sin at cosh . 
Sol.:  (   )   (   ) [   ] at sin e e L
2
1
at sin at cosh L
at at   
+ =  
                                   (   )   (   ) (   ) at sin e L at sin e L
2
1
at at   
+ =                       (by linearity property) 
                                  
(   )   (   )   (
(
+ +
+
+ 
=
2 2 2 2
a a s
a
a a s
a
2
1
                    (by shifting property) 
                                  
(   )
4 4
2 2
a 4 s
a 2 s a
+
+
= . Ans. 
Q.No.31.: Find the Laplace transform of   t cos t 3 sinh
2
. 
Sol.: Since  t cos t 3 sinh
2
(
   +
(
(
2
t 2 cos 1
2
e e
t 3 t 3
. 
(   ) t cos t 3 sinh L
2
   [   ] t 2 cos e e t 2 cos e e L
4
1
t 3 t 3 t 3 t 3    
  + =  
                              (   )   (   )   (   )   (   ) [   ] t 2 cos e L e L t 2 cos e L e L
4
1
t 3 t 3 t 3 t 3    
  + =  
                                                                                                            (by linearity property) 
                             
(   )   (   )   (
(
+ +
+
+
+
=
4 3 s
3 s
4 3 s
3 s
3 s
1
3 s
1
4
1
2 2
       (by shifting property) 
                             
(   )
(
(
=
169 s 10 s
1 s 6
9 s
6
4
1
2 4
2
2
(
(
=
169 s 10 s
1 s
9 s
1
2
3
2 4
2
2
. Ans. 
Q.No.32.: Find the Laplace transforms of  (   ) t 4 sin 3 t 4 cos e
t 3
+
. 
Sol.:  (   ) {   }   {   }   {   } t 4 sin e L 3 t 4 cos e L t 4 sin 3 t 4 cos e L
t 3 t 3 t 3     
+ = +         (by linearity property) 
                                                
(   )   (   )
2 2 2 2
4 3 s
4
. 3
4 3 s
3 s
+ +
+
+ +
+
=         (by shifting property) 
Laplace Transforms: Definitions, Properties, Transforms of elementary functions 
                                                                                             Prepared by: Dr. Sunil, NIT Hamirpur (HP) 
19
                                               
25 s 6 s
15 s
2
+ +
+
= . 
Q.No.33.: Find the Laplace transforms of   {   }
t 2 t 5 4 5
e t 4 cos 4 t 6 sin 3 e 4 t 2 t 3   +  + 
  
. 
Sol.:  {   } t 4 cos 4 t 6 sin 3 e 4 t 2 t 3 L
t 5 4 5
+  + 
  
 
          {   }   (   )   {   }   (   )   {   } t 4 cos L 4 t 6 sin L 3 e L 4 t L 2 t L 3
t 5 4 5
+  +  =
  
              (by linearity property) 
         
16 s
s
4
36 s
6
3
5 s
1
4
s
! 4
2
s
! 5
3
2 2 5 6
+
+
+
+
+  = . 
{   }
t 2 t 5 4 5
e t 4 cos 4 t 6 sin 3 e 4 t 2 t 3 L   +  +  
  
 
  
  2 - s by  replaced s with 
2 2 5 6
16 s
s 4
36 s
18
5 s
4
s
48
s
360
+
+
+
+
+  = .            (by shifting property) 
  
(   )   (   )   (   )
(   )
(   ) 16 2 s
2 s 4
36 2 s
18
3 s
4
2 s
48
2 s
360
2 2 5 6
+ 
+
+ 
+
+
= . 
Q.No.34.: Find the Laplace transforms of   ( ) bt cos . at cosh t f   = . 
Sol.:  ( ) {   }   {   }   (   )
)
`
  + = =
  
bt cos e e
2
1
L bt cos . at cosh L t f L
at at
 
                                           {   }   {   } bt cos e L
2
1
bt cos e L
2
1
at at   
+ =            (by linearity property) 
                                          
a s s
2 2
a s s
2 2
b s
s
2
1
b s
s
2
1
+ =  =
  +
+
+
=       (by shifting property) 
                                         
(   )   (   )
2 2 2 2
b a s
a s
2
1
b a s
a s
2
1
+ +
+
+
+ 
= . 
Now let us find Laplace transform of some functions where change of scale 
property is using: 
Q.No.35.: Find  
)
`
t
at sin
L , given that   |
\
|
=
)
`
  
s
1
tan
t
t sin
L
1
. 
Sol.: Since given  |
\
|
=
)
`
  
s
1
tan
t
t sin
L
1
. 
)
`
=
)
`
  
a / s
1
tan
a
1
at
at sin
L
1
                                                      (by change of scale property) 
Laplace Transforms: Definitions, Properties, Transforms of elementary functions 
                                                                                             Prepared by: Dr. Sunil, NIT Hamirpur (HP) 
20
                  |
\
|
=
  
s
a
tan
a
1
1
  
Thus, 
|
\
|
=
)
`
  
s
a
tan
t
at sin
L
1
. Ans. 
Q.No.36.: If  ( ) {   }
s
e
t f L
s
1
= , find  (   ) {   } t 3 f e L
t 
. 
Sol.: Given   ( ) {   }
s
e
t f L
s
1
= . 
(   ) {   }
s
e
3
s
e
3
1
t 3 f L
s
3
s
3
 
= =  .             (by change of scale property) (a = 3, replace s by 
3
s
). 
  (   ) {   }
  (   )
1 s
e
t 3 f e L
1 s
3
t
+
=
+
.                                                                  (by shifting property) 
Q.No.37.: Find the Laplace transforms of  ( ) t f  defined as  
                ( ) ,
t
t f
=  when   < < t 0  
                       , 1 =  when   > t  
Sol.:  ( ) {   } dt 1 . e dt
t
. e t f L
st st
0
+
(
(
(
s
e
dt
s
e
. 1
s
e
. t
1
st st
0 0
st
 
                    
s
e 0
s
e
s
0 e 1
s
0
2
s s
+
(
(
(
   
                     
                     
2
s s
2
s s
s
e 1
s
e
s
1 e
s
e
= +
=
       
. Ans. 
Q.No.38.: Find the Laplace transform of   ( )
>
< <
=
1    t 0,
1 t 0    , e
t f
t
 . 
Laplace Transforms: Definitions, Properties, Transforms of elementary functions 
                                                                                             Prepared by: Dr. Sunil, NIT Hamirpur (HP) 
21
Sol.:  ( ) [   ] dt . 0 dt e e t f L
1
t st
1
0
 
  
+ =   dt e e
t st
1
0
=                  
                    
(   )
[   ] 1 e
s 1
1
s 1
1
s 1
e
s 1
s 1
=
(
(
. Ans. 
Q.No.39.: Find the Laplace transform of   ( )
>
< <
=
n   t           0,
1 t 0    , t sin
t f  . 
Sol.:  ( ) [   ] dt . 0 tdt sin e t f L
1
st
0
 
  
+ = tdt sin e
st
0
= . 
Let  tdt sin e I
st 
= dt
s
e
t cos
s
e
t sin
st st
dt te cos
s
1
s
e
t sin
st
st
+  =  
         
(
(
dt
s
e
t sin
s
e
t cos
s
1
s
e
t sin
st st st
 
          tdt sin e
s
1
s
te cos
s
te sin
st
2 2
st st
=  
         
2 2
st st
s
I
s
te cos
s
te sin
   =
 
 
(
(
=
(
  + 
   
2
st st
2
s
te cos
s
te sin
s
1
1 I   [   ]
st st
2
te cos te sin . s
1 s
1
   
 
+
= . 
( ) [   ]   [   ]
 
 
+
= 
0
st st
2
te cos te sin . s
1 s
1
t f L  
               [   ]
0 s
2
e e
1 s
1
+
+
=
   
1 s
1 e
2
s
+
+
=
 
. Ans. 
Q.No.40.: Find the Laplace transform of   ( )
>
< < 
< <
=
3   t           7,
3 t 2    1, t
2 t 0       , t
t f
2
 . 
Sol.:  ( ) [   ]   (   ) dt e 7 dt e 1 t dt e t t f L
st
3
st
3
2
st 2
2
0
 
  
  +  + =  
Laplace Transforms: Definitions, Properties, Transforms of elementary functions 
                                                                                             Prepared by: Dr. Sunil, NIT Hamirpur (HP) 
22
(   )
  
     
(
(
+
(
(
+
(
(
=
3
st
3
2
2
st st
2
0
3
st
2
st st 2
s
e 7
s
e
s
e 1 t
s
e 2
s
te 2
s
e t
 
(
(
|
|
\
|
|
|
\
|
+
(
(
|
|
\
| 
+
|
|
\
|
+ 
=
      
2
s 2 s 2
2
s 3 s 3
3 3
s 2
2
s 2 s 2
s
e
s
e
s
e
s
e 2
s
2
s
e 2
s
e 4
s
e 4
(
(
+ +
s
e
0 7
s 3
 
s
e 7
s
e
s
e
s
e
s
e 2
s
2
s
e 4
s
e 2
s
e 4
s 3
2
s 2 s 2
2
s 3 s 3
3 3
s 2
2
s 2 s 2          
+
(
(
+ +   +
(
(
 +   =  
[   ]   [   ] s 7 1 s 2
s
e
s
2
s s 2 s 4 s 4
s
e
2
s 3
3
2 2
3
s 2
+   +     +  =
 
 
(   )   (   ) 1 s 5
s
e
2 s 3 s 3
s
e
s
2
2
s 3
2
3
s 2
3
   +  +   =
 
. Ans. 
Q.No.41.: Find the Laplace transform of   ( ) 1 t 1 t t f   + +  =        0 t  . 
Sol.: Given  ( ) 1 t 1 t t f   + +  = . 
( )
(   )   (   )
>
=
< + +  
= 
1 t                               2t,
1  t                               2,
1 t           , 1 t 1 t
t f  
( ) [   ] tdt 2 . e dt 2 . e t f L
st
1
st
1
0
 
  + = 
  
(
(
+
(
(
=
1
2
st st
1
0
st
s
e
s
te
2
s
e
2  
               [   ]
(
(
 +   =
 
2
s s
s
s
e
s
e
2 1 e
s
2
(
(
  +
+
(
(
  
 =
 
2
s s
s
s
s
e se
2
e
e 1
s
2
 
              
(   )   (   )
2
s
s
s
s
1 s e 2
se
1 e 2   +
+
|
|
\
|
+ = + =
 
s
e
1
s
2
s
e 2
s
2
s
2
s
. Ans. 
Q.No.42.: Find the Laplace transform of  
( )
<
> |
\
|   
=
3
2
 t                     0,
3
2
   t ,
3
2
t cos
t f
. 
Sol.:  ( ) [   ] dt
3
2
t cos e t f L
st
|
\
|   
 =
  
. 
Let  dt
3
2
t cos e I
st
|
\
|   
 =
  
dt e
3
2
t sin
s
1
s
e
3
2
t cos
st
st
\
|   
  |
\
|   
  =
 
Laplace Transforms: Definitions, Properties, Transforms of elementary functions 
                                                                                             Prepared by: Dr. Sunil, NIT Hamirpur (HP) 
23
         
(
(
\
|   
 
\
|   
 
|
\
|   
 
=
 
dt
s
e
3
2
t cos
s
e
3
2
t sin
s
1
s
e
3
2
t cos
st st
st
 
         
2
st
2
st
s
I
e
3
2
t sin
s
1
s
e
3
2
t cos
 |
\
|   
 +
|
\
|   
 
=
  
. 
(
(
(
(
\
|   
+
|
\
|   
 
=
(
  + 
   
2
st st
2
s
e
3
2
t sin
s
e
3
2
t cos
s
1
1 I  
( ) [   ]
 
(
(
(
(
\
|   
+
|
\
|   
 
+
= 
3 / 2
2
st st
2
2
s
e
3
2
t sin
s
e
3
2
t cos
1 s
s
t f L  
                
(   )
(
(
+ +
+
=
 
0
s
e
0
1 s
s
s 3 / 2
2
2   (   )
1 s
s
. e
s
e
.
1 s
s
2
3 / s 2
s 3 / 2
2
2
+
=
+
=
   
 
. Ans. 
Q.No.43.: Find the Laplace transform of  at cos at at sin    . 
Sol.:  [   ] at cos at at sin L      (   )   (   ) at cos t aL at sin L    =  
(   )   (   ) at cos L
ds
d
1 a
a s
a
1
2 2
2
 
+
=  
(   )
(   )
2
2 2
2 2
2 2 2 2 2 2
a s
s 2 . s 1 . a s
a
a s
a
a s
s
ds
d
a
a s
a
+
 +
+
+
= |
\
|
+
+
+
=  
(   )
(   )
(   )   (   )
(   )   (   )
2
2 2
3
2
2 2
2 2 2 2
2 2 2
2 2
2 2
2 2
a s
a 2
a s
s a a s a a
a s
a
a s
s a a
a s
a
+
=
+
 + +
+
+
=
+
+
+
= . Ans. 
Q.No.44.: Find the Laplace transform of  (   ) t 2 cos t 2 t 2 sin e
t
. 
Sol.:  (   )   (   )   (   ) t 2 cos t 2 L t 2 sin L t 2 cos t 2 t 2 sin L    =   
(   ) t 2 cos t L 2
4 s
2
2
  
+
=   (   )   (   ) t 2 cos L
ds
d
1 2
4 s
2
1
2
   
+
=  
(   )
(   )
2
2
2
2 2 2
4 s
s 2 . s 4 s
. 2
4 s
2
4 s
s
ds
d
2
4 s
2
+
 +
+
+
=
+
+
+
=  
Laplace Transforms: Definitions, Properties, Transforms of elementary functions 
                                                                                             Prepared by: Dr. Sunil, NIT Hamirpur (HP) 
24
(   )   (   )
(   )
2
2
2 2
2
2
2
4 s
s 2 8 4 s 2
4 s
s 4 2
4 s
2
+
 + +
=
+
+
+
=
(   )
) s ( f
4 s
16
2
2
=
+
= ,   (say). 
Therefore,  (   ) [   ] t 2 cos t 2 t 2 sin e L
t
 
(   ) [   ]   (   )
2
2
2
2
5 s 2 s
16
4 1 s
16
+ +
=
+ +
= . Ans. 
 Q.No.45.: Find the Laplace transform of  t
2
3
sin
2
t
sinh .                      
Sol.:    
|
|
\
|
t
2
3
sin
2
t
sinh L
(
(
|
|
\
|
  
=
t
2
3
sin
2
e e
L
2 / 1 2 / 1
 
(
(
|
|
\
|
(
(
|
|
\
|
=
  
t
2
3
sin e L
2
1
t
2
3
sin e L
2
1
2 / 1 2 / 1
 
4
3
2
1
s
2
3
.
2
1
4
3
2
1
s
2
3
2
1
2 2
+ |
\
|
  +
(
(
(
(
(
+ |
\
|
  
=
                                            
(
(
(
(
+
=
|
|
\
|
4
3
s
2
3
t
2
3
sin L
2
 
(   )   (   )
(   )(   ) ys 1 s s 1 s
1 s s 1 s s
.
4
3
2 2
2 2
+ +  +
+   + +
=  
(   )
  (   )
2 4 2 2 4
2
2
2
s 1 s
s
2
3
s s 2 1 s 2
s . 3
s 1 s
s 2
.
4
3
+ +
=
 + +
=
 +
= .Ans. 
Q.No.46.: Find the Laplace transform of  at sin te
at
. 
Sol.: Consider 
2 2
a s
a
) at (sin L
+
=  
Now  (   )   (   )   (   ) (   ) at sin L
ds
d
1 at sin t L
1
 =
(   )   (   )
) s ( f
a s
as 2
a s
s 2 . 1
) a (
a s
a
ds
d
2
2 2
2
2 2
2 2
  =
+
=
+
 =
+
 =  
Therefore  (   ) at sin t e L
at
  (   )
(   ) (   )
(   )
(   )
(   )
(   )
2
2 2
2
2 2 2
2
2 2
a 2 as 2 s
a s a 2
a as 2 a s
a s a 2
a a s
a s a 2
+ 
=
+  +
=
+ 
= .Ans. 
Q.No.47.: If  ) s ( f )) t ( f ( L   = , show that  (   ) as f a
a
t
f L   =
|
|
\
|
|
\
|
. 
Laplace Transforms: Definitions, Properties, Transforms of elementary functions 
                                                                                             Prepared by: Dr. Sunil, NIT Hamirpur (HP) 
25
Sol.:  dt )) a ( t ( f . e
a
t
f L
st
0
=
|
|
\
|
|
\
|
                             
(
(
     
= = =
0 z   0,  t , z ,  t when
adz dt , az t , z
a
t
   Put
 
                          dz ) z ( f e a adz ) z ( f e
z ) as (
0
saz
0
 
  = =  
                          (   ) as f a = . Ans.                                             
(
(
= =
  
) s ( f dt ) t ( f e )) t ( f ( L
st
0
 
Q.No.48.: Show that  (   )
4 2
2
k 4 s
s k 2
kt sinh kt sin L
+
= . 
Sol.: 
(   )   (   )   (   ) kt sin e L
2
1
kt sin e L
2
1
kt sin
2
e e
L kt sinh kt sin L
kt kt
kt kt
 =
(
(
  
=
(
(
  
= 
  
2
e e
sinh
 
                               
(   )   (   )   (
(
+ +
+ 
=
2 2 2 2
k k s
k
k k s
k
2
1
 
                               
(   )   (   )
(   )(   )
|
|
\
|
+ +  +
   + +
=
ks 2 k 2 s ks 2 k 2 s
k k s k k s
2
k
2 2 2 2
2 2 2 2
 
                                
(   )
(   )
4 4
2
4 4
2 2
2
2 2
2 2 2 2
k 4 s
s k 2
k 4 s
ks 4
2
k
s k 4 k 2 s
ks 2 k 2 s ks 2 k 2 s
2
k
+
= |
\
|
+
=
 +
+   + +
= .Ans. 
***   ***   ***   ***   *** 
***   ***   *** 
*** 
Home Assignments 
Find the Laplace Transforms of the following functions: 
Q.No.  Function  Answer  
1.    at cos at cosh  
(   )
4 4
2 2
a 4 s
a 2 s a
+
+
 
2.   
( )
>
< <
=
4      t 5,
4 t 0        , t
t f  
|
|
\
|
   +
  
2
s 4
2
s
1
s
1
e
s
1
 
Laplace Transforms: Definitions, Properties, Transforms of elementary functions 
                                                                                             Prepared by: Dr. Sunil, NIT Hamirpur (HP) 
26
3.   
( )
 >
 < <
=
2  t           0,
2 t 0        , t cos
t f  
1 s
e 1
2
s
+
+
   
 
4.    t 2 2
e t
  
 
(   )
3
2 s
2
+
 
5.   
(   )
3
t
te 1
  
+  
(   )   (   )   (   )
4 3 2
3 s
6
2 s
6
1 s
3
s
1
+
+
+
+
+
+  
6.   
kt sin
2
 
(   )
2 2
2
k 4 s s
k 2
+
 
7.   
t 2 cos 2 t 4 sin 3 t 6 e 4
3 t 5
+  +  
4 s
s 2
16 s
12
s
36
5 s
4
2 2 4
+
+
+
 +
 
8.   
at cos
3
  (   )
(   )(   )
2 2 2 2
2 2
a 9 s a s
a 7 s s
+ +
+
 
9.    t cos t 2 cos . t 3 cos  
|
|
\
|
  +
+
+
+
+
+
s
1
4 s
s
16 s
s
36 s
s
4
1
2 2 2
 
10.  
t sin  
Hint: Use 
(   )
= |
\
|
  + 
n
2
1 n 2 .... 5 . 3 . 1
2
1
n
 for n 
positive integer. 
(   )
|
\
|
= |
\
|
s 4
1
1 n
1 n
e
s s 2
s 4
1
! 1 n
1
s s 2
. Ans 
11.  
If  ( ) {   }
20 s 4 s
s 4 20
t f L
2
+ 
= .  
Find  (   ) {   } t 3 f L   
(   )
(   ) 180 s 12 s
s 15 4
2
+ 
 
12.  
If  {   }
1 s
1
t sin L
2
+
= .  
Find  {   } t 3 sin L  
9 s
3
2
+
 
13.  
(   )
t 2
e 2 t +   (   )
(   )
3
2
1 s
2 s 4 s 4
+ 
 
14.  
t 2 cosh e
t 4 
 
(   )
(   ) 12 s 8 s
4 s
2
+ +
+
 
Laplace Transforms: Definitions, Properties, Transforms of elementary functions 
                                                                                             Prepared by: Dr. Sunil, NIT Hamirpur (HP) 
27
15.   at sin at sinh  
(   )
4 2
2
a 4 s
s a 2
+
 
16.  
(   ) t 4 cos 4 t 4 sin 3 e
t 2
  
(   )
(   ) 20 s 4 s
s 4 20
2
+ 
 
17.  
t
1 n
e 1
t
 
(   )
(   )
n
0 m
m s
n
+
=
 
18.  
t sin e
3 t 2 
 
13 s 4 s
1
4
3
5 s 4 s
1
4
3
2 2
+ +
+ +
 
19.   t 2 4
e . t sin   (   )
(   )   (   )   (
(
+
+ 
16 2 s
2 s
4 2 s
2 s 4
2 s
3
8
1
2 2
 
 
***   ***   ***   ***   *** 
***   ***   *** 
*** 
 
2 22 2
nd nd nd nd
 Topic Topic Topic Topic 
Laplace Tra Laplace Tra Laplace Tra Laplace Transforms  nsforms  nsforms  nsforms  
Laplace Transforms of Derivatives, Integrals, Multiplication and 
Division by t 
 
***************************************** 
***************************************** 
*****************************************