Biological Divercity
Biological Divercity
Biological Diversity
Frontiers in Measurement
and Assessment
EDITED BY
Anne E. Magurran
Professor of Ecology & Evolution,
University of St Andrews, UK
and
Brian J. McGill
Assistant Professor, School of Biology and Ecology
& Sustainability Solutions Initiative, University of Maine, USA
1
OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
              3
              Great Clarendon Street, Oxford OX2 6DP
              Oxford University Press is a department of the University of Oxford.
              It furthers the University’s objective of excellence in research, scholarship,
              and education by publishing worldwide in
              Oxford New York
              Auckland Cape Town Dar es Salaam Hong Kong Karachi
              Kuala Lumpur Madrid Melbourne Mexico City Nairobi
              New Delhi Shanghai Taipei Toronto
              With offices in
              Argentina Austria Brazil Chile Czech Republic France Greece
              Guatemala Hungary Italy Japan Poland Portugal Singapore
              South Korea Switzerland Thailand Turkey Ukraine Vietnam
              Oxford is a registered trademark of Oxford University Press
              in the UK and in certain other countries
              Published in the United States
              by Oxford University Press Inc., New York
              © Oxford University Press 2011
              The moral rights of the authors have been asserted
              Database right Oxford University Press (maker)
              First published 2011
              All rights reserved. No part of this publication may be reproduced,
              stored in a retrieval system, or transmitted, in any form or by any means,
              without the prior permission in writing of Oxford University Press,
              or as expressly permitted by law, or under terms agreed with the appropriate
              reprographics rights organization. Enquiries concerning reproduction
              outside the scope of the above should be sent to the Rights Department,
              Oxford University Press, at the address above
              You must not circulate this book in any other binding or cover
              and you must impose the same condition on any acquirer
              British Library Cataloguing in Publication Data
              Data available
              Library of Congress Cataloging-in-Publication Data
              Biological diversity : frontiers in measurement and assessment / edited by
              Anne E. Magurran and Brian J. McGill.
                   p. cm.
              ISBN 978–0–19–958067–5
              1. Biodiversity. 2. Biodiversity—Monitoring. 3. Biodiversity conservation.
              I. Magurran, Anne E., 1955– II. McGill, Brian J.
              QH541.15.B56B587 2010
              578.7—dc22        2010029049
              Typeset by SPI Publisher Services, Pondicherry, India
              Printed in Great Britain
              on acid-free paper by
              CPI Antony Rowe, Chippenham, Wiltshire
              1 3 5 7 9 10 8 6 4 2
                                                         OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
CHAPTER 4
                                                                                                             39
OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
40 B I O L O G I C A L DI V E R S I T Y
     Sobs is the total number of species observed in a sample, or                  ACE (for abundance data)
     in a set of samples.
        Sest is the estimated number of species in the                                       
                                                                                             10
                                                                                   Srare =           fk is the number of rare species in a sample (each
     assemblage represented by the sample, or by the set of                                  k =1
     samples, where est is replaced by the name of an estimator.                   with 10 or fewer individuals).
        Abundance data. Let fk be the number of species each                                   S
                                                                                                obs
                                                                                      Sabund =      fk is the number of abundant species in a
     represented by exactly k individuals in a single sample.                                        k =11
     Thus, f0 is the number of undetected species (species                         sample (each with more than 10 individuals).
     present in the assemblage but not included in the sample),                              
                                                                                             10
     f1 is the number of singleton species, f2 is the number of                      nrare =    k fk is the total number of individuals in the
                                                                                                    k =1
     doubleton species, etc. The total number of individuals in                    rare species.
                         S
                          obs                                                         The sample coverage estimate is C AC E = 1 − nrfar1 e , the
     the sample is n =        fk .
                               k =1
                                                                                   proportion of all individuals in rare species that are not
         Replicated incidence data. Let qk be the number of                        singletons. Then the ACE estimator of species richness is
                                                                                                                     f1
     species present in exactly k samples in a set of replicate                       SACE = Sabund + CSrACar eE + C AC   „2 , where „2ACE is the
                                                                                                                        E ACE
     incidence samples. Thus, q0 is the number of undetected                       coefficient of variation,
     species (species present in the assemblage but not included                                        ⎡           
                                                                                                                    10                       ⎤
     in the set of samples), q1 is the number of unique species,                                                         k(k − 1)fk
                                                                                                        ⎢S                                   ⎥
                                                                                                        ⎢ rare k=1                           ⎥
     q2 is the number of duplicate species, etc. The total number                         „2ACE = max ⎢                             − 1, 0⎥
                        S                                                                              ⎣ CACE (nrare ) (nrare − 1)          ⎦
                         obs
     of samples is m =       qk .
                               k =1
                                                                                      The formula for ACE is undefined when all rare species
     Chao 1 (for abundance data)                                                   are singletons (f1 = nrare , yielding CACE = 0). In this case,
                                                                                   compute the bias-corrected form of Chao1 instead.
                          f2
     SChao1 = Sobs + 2 1f2 is the classic form, but is not defined
     when f2 = 0 (no doubletons).                                                  ICE (for incidence data)
                                   −1)
        SChao1 = Sobs + f2(1 ( ff21+1) is a bias-corrected form, always                      
                                                                                             10
                                                                                   Sinfr =          qk is the number of infrequent species in a
     obtainable.                                                                     k =1
                                           2            3                4
                                 1    f1           f1           1   f1
        var(SChao1 ) = f2        2    f2
                                               +   f2
                                                            +   4   f2
                                                                             for   sample (each found in 10 or fewer samples).
                                                                                             S
     f1 > 0 and f2 > 0 (see Colwell 2009, Appendix B of                              Sfreq =
                                                                                              obs
                                                                                                  qk is the number of frequent species in a
     EstimateS User’s Guide for other cases and for asymmetrical                                  k =11
     confidence interval computation).                                             sample (each found in more than 10 samples).
                                                                                             
                                                                                             10
                                                                                     ninfr =    kqk is the total number of incidences in the
     Chao 2 (for replicated incidence data)                                                     k =1
                                                                                   infrequent species.
                         q12
     SChao2 = Sobs +       is the classic form, but is not defined                    The sample coverage estimate is CICE = 1 − niqnf1 r , the
                         2q2
     when q2 = 0 (no duplicates).
                                q1 (q1 −1)                                       proportion of all incidences of infrequent species that are
        SChao2 = Sobs + m−1  m     2(q2 +1)
                                             is a bias-corrected form,             not uniques. Then the ICE estimator of species richness is
                                                                                                  S nf r
     always obtainable. 
                                2  3                 4                      CICE = Sfreq + Ci ICE + CqICE
                                                                                                              1
                                                                                                                 „2ICE , where „2ICE is the coefficient
        var(SChao2 ) = q2 12 qq12 + qq12 + 14 qq12                for              of variation,
                                                                                                 ⎡                                                  ⎤
     q1 > 0 and q2 > 0 (see Colwell 2009, Appendix B of                                                                   10
                                                                                                 ⎢S                           k(k  −   1)qk         ⎥
     EstimateS User’s Guide for other cases and for asymmetrical                                 ⎢ infr       minfr       k=1                       ⎥
                                                                                     „2ICE = max ⎢                                           − 1, 0⎥
     confidence interval computation).                                                           ⎣C ICE (minfr − 1)           (ninfr )
                                                                                                                                       2            ⎦
                                                                  OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
     The formula for ICE is undefined when all infrequent           Jackknife estimators (for incidence data)
  species are uniques (q1 = ninfr , yielding CICE = 0). In this
  case, compute the bias-corrected form of Chao2                    The first-order jackknife richness estimator is
  instead.                                                                                                               
                                                                                                                    m−1
                                                                                      Sjackknife1 = Sobs + q1
                                                                                                                     m
  Jackknife estimators (for abundance data)
                                                                      The second-order jackknife richness estimator is
  The first-order jackknife richness estimator is
                                                                                                                             
                       Sjackknife1 = Sobs + f1                                                 q (2m − 3) q2 (m − 2)2
                                                                        Sjackknife2   = Sobs + 1         −
    The second-order jackknife richness estimator is                                               m       m (m − 1)
                   Sjackknife2 = Sobs + 2f1 − f2
   By their nature, sampling data document only                     inferences about the number of colours (species) in
the verified presence of species in samples. The                    the entire jar. This process of statistical inference
absence of a particular species in a sample may                     depends critically on the biological assumption that
represent either a true absence (the species is not                 the community is ‘closed,’ with an unchanging total
present in the assemblage) or a false absence (the                  number of species and a steady species abundance
species is present, but was not detected in the                     distribution. Jellybeans may be added or removed
sample; see Chapter 3). Although the term ‘pres-                    from the jar, but the proportional representation of
ence/absence data’ is often used as a synonym for                   colours is assumed to remain the same. In an open
incidence data, the importance of distinguishing                    metacommunity, in which the assemblage changes
true absences from false ones (not only for rich-                   size and composition through time, it may not be
ness estimation, but in modelling contexts, e.g. Elith              possible to draw valid inferences about community
et al. 2006) leads us to emphasize that incidence                   structure from a snapshot sample at one point in
data are actually ‘presence data’. Richness esti-                   time (Magurran 2007). Few, if any, real communities
mation methods for abundance data assume that                       are completely ‘closed’, but many are sufficiently
organisms can be sampled and identified as dis-                     circumscribed that that richness estimators may be
tinct individuals. For clonal and colonial organisms,               used, but with caution and caveats.
such as many species of grasses and corals, indi-                      For all of the methods and metrics (Box 4.1) that
viduals cannot always be separated or counted, but                  we discuss in this chapter, we make the closely
methods designed for incidence data can nonethe-                    related statistical assumption that sampling is with
less be used if species presence is recorded within                 replacement. In terms of collecting inventory data
standardized quadrats or samples (e.g. Butler &                     from nature, this assumption means either that indi-
Chazdon 1998).                                                      viduals are recorded, but not removed, from the
   Snacking from a jar of mixed jellybeans provides                 assemblage (e.g. censusing trees in a plot) or, if
a good analogy for biodiversity sampling (Longino                   they are removed, the proportions remaining are
et al. 2002). Each jellybean represents a single indi-              unchanged by the sampling.
vidual, and the different colours represent the dif-                   This framework of sampling, counting, and iden-
ferent species in the jellybean ‘assemblage’—in a                   tifying individuals applies not only to richness esti-
typical sample, some colours are common, but most                   mation, but also to many other questions in the
are rare. Collecting a sample of biodiversity data                  study of biodiversity, including the characterization
is equivalent to taking a small handful of jelly-                   of the species abundance distribution (see Chap-
beans from the jar and examining them one by                        ter 9) and partitioning diversity into α and β com-
one. From this incomplete sample, we try to make                    ponents (see Chapters 6 and 7).
 OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
42 B I O L O G I C A L DI V E R S I T Y
                                                                                           40
Figure 4.1 Species accumulation and rarefaction curves. The                                         Individual-based
jagged line is the species accumulation curve for one of many                              35       rarefaction curve
possible orderings of 121 soil seedbank samples, yielding a total
of 952 individual tree seedlings, from an intensive census of a plot                       30
                                                                       Number of species
of Costa Rican rainforest (Butler & Chazdon 1998). The cumulative
number of tree species (y-axis) is plotted as a function of the                            25                      Sample-based rarefaction curve
cumulative number of samples (upper x-axis), pooled in random
                                                                                           20
order. The smooth, solid line is the sample-based rarefaction curve
for the same data set, showing the mean number of species for all                                                 Species accumulation curve
                                                                                           15
possible combinations of 1, 2, . . . , m∗ , . . . , 121 actual
samples from the dataset—this curve plots the statistical                                  10
expectation of the (sample-based) species accumulation curve.
The dashed line is the individual-based rarefaction curve for the                           5
same data set—the expected number of species for
(m∗ ) (952/121) individuals, randomly chosen from all 952                                   0
individuals (lower x-axis). The black dot indicates the total                                   0        20       40    60       80       100       120
richness for all samples (or all individuals) pooled. The                                                         Number of samples
sample-based rarefaction curve lies below the individual-based
rarefaction curve because of spatial aggregation within species.                                0          200      400        600        800        1000
This is a very typical pattern for empirical comparisons of                                                       Number of individuals
sample-based and individual-based rarefaction curves.
4.2.2 The species accumulation curve                                                               Regardless of the species abundance distribu-
                                                                                                tion, this curve increases monotonically, with a
Consider a graph in which the x-axis is the num-
                                                                                                decelerating slope. For a given sample, different
ber of individuals sampled and the y-axis is the
                                                                                                stochastic realizations of the order in which the
cumulative number of species recorded (Fig. 4.1,
                                                                                                individuals in the sample are added to the graph
lower x-axis). Imagine taking one jellybean at a time
                                                                                                will produce species accumulation curves that dif-
from the jar, at random. As more individuals (jelly-
                                                                                                fer slightly from one another. The smoothed aver-
beans) are sampled, the total number of species
                                                                                                age of these individual curves represents the sta-
(colours) recorded in the sample increases, and a
                                                                                                tistical expectation of the species accumulation
species accumulation curve is generated. Of course,
                                                                                                curve for that particular sample, and the variabil-
the first individual drawn will represent exactly one
                                                                                                ity among the different orderings is reflected in
species new to the sample, so all species accumu-
                                                                                                the variance in the number of species recorded for
lation curves based on individual organisms origi-
                                                                                                any given number of individuals. However, this
nate at the point [1,1]. The next individual drawn
                                                                                                variance is specific, or conditional, on the particu-
will represent either the same species or a species
                                                                                                lar sample that we have drawn because it is based
new to the sample. The probability of drawing a
                                                                                                only on re-orderings of that single sample. Suppose,
new species will depend both on the complete num-
                                                                                                instead, we plot the smoothed average of several
ber of species in the assemblage and their relative
                                                                                                species accumulation curves, each based on a dif-
abundances. The more species in the assemblage
                                                                                                ferent handful of jellybeans from the same jar, each
and the more even the species abundance distribu-
                                                                                                handful having the same number of beans. Varia-
tion (see Chapter 9), the more rapidly this curve will
                                                                                                tion among these smoothed curves from the several
rise. In contrast, if the species abundance distribu-
                                                                                                independent, random samples represents another
tion is highly uneven (a few common species and
                                                                                                source of variation in richness, for a given number
many rare ones, for example), the curve will rise
                                                                                                of individuals. The variance among these curves is
more slowly, even at the outset, because most of the
                                                                                                called an unconditional variance because it estimates
individuals sampled will represent more common
                                                                                                the true variance in richness of the assemblage. The
species that have already been added to the sample,
                                                                                                unconditional variance in richness is necessarily
rather than rarer ones that have yet to be detected.
                                                         OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
larger than the variance conditional on any single         autocorrelation is taken into account, the samples
sample.                                                    themselves may be only partially independent.
                                                           Nevertheless, the inevitable non-independence of
                                                           individuals within samples can be overcome by
4.2.3 Climbing the species accumulation
                                                           plotting a second kind of species accumulation
curve
                                                           curve, called a sample-based species accumulation
In theory, finding out how many species character-         curve, in which the x-axis is the number of samples
ize an assemblage means sampling more and more             and the y-axis is the accumulated number of species
individuals until no new species are found and the         (Fig. 4.1, upper x-axis). Because only the identity
species accumulation curve reaches an asymptote.           but not the number of individuals of each species
In practice, this approach is routinely impossible for     represented within a sample is needed to construct
two reasons. First, the number of individuals that         a sample-based species accumulation curve, these
must be sampled to reach an asymptote can often be         curves plot incidence data. This approach is there-
prohibitively large (Chao et al. 2009). The problem        fore also suitable for clonal and colonial species that
is most severe in the tropics, where species diversity     cannot be counted as discrete individuals.
is high and most species are rare. For example, after
nearly 30 consecutive years of sampling, an ongo-
ing inventory of a tropical rainforest ant assemblage
                                                           4.2.4 Species richness versus species density
at La Selva, Costa Rica, has still not reached an
asymptote in species richness. Each year, one or two       The observed number of species recorded in a sam-
new species are added to the local list. In some cases     ple (or a set of samples) is very sensitive to the
these species are already known from collections at        number of individuals or samples observed or col-
other localities, but in other cases they are new to       lected, which in turn is influenced by the effec-
science (Longino et al. 2002). In other words, bio-        tive area that is sampled and, in replicated designs,
diversity samples, even very extensive ones, often         by the spatial arrangement of the replicates. Thus,
fall short of revealing the complete species richness      many measures reported as ‘species richness’ are
for an assemblage, representing some unspecified           effectively measures of species density: the number
milestone along a slowly rising species accumula-          of species collected in a particular total area. For
tion curve with an unknown destination.                    quadrat samples or other methods that sample a
   A second reason that the species accumula-              fixed area, species density is expressed in units of
tion curve cannot be used to directly determine            species per specified area. Even for traps that col-
species richness is that, in field sampling, ecolo-        lect individuals at a single point (such as a pitfall
gists almost never collect random individuals in           trap), there is probably an effective sampling area
sequence. Instead, individual plants or mobile ani-        that is encompassed by data collection at a single
mals are often recorded from transects or points           point.
counts, or individual organisms are collected in pit-         Whenever sampling is involved, species density
fall and bait traps, sweep samples, nets, plankton         is a slippery concept that is often misused and
tows, water, soil, and leaf litter samples, and other      misunderstood. The problem arises from the non-
taxon-specific sampling units that capture multi-          linearity of the species accumulation curve. Con-
ple individuals (Southwood & Henderson 2000).              sider the species accumulation curve for rainforest
Although these samples can, under appropriate              seedlings (Butler & Chazdon 1998) in Fig. 4.2, which
circumstances, be treated as independent of one            plots the species of seedlings grown from dormant
another, the individuals accumulated within a sin-         seed in 121 soil samples, each covering a soil surface
gle sample do not represent independent observa-           area of 17.35 cm2 and a depth of 10 cm. The x-axis
tions. Although individuals contain the biodiver-          plots the cumulative surface area of soil sampled.
sity ‘information’ (species identity), it is the sam-      The slopes of lines A, B, and C represent species
ples that represent the statistically independent          density: number of species observed (y), divided by
replicates for analysis. When spatial and temporal         area-sampled (x). You can see that species density
 OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
44 B I O L O G I C A L DI V E R S I T Y
40
Figure 4.2 Species richness and species density are not the same 30
                                                                             Number of species
thing. The solid line is the sample-based rarefaction curve for the                                                                               C
                                                                                                 25
same data set as in Fig 4.1, showing the expected species richness of
                                                                                                                           B
rainforest tree seedlings for 1, 2, . . . , m∗ , . . . , 121 soil samples,
                                                                                                 20
each covering a soil surface area of 17.35 cm2 and a depth of
10 cm. Species richness (y-axis) is plotted as a function of the total                                          A
                                                                                                 15
soil surface area sampled (x-axis). Because species density is the ratio
of richness (y-coordinate) to area (x-coordinate) for any point in the                           10
graph, the slopes of lines A, B, and C quantify species density for
500, 1000, and 2000 cm2 , respectively. Clearly, species density                                 5
estimates depend on the particular amount of area sampled. All of
the species density slopes over-estimate species number when                                     0
extrapolated to larger areas, and species density estimates based on                                  0             500         1000       1500       2000
differing areas are not comparable.                                                                                   Soil area sampled (cm2)
depends critically not just on area, but on the spe-                                              (James & Wamer 1982). This decomposition demon-
cific amount of area sampled. For this reason, it                                                 strates that the number of species per sampling unit
never works to ‘standardize’ the species richness                                                 reflects both the underlying species richness and
of samples from two or more assemblages by sim-                                                   the total number of individuals sampled. If two
ply dividing observed richness by area sampled (or                                                samples differ in species density, is it because of
by any other measure of effort, including number                                                  differences in underlying species richness, differ-
of individuals or number of samples). Estimating                                                  ences in abundance, or some combination of both?
species density by calculating the ratio of species                                               In other words, how do we meaningfully com-
richness to area sampled will always grossly over-                                                pare the species richness of collections that prob-
estimate species density when this index is extrap-                                               ably differ in both the number of individuals and
olated to larger areas, and the size of that bias will                                            the number of samples collected? Until recently,
depend on the area sampled.                                                                       many ecologists have not recognized this prob-
   Sometimes, however, ecologists or conservation                                                 lem. The distinction between species density and
biologists are interested in species density, for some                                            species richness has not always been appreciated,
particular amount of area, in its own right. For                                                  and many papers have compared species density
example, if only one of two areas, equal in size and                                              using standard parametric statistics, but without
cost per hectare, can be purchased to establish a                                                 accounting for differences in abundance or sam-
reserve, species density at the scale of the reserve is                                           pling effort.
clearly a variable of interest. Because species density                                              One statistical solution is to treat abundance,
is so sensitive to area (and, ultimately, to the num-                                             number of samples, or sample area as a covariate
ber of individuals observed or collected), it is useful                                           that can be entered into a multiple regression analy-
to decompose it into the product of two quanti-                                                   sis or an analysis of covariance. If the original data
ties: species richness (number of species represented                                             (counts and identities of individuals) are not avail-
by some particular number, N, of individuals) and                                                 able, this may be the best that we can do. For exam-
total individual density (number of individuals N,                                                ple, Dunn et al. (2009) assembled a global database
disregarding species, in some particular amount of                                                of ant species richness from a number of published
area A):                                                                                          studies. To control for sampling effects, they used
                                                                                            the area, number of samples, and total number of
  species             species          N individuals
              =                   ×                                                               individuals from each sample location as statisti-
   ar ea A        N individuals            ar ea A
                                                                                                  cal covariates in regression analyses. However, they
                                                        OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
did not make the mistake of trying to ‘standard-          based on all n individuals, does not differ from the
ize’ the richness of different samples by dividing        richness of a subsample of size n∗ from the larger
the species counts by the area, the number of indi-       sample cannot be rejected at P ≤ 0.05. If this null
viduals sampled, or any other measure of effort.          hypothesis is not rejected, and the original, unrar-
As we have repeatedly emphasized, this rescaling          efied samples differed in species density, then this
produces serious distortions: extrapolations from         difference in species density must be driven by
small sample ratios of species density inevitably         differing numbers of individuals between the two
lead to gross over-estimates of the number of             samples. Alternatively, if s is not contained within
species expected in larger sample areas (Fig. 4.2 and     the confidence interval of s ∗ , the two samples differ
Figure 4–6 in Gotelli & Colwell 2001).                    in species richness in ways that cannot be accounted
                                                          for entirely by differences in abundance and/or
                                                          sampling effort (at P ≤ 0.05).
4.2.5 Individual-based rarefaction
                                                             Rarefaction can be used not only to calculate a
The species accumulation curve itself suggests an         point estimate of s ∗ , but also to construct an entire
intuitive way to compare the richness of two sam-         rarefaction curve in which the number of individuals
ples (for the same kind of organism) that differ in       randomly subsampled ranges from 1 to N. Rarefac-
the number of individuals collected. Suppose one          tion can be thought of as a method of interpolating
of the two samples has N individuals and S species,       E(s ∗ |n∗ ) the expected number of species, given n∗
and the other has n individuals and s species. The        individuals (1 ≤ n∗ ≤ N), between the point [1, 1]
samples differ in the number of individuals present       and the point [S, N] (Colwell et al. 2004). With pro-
(N > n) and will usually differ in the number of          gressively smaller subsamples from N – 1 to 1, the
species present (typically S > s). In the procedure       resulting individual-based rarefaction curve, in a sense,
called rarefaction, we randomly draw n∗ individuals,      is the reverse of the corresponding species accumu-
subsampling without replacement from the larger           lation curve, which progressively builds larger and
of the two original samples, where n∗ = n, the size       larger samples.
of the smaller original sample. (This re-sampling,           Because this individual-based rarefaction curve
without replacement, of individuals from within           is conditional on one particular sample, the vari-
the sample does not violate the assumption that the       ance in s ∗ , among random re-orderings of indi-
process of taking the sample itself did not change        viduals, is 0 at both extremes of the curve: with
the relative abundance of species). Computing the         the minimum of only one individual there will
mean number of species, s̄ ∗ , among repeated sub-        always be only one species represented, and with
samples of n∗ individuals estimates E(s ∗ |n∗ ), the      the maximum of N individuals, there will always be
expected number of species in a random subsam-            exactly S species represented. Hurlbert (1971) and
ple of n∗ individuals from the larger original sam-       Heck et al. (1975) give analytical solutions for the
ple (Fig. 4.1, lower x-axis). The variance of (s ∗ ),     expectation and the conditional variance of s ∗ , which
among random re-orderings of individuals, can also        are derived from the hypergeometric distribution.
be estimated this way along with a parametric 95%         In contrast, treating the sample (one handful of
confidence interval, or the confidence interval can       jellybeans) as representative of a larger assemblage
be estimated from the bootstrapped values (Manly          (the jar of jellybeans) requires an estimate of the
1991).                                                    unconditional variance (the variance in s ∗ |n∗ among
   A simple test can now be conducted to ask              replicate handfuls of jellybeans from the same jar).
whether s, the observed species richness of the com-      The unconditional variance in richness, S, for the
plete smaller sample, falls within the 95% confi-         full sample of N individuals, must be greater than
dence interval of s ∗ , the expected species richness     zero to account for the heterogeneity that would
based on random subsamples of size n from the             be expected with additional random samples of
larger sample (Simberloff 1978). If the observed          the same size taken from the entire assemblage.
value falls within the confidence interval, then the      Although Smith & Grassle (1977) derived an esti-
hypothesis that the richness of the smaller sample,       mator for the unconditional variance of E(s ∗ |n∗ ),
OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
46 B I O L O G I C A L DI V E R S I T Y
sampling units used in most biodiversity studies.            test on the overlap of traditional 95% CIs is overly
Because sample-based rarefaction requires only               conservative: richness values that would differ sig-
incidence data, it can also be used for clonal               nificantly with the 84% interval would often be
organisms or for species in which individuals                declared statistically indistinguishable because the
in a sample cannot be easily distinguished or                95% intervals for the same pair of samples would
counted.                                                     overlap (Payton et al. 2003).
   Operationally, sample-based rarefaction can be               An important pitfall to avoid in using sample-
carried out by repeatedly selecting and pooling              based rarefaction to compare richness between
m∗ samples at random from the set of samples,                sample sets is that the method does not directly con-
and computing the mean and conditional (on the               trol for differences in overall abundance between
particular set of samples) variance and 95% confi-           sets of samples. Suppose two sets of samples are
dence interval for s ∗ . On the other hand, E (s ∗ |m∗ )     recorded from the same assemblage, but they dif-
is more easily and accurately computed from com-             fer in mean number of individuals per sample
binatorial equations based on the distribution of            (systematically or by chance). When plotted as a
counts, the number of species found in exactly 1,            function of number of samples (on the x-axis) the
2, . . . , m∗ samples in the set (Ugland et al. 2003;        sample-based rarefaction curve for the sample set
Colwell et al. 2004; see Chiarucci et al. 2008 for           with a higher mean abundance per sample will lie
a history of this approach). Colwell et al. 2004             above the curve for the sample set with lower mean
also introduced a sample-based version of the                abundance because more individuals reveal more
Coleman rarefaction model, the results of which              species. The solution suggested by Gotelli & Col-
closely approximate the true sample-based rarefac-           well (2001) is to first calculate sample-based rarefac-
tion curve.                                                  tion curves and their variances (or CIs) for each set
   Ugland et al. (2003) provide an expression for            of samples in the analysis. Next, the curves are re-
the conditional variance in richness estimates from          plotted against an x-axis of individual abundance,
sample-based rarefaction. Colwell et al. (2004)              rather than number of samples. This re-plotting
derived an unconditional variance estimator for              effectively shifts the points of each individual-based
sample-based rarefaction that treats the observed            rarefaction curve to the left or the right, depending
set of samples, in turn, as a sample from some               on the average number of individuals that were
larger assemblage, so that the variance in S for             collected in each sample. Ellison et al. (2007) used
all M samples, pooled (the full set of samples),             this method to compare the efficacy of ant sam-
takes some non-zero value. This unconditional vari-          pling methods that differed greatly in the average
ance (and its associated confidence interval (CI))           number of individuals per sample (e.g. 2 ants per
accounts for the variability expected among repli-           pitfall trap, versus > 89 ants per plot for standard-
cate sets of samples. Based on unconditional vari-           ized hand sampling). Note that if sample-based rar-
ances for two sample-based rarefaction curves, rich-         efaction is based on species occurrences rather than
ness can be compared for any common number of                abundances, then the rescaled x-axis is the number
samples (or individuals, as explained below). Using          of species occurrences, not the number of individu-
eigenvalue decomposition, Mao & Li (2009) devel-             als.
oped a computationally complex method for com-
paring two sample-based rarefaction curves in their
entirety. A much simpler, but approximate, method            4.2.7 Assumptions of rarefaction
is to assess, for a desired value of m∗ , whether or         To use rarefaction to compare species richness of
not the two (appropriately computed) confidence              two (or more) samples or assemblages rigorously,
intervals overlap. If the two CIs (calculated from the       the following assumptions should be met:
unconditional variance) are approximately equal,
for a type I error rate of P < 0.05, the appropriate         1. Sufficient sampling. As with any other statis-
CI is about 84% (Payton et al. 2003; the z value                tical procedure, the power to detect a dif-
for 84% CI is 0.994 standard deviations). Basing the            ference, if there is one, depends on having
OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
48 B I O L O G I C A L DI V E R S I T Y
ples) as the starting point in a graph of richness           Menten function; Keating & Quinn (1998)) to a
versus abundance or sample number (the dot at the            rarefaction or species accumulation curve. This
right-hand end of the curves in Fig. 4.1). Rarefac-          approach dates back at least to Holdridge et al.
tion amounts to interpolating ‘backward’ from the            (1971), who fitted a negative binomial function to
endpoint of a species accumulation curve, yielding           smoothed species accumulation curves to compare
estimates of species richness expected for smaller           the richness of Costa Rica trees at different local-
numbers of individuals or samples. In contrast,              ities. Many other asymptotic functions have since
using this starting point to estimate the complete           been explored (reviewed by Colwell & Coddington
richness of the assemblage, including species that           (1994), Flather (1996), Chao (2005), and Rosenzweig
were not detected by the sample, can be visualized           et al. (2003)). Unfortunately, this strictly phenom-
as extrapolating ‘forward’ along a hypothetical pro-         enological method, despite the advantage that it
jection the accumulation curve (Colwell et al. 2004,         makes no assumptions about sampling schemes or
their Figure 4). Two objectives of extrapolation can         species abundance distributions, does not seem to
be distinguished: (1) estimating the richness of a           work well in practice. Two or more functions may
larger sample and (2) estimating the complete rich-          fit a dataset equally well, but yield drastically dif-
ness of the assemblage, visualized as the asymptote          ferent estimates of asymptotic richness (Soberón &
of the accumulation curve. Once this asymptote is            Llorente 1993; Chao 2005), and variance estimates
reached, the species accumulation curve is flat and          for the asymptote are necessarily large. Residual
additional sampling will not yield any additional            analysis often reveals that the popular functions
species.                                                     do not correctly fit the shape of empirical species
   Why should the species accumulation curve have            accumulation curves (O’Hara 2005), and this curve-
an asymptote? On large geographical scales, it does          fitting method consistently performs worse than
not: larger areas accumulate species at a constant           other approaches (Walther & Moore 2005; Walther
or even an increasing rate because expanded sam-             & Morand 2008). For these reasons, we do not rec-
pling incorporates diverse habitat types that sup-           ommend fitting asymptotic mathematical functions
port distinctive species assemblages (see Chap-              as a means of estimating complete species richness
ter 20). As a consequence, the species accumulation          of local assemblages.
curve continues to increase, and will not reach a               Mixture models, in which species abundance
final asymptote until it approaches the total area           or occurrence distributions are modelled as a
of the biosphere. The subject of species turnover is         weighted mixture of statistical distributions, offer
covered by Jost et al. and Magurran (Chapters 6              a completely different, non-parametric approach to
and 7) and species–area relationships are the subject of     extrapolating an empirical rarefaction curve to a
Chapter 20. In this chapter, we focus on the estima-         larger sample sizes (or a larger set of samples)
tion of species richness at smaller spatial scales—          (reviewed by Mao et al. (2005), Mao & Colwell
scales at which an asymptote is a reasonable sup-            (2005), and Chao (2005)). Colwell et al. (2004), for
position and sampling issues are substantially more          example, modelled the sample-based rarefaction
important than spatial turnover on habitat mosaics           curve as a binomial mixture model. However, these
or gradients (Cam et al. 2002). In statistical terms,        models are effective only for a doubling or tripling
we assume that samples were drawn independently              of the observed sample size. Beyond this point, the
and at random from the local assemblage, so that             variance of the richness estimate increases rapidly.
the ordering of the samples in time or space is not          Unless the initial sample size is very large, pro-
important. In fact, unimportance of sample order is          jecting the curve to an asymptotic value usually
diagnostic of the kinds of sample sets appropriately         requires much more than a doubling or tripling of
used by ecologists to assess local species richness          the initial sample size (Chao et al. 2009), so this
(Colwell et al. 2004).                                       method is not always feasible, especially for hyper-
   The most direct approach to estimating the                diverse taxa (Mao & Colwell 2005).
species richness asymptote is to fit an asymp-                  Another classical approach to estimating asymp-
totic mathematical function (such as the Michaelis–          totic richness is to fit a species abundance
 OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
50 B I O L O G I C A L DI V E R S I T Y
100
80
                                                                            Species (frequency)
                                                                                                   60
distribution (see Chapter 9), based on a single sam-                                              biodiversity surveys and conservation issues, and a
ple, to a truncated parametric distribution, then                                                 subject of basic research on the causes and conse-
estimate the ‘missing’ portion of the distribution,                                               quences of species richness in natural ecosystems.
which corresponds to the undetected species in                                                    In Box 4.1, we have listed six of the most widely
an assemblage. Fisher et al. (1943) pioneered this                                                used and best-performing indices. All the estima-
approach by fitting a geometric series to a large                                                 tors in Box 4.1 depend on a fundamental principle
sample of moths captured at light traps. Relative                                                 discovered during World War II by Alan Turing and
incidence distributions from replicated sets of sam-                                              I.J. Good (as reported by Good (1953, 2000)), while
ples can be treated in the same way (Longino et al.                                               cracking the military codes of the German Wehrma-
2002). The most widely used species abundance                                                     cht Enigma coding machine: the abundances of the
distribution for this approach is the log-normal                                                  very rarest species or their frequencies in a sample
(Fig. 4.3) and its variants (from Preston (1948) to                                               or set of samples can be used to estimate the fre-
Hubbell (2001)), but other distributions (geometric                                               quencies of undetected species. All of the estima-
series, negative binomial, γ, exponential, inverse                                                tors in Box 4.1 correct the observed richness Sobs by
Guassian) have also been used. The challenges of                                                  adding a term based on the number of species rep-
fitting the log-normal have been widely discussed                                                 resented in a single abundance sample by only one
(e.g. Colwell & Coddington 1994; Chao 2004; Dor-                                                  individual (singletons), by two (doubletons), or by a
nelas et al. 2006; Connolly et al. 2009). One of                                                  few individuals. For incidence data, the added term
the limitations of this approach is shared with the                                               is based on the frequencies of species represented in
extrapolation of fitted parametric functions: two or                                              only one (uniques) sample, in two (duplicates), or in
more species abundance distributions may fit the                                                  a few replicate incidence samples.
data equally well, but predict quite different assem-                                                Fig. 4.4 shows how well one of these estima-
blage richness. In addition, the species abundance                                                tors, Chao2, estimates the asymptotic richness of the
distribution that fits best may be one that cannot                                                seedbank dataset of Figure 4.1, based on sets of m∗
be used to estimate undetected species, such as the                                               samples chosen at random. The estimator stabilizes
widely used log-series distribution (Chao 2004).                                                  after about 30 samples have been pooled. When all
   The limitations of parametric methods inspired                                                 121 samples have been pooled, the estimator sug-
the development of non-parametric richness esti-                                                  gests that 1–2 additional species still remain unde-
mators, which require no assumptions about an                                                     tected.
underlying species abundance distribution and do                                                     Only four of the estimators in Box 4.1 (Chao1,
not require the fitting of either a priori or ad hoc                                              ACE, and the two individual-based jackknife esti-
models (Chao 2004). These estimators have experi-                                                 mators) are appropriate for abundance data; the
enced a meteoric increase in usage in the past two                                                rest require replicated incidence data. Most of the
decades, as species richness has become a focus of                                                incidence-based estimators were first developed, in
                                                                                        OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
                                                                                            40
                                                                                                 Chao2 species richness estimator
                                                                                            35
30
                                                                        Number of species
                                                                                            25                    Sample-based rarefaction curve
20
15
biological applications, for capture–recapture meth-                                         additional individuals would be needed to sample
ods of population size estimation. The number of                                             100% (or any other percentage) of the asymptotic
samples that include Species X in a set of bio-                                              species richness of a region based on the samples
diversity samples corresponds to the number of                                               already in hand. Pan et al. (2009) have recently
recaptures of marked Individual X in a capture–                                              extended the Chao1 and Chao2 indices to provide
recapture study. In species richness estimation, the                                         an estimate of the number of shared species in mul-
full assemblage of species, including those species                                          tiple assemblages.
not detected in the set of samples (but susceptible                                             The jackknife is a general statistical technique for
to detection), corresponds, in population size esti-                                         reducing the bias of an estimator by removing sub-
mation, to the total population size, including those                                        sets of the data and recalculating the estimator with
individuals never captured (but susceptible to cap-                                          the reduced sample. In this application of the tech-
ture) (Boulinier et al. 1998; Chao 2001, 2004).                                              nique, the observed number of species is a biased
   Behind the disarming simplicity of Chao1 and                                              (under-) estimator of the complete assemblage rich-
Chao2 lies a rigorous body of statistical theory                                             ness (Burnham & Overton 1979; Heltshe & Forrester
demonstrating that both are robust estimators of                                             1983; Chao 2004). For a set of m replicate incidence
minimum richness (Shen et al. 2003). ACE and ICE                                             samples, the kth order jackknife reduces the bias by
are based on estimating sample coverage—the pro-                                             estimating richness from all sets of m–k samples.
portion of assemblage richness represented by the                                            The first-order jackknife (Jackknife1) thus depends
species in a single abundance sample (ACE) or in a                                           only on the uniques (species found in only one sam-
set of replicated incidence samples (ICE). The esti-                                         ple) because the richness estimate is changed only
mators are adjusted to the ‘spread’ of the empirical                                         when a sample that contains one of these species
species abundance (or incidence) distribution by a                                           is deleted from a subset of samples. Likewise, the
coefficient of variation term (Chao 2004). The Chao1                                         second-order jackknife (Jackknife2) depends only
and Chao2 estimators also provide a heuristic, intu-                                         on the uniques and the duplicates (species found
itive ‘stopping rule’ for biodiversity sampling: no                                          in exactly two samples). Similar expressions for
additional species are expected to be found when all                                         abundance-based jackknife estimators are based on
species in the sample are represented by at least two                                        the number of singletons (species represented by
individuals (or samples). Extending this approach,                                           exactly one individual) and doubletons (species
Chao et al. (2009) provide equations and simple                                              represented by exactly two individuals; Burnham &
spreadsheet software for calculating how many                                                Overton (1979)). These estimators can be derived by
OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
52 B I O L O G I C A L DI V E R S I T Y
letting the number of samples m tend to infinity in      plot (a method first suggested by Pielou (1975),
the equations for the incidence-based estimators.        but popularized by Colwell & Coddington (1994)).
                                                         For example, Butler & Chazdon (1998) collected
                                                         seeds from 121 soils samples from a 1 ha plot, on
4.2.9 Comparing estimators of asymptotic
                                                         a 10 × 10 m grid in tropical rainforest in Costa
species richness
                                                         Rica, yielding 952 individual seedlings represent-
Given the diversity of asymptotic estimators that        ing a total of 34 tree species (Figure 4.1). Col-
have been proposed, which one(s) should ecologists       well & Coddington (1994) randomly rarefied these
use with their data? The ideal estimator would be        data, by repeatedly pooling m∗ samples (1 ≤ m∗ ≤
unbiased (it neither over- or under-estimates asymp-     M), and found that the Chao2 index (illustrated
totic species richness), precise (replicates samples     in Fig. 4.4) and the second-order jackknife estima-
from the same assemblage produce similar esti-           tors were least biased for small m∗ , followed by
mates), and efficient (a relatively small number of      the first-order jackknife and the Michaelis–Menten
individuals or samples is needed). Although there        estimator. Walther & Morand (1998) used a similar
are many ways to estimate bias, precision, and           approach with nine parasite data sets and found
efficiency (Walther & Moore 2005), none of the           that Chao2 and the first-order jackknife performed
available estimators meet all these criteria for all     best. Walther & Moore (2005), using different quan-
datasets. Most estimators are biased because they        titative measures of bias, precision, and accuracy,
chronically under-estimate true diversity (O’Hara        compiled the results of 14 studies that compared
2005). The Chao1 estimator was formally derived          estimator performance, and concluded that, for
as a minimum asymptotic estimator (Chao 1984),           most data sets, non-parametric estimators (mostly
but all of the estimators should be treated as esti-     the Chao and jackknife estimators) performed bet-
mating the lower bound on species richness. Esti-        ter than extrapolated asymptotic functions or other
mators of asymptotic species richness are often          parametric estimators.
imprecise because they typically have large vari-           In a second strategy for comparing diversity esti-
ances and confidence intervals, especially for small     mators, the investigator specifies the true species
data sets. This imprecision is inevitable because, by    richness, the pattern of relative abundance, and
necessity, these estimators represent an extrapola-      the spatial pattern of individuals in a computer-
tion beyond the limits of the data. In contrast, rar-    simulated landscape. The program then randomly
efaction estimators usually have smaller variances       samples individuals or plots, just as an ecologist
because they are interpolated within the range of        would do in a field survey. The estimators are then
the observed data. However, as noted earlier, the        calculated and compared on the basis of their abil-
unconditional variance of richness as estimated by       ity to estimate the ‘true’ species richness of the
rarefaction is always larger than the variance that is   region. This kind of simulation can also be used
conditional on a single sample (or set of samples).      to explore the effects of spatial aggregation and
Finally, most estimators are not efficient and often     segregation, sampling efficiency, and the size and
exhibit ‘sampling creep’: the estimated asymptote        placement of sampling plots. Brose et al. (2003) car-
itself increases with sample size, suggesting that the   ried out the most extensive analysis of this kind
sample size is not large enough for the estimate to      to date. In their analyses, which estimator per-
stabilize (e.g. Longino et al. (2002)).                  formed best depended on the relative evenness
   Two strategies are possible to compare the per-       of the rank abundance distribution, the sampling
formance of different estimators. The first strategy     intensity, and the true species richness. As in the
is to use data from a small area that has been           empirical surveys (Walther & Moore 2005), non-
exhaustively sampled (or nearly so), and to define       parametric estimators performed better in these
that assemblage as the sampling universe. As in          model assemblages than extrapolated asymptotic
rarefaction, a random subsample of these data can        curves (parametric estimators based on truncated
then be used to calculate asymptotic estimators          distributions were not considered). One encourag-
and compare them to the known richness in the            ing result was that environmental gradients and
                                                          OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
54 B I O L O G I C A L DI V E R S I T Y
References
Abbot, I. (1983) The meaning of z in species/area regres-              species diversity in jawed vertebrates. Proceedings of
  sion and the study of species turnover in island biogeog-            the National Academy of Sciences, 106, 13410–13414.
  raphy. Oikos, 41, 385–390.                                         Alldredge, M. W., Pollock, K. H., Simons, T. R., & Shriner,
Abella, P., Bilton, N. D., Millan, A., Sanchez-Fernandez,              S. A. (2007) Multiple-species analysis of point count
  D., & Ramsay, P. M. (2006) Can taxonomic distinctness                data: a more parsimonious modelling framework. Jour-
  assess anthropogenic impacts in inland waters? A case                nal of Applied Ecology, 44, 281–290.
  study from a Mediterranean river basin. Freshwater                 Allen, A. P., & E. P. White. 2003. Effects of range size
  Biology, 51, 1744–1756.                                              on species–area relationships. Evolutionary Ecology
Abrams, P. A. (2001) A world without competition.                      Research, 5, 493–499.
  Nature, 412, 858–859.                                              Allen, B., Kon, M., & Bar-Yam, Y. (2009) A new phyloge-
Adler, P. B. (2004) Neutral models fail to reproduce                   netic diversity measure generalizing the Shannon index
  observed species-area and species-time relationships in              and its application to phyllostomid bats. The American
  Kansas grasslands. Ecology, 85, 1265–1272.                           Naturalist, 174, 236–243.
Adler, P. B. & Lauenroth, W. K. (2003) The power of time:            Alonso, D. & McKane, A. J. (2004) Sampling Hubbell’s
  spatiotemporal scaling of species diversity. Ecology Let-            neutral theory of biodiversity. Ecology Letters, 7,
  ters, 6, 749–756.                                                    901–910.
Adler, P. B., White, E. P., Lauenroth, W. K., Kaufman,               Alroy, J. (1992) Conjunction among taxonomic distribu-
  D. M., Rassweiler, A., & Rusak, J. A. (2005) Evidence                tions and the Miocene mammalian biochronology of the
  for a general species-time-area relationship. Ecology, 86,           Great Plains. Paleobiology, 18, 326–343.
  2032–2039.                                                         Alroy, J. (1994) Appearance event ordination: a new
Agosti, D., Majer, J., Alonso, E., & Schultz, T. R. (eds) (2000)       biochronologic method. Paleobiology, 20, 191–207.
  Ants: Standard Methods for Measuring and Monitor-                  Alroy, J. (1996) Constant extinction, constrained diver-
  ing Biodiversity. Smithsonian Institution Press, Wash-               sification, and uncoordinated stasis in North Amer-
  ington, DC.                                                          ican mammals. Palaeogeography, Palaeoclimatology,
Akaike, H. (1973) Information theory and an extension of               Palaeoecology, 127, 285–311.
  the maximum likelihood principle. International Sym-               Alroy, J. (2000) New methods for quantifying macroevo-
  posium on Information Theory, 2, 267–281.                            lutionary patterns and processes. Paleobiology, 26,
Akçakaya, H. R., Radeloff, V. C., Mladenoff, D. J., & He,              707–733.
  H. S. (2004) Integrating landscape and metapopula-                 Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K.,
  tion modeling approaches: viability of the sharp-tailed              Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M.,
  grouse in a dynamic landscape. Conservation Biology,                 Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C.,
  18, 526–537.                                                         Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-
Albrecht, M., Duelli, P., Schmidm, B., & Muller, C. B.                 Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E.,
  (2007) Interaction diversity within quantified insect                Raup, D. M., Roy, K., John, J., Sepkoski, J., Sommers,
  food webs in restored and adjacent intensively                       M. G., Wagner, P. J., & Webber, A. (2001) Effects of
  managed meadows. Journal of Animal Ecology, 76,                      sampling standardization on estimates of Phanerozoic
  1015–1025.                                                           marine diversity. Proceedings of the National Academy
Alfaro, M. E., Santini, F., Brock, C., Alamillo, H., Dornburg,         of Sciences USA, 98, 6261–6266.
  A., Rabosky, D. L., Carnevale, G., & Harmon, L. J. (2009)          Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich,
  Nine exceptional radiations plus high turnover explain               F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M.,
                                                                                                                              295
OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
296 REFERENCES
  Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall,        Anselin, L. (1995) Local indicators of spatial association-
  C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D.,        LISA. Geographical Analysis, 27, 93–115.
  Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner,       Ansorge, W. J. (2009) Next-generation DNA sequencing
  P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham,       techniques. New Biotechnology, 25, 195–203.
  M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L.,          Anthony, K. R. N., Hoogenboom, M. O., Maynard, J. A.,
  Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S.,        Grottoli, A. G., & Middlebrook, R. (2009) Energetics
  Powers, C. M., Sessa, J. A., Simpson, C., Tomasovych,          approach to predicting mortality risk from environmen-
  A., & Visaggi, C. C. (2008) Phanerozoic trends in the          tal stress: a case study of coral bleaching. Functional
  global diversity of marine invertebrates. Science, 321,        Ecology, 23, 539–550.
  97–100.                                                      Arita, H. T., Christen, J. A, Rodríguez, P., & Soberón, J.
Altermatt, F., Baumeyer, A., & Ebert, D. (2009) Experimen-       (2008) Species diversity and distribution in presence-
  tal evidence for male biased flight-to-light behavior in       absence matrices: mathematical relationships and bio-
  two moth species. Entomologia experimentalis et appli-         logical implications. The American Naturalist, 172,
  cata, 130, 259–265.                                            519–532.
Altschul, S. F. & Lipman, D. J. (1990) Equal animals.          Arntz, W. E. & Rumohr, H. (1982) An experimental study
  Nature, 348, 493–494.                                          of macrobenthic colonization and succession, and the
Alvarez, L. W., Alvarez, W., Asaro, F., & Michel H. V.           importance of seasonal variation in temperate latitudes.
  (1980) Extraterrestrial cause for the Cretaceous–Tertiary      Journal of Experimental Marine Biology and Ecology,
  extinction. Science, 208, 1095–1108.                           64, 17–46.
Amann, R. I., Ludwig, W., & Schleifer, K. H. (1995) Phy-
                                                               Barker, G. M. (2002) Phylogenetic diversity: a quantitative
  logenetic identification and in-situ detection of individ-
                                                                 framework for measurement of priority and achieve-
  ual microbial-cells without cultivation. Microbiological
                                                                 ment in biodiversity conservation. Biological Journal of
  Reviews, 59, 143–169.
                                                                 the Linnean Society, 76, 165–194.
Amaro, A. M., Chamorro, D., Seeger, M., Arredondo, R.,
                                                               Baselga, A., Jiménez-Valverde, A., & Niccolini, G. (2007)
  Peirano, I., & Jerez, C. A. (1991) Effect of external pH
                                                                 A multiple-site similarity measure independent of rich-
  perturbations on invivo protein-synthesis by the aci-
                                                                 ness. Biology Letters, 3, 642–645.
  dophilic bacterium thiobacillus-ferrooxidans. Journal of
                                                               Bawa K. S. & Seidler R. (1998) Natural forest management
  Bacteriology, 173, 910–915.
                                                                 and conservation of biodiversity in tropical forests. Con-
Anderson, S. (1977) Geographic ranges of North Ameri-
                                                                 servation Biology, 12, 46–55.
  can terrestrial mammals. American Museum novitates,
                                                               Bayley P. B. & Herendeen R. A. (2000) The efficiency of a
  2629, 1–15.
                                                                 seine net. Transactions of the American Fisheries Soci-
Anderson, N. H. & Sedell, J. R. (1979) Detritus processing
                                                                 ety, 129, 901–923.
  by macroinvertebrates. Annual Review of Entomology,
  24, 351–357.                                                 Bazzaz, F. A. (1975) Plant species diversity in old-field
Anderson, M. J., Ellingsen, K. E., & McArdle, B. H. (2006)       successional ecosystems in southern Illinois. Ecology,
  Multivariate dispersion as a measure of beta diversity.        56, 485–488.
  Ecology Letters, 9, 683–693.                                 Beals, E. W. (1984) Bray–Curtis ordination: An effective
Andrewartha, H. G. & Birch, L. C. (1954) The Distribu-           strategy for analysis of multivariate ecological data.
  tion and Abundance of Animals. University of Chicago           Advances in Ecological Research, 15, 1–55.
  Press, Chicago.                                              Begon, M., Harper, J. L., & Townsend, C. R. (2006) Ecol-
Andrewartha, H. G. & Birch, L. C. (1984) The Eco-                ogy: From Individuals to Ecosystems, 4th edn. Sinauer
  logical Web: More on the Distribution and Abun-                Associates, Sunderland, MA.
  dance of Animals. University of Chicago Press,               Beja, O., Spudich, E. N., Spudich, J. L., Leclerc, M., &
  Chicago.                                                       DeLong, E. F. (2001) Proteorhodopsin phototrophy in
Angilletta, M. J. (2009) Thermal Adaptation. A Theoret-          the ocean. Nature, 411, 786–789.
  ical and Empirical Synthesis. Oxford University Press,       Bell, G. (2000) The distribution of abundance in neutral
  Oxford.                                                        communities. The American Naturalist, 155, 606–617.
Anonymous (1999) The World at Six Billion. United              Bell, G. (2001) Neutral macroecology. Science, 293,
  Nations Population Division, New York.                         2413–2418.
Anscombe, F. J. (1950) Sampling theory of the nega-            Bell, G. (2003) The interpretation of biological sur-
  tive binomial and logarithmic series distributions. Bio-       veys. Proceedings of the Royal Society London, 270,
  metrika, 37, 358–382.                                          2531–2542.
                                                                 OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
REFERENCES 297
Bender, E. A., Case, T. J., & Gilpin, M. E. (1984) Pertur-           form of the interspecific relationship between abun-
  bation experiments in community ecology: theory and                dance and distribution. Journal of Animal Ecology, 75,
  practice. Ecology, 65, 1–13.                                       1426–1439.
Ben-Moshe, A., Dayan, T., & Simberloff, D. (2001) Conver-          Blake, J. & Loiselle, B. (2000) Diversity of birds along
  gence in morphological patterns and community orga-                an elevational gradient in the Cordillera Central, Costa
  nization between Old and New World rodent guilds.                  Rica. The Auk, 117, 663–686.
  The American Naturalist, 158, 484–495.                           Blaxter, M., Mann, J., Chapman, T., Thomas, F., Whitton,
Bent, S. J., Pierson, J. D., & Forney, L. J. (2007) Measuring        C., Floyd, R., & Eyualem-Abebe (2005) Defining opera-
  species richness based on microbial community finger-              tional taxonomic units using DNA barcode data. Philo-
  prints: The emperor has no clothes. Applied and Envi-              sophical Transactions of the Royal Society London B,
  ronmental Microbiology, 73, 2399–2399.                             360, 1935–1943.
Berger, W. H. & Parker, F. L. (1970) Diversity of plank-           Blow, M. J., Zhang, T., Woyke, T., Speller, C. F.,
  tonic foraminifera in deep-sea sediments. Science, 168,            Krivoshapkin, A., Yang, D. Y., Derevianko, A., & Rubin,
  1345.                                                              E. M. (2008) Identification of ancient remains through
Bersier, L. F. & Sugihara, G. (1997) Species abundance               genomic sequencing. Genome Research, 18, 1347–1353.
  patterns: the problem of testing stochastic abundance            Bockstaller, C. & Girardin, P. (2003) How to validate
  models. Journal of Animal Ecology, 66, 179–774.                    environmental indicators. Agricultural Systems, 76,
Bettoli, P. W. & Maceina, M. J. (1996) Sampling with toxi-           639–653.
  cants. In: Fisheries Techniques, Murphy, B. R. & Willis,         Boik, R. J. (2004) Commentary on: Why Likelihood? In:
  D. W. (eds). American Fisheries Society Bethesda, MD,              The Nature of Scientific Evidence: Statistical, Phili-
  pp. 303–333.                                                       sophical, and Empirical considerations, Taper, M. L. &
Bhaya, D., Grossman, A. R., Steunou, A.-S., Khuri, N.,               Lele, S. R. (eds). University of Chicago Press, Chicago,
  Cohan, F. M., Hamamura, N., Melendrez, M. C., Bate-                pp. 167–180.
  son, M. M., Ward, D. M., & Heidelberg, J. F. (2007) Pop-         Bonar, S. A. & Hubert, W. A. (2002) Standard sampling of
  ulation level functional diversity in a microbial com-             inland fish: Benefits, challenges, and a call for action.
  munity revealed by comparative genomic and metage-                 Fisheries, 27, 10–16.
  nomic analyses. The ISME Journal, 1, 703–713.                    Bonar, S. A., Thomas, G. L., Thiesfeld, S. L., & Pauley,
Bianchi, G., Gislason, H., Graham, K., Hill, L., Jin, X.,            G. B. (1993) Effect of triploid grass carp on the aquatic
  Koranteng, K., Manickchand-Heileman, S., Paya, I.,                 macrophyte community of Devils Lake, Oregon. North
  Sainsbury, K., Sanchez,F., & Zwanenburg, K. (2000)                 American Journal of Fisheries Management, 13, 757–
  Impact of fishing on size composition and diversity of             765.
  demersal fish communities. ICES Journal of Marine Sci-           Bonar, S. A., Divens, M., & Bolding, B. (1997) Methods
  ence, 57, 558–571.                                                 for sampling the distribution and abundance of bull
Bianchi, F., Booij, C. J. H., & Tscharntke, T. (2006) Sustain-       trout and Dolly Varden. Washington Department of
  able pest regulation in agricultural landscapes: a review          Fish and Wildlife, Fish Management Program, Inland
  on landscape composition, biodiversity and natural pest            Fisheries Investigations, Resource Assessment Division,
  control. Proceedings of the Royal Society London B, 273,           Olympia, WA.
  1715–1727.                                                       Bonar, S. A., Hubert, W. A., & Willis, D. W. (2009a)
Bibby, C. J. (1999) Making the most of birds as environ-             The North American freshwater fish standard sampling
  mental indicators. Ostrich, 70, 81–88.                             project: Improving fisheries communication. Fisheries,
Biggs, R., Carpenter, S. R., & Brock, W. A. (2009) Turning           34, 340–344.
  back from the brink: detecting an impending regime               Bonar, S. A., Hubert, W. A., & Willis, D. W. (2009b) Stan-
  shift in time to avert it. Proceedings of the National             dard methods for sampling North American freshwater
  Academy of Sciences USA, 106, 826–831.                             fishes. American Fisheries Society, Bethesda.
Bivand, R. S., Pebesma, E. J., & Gómez-Rubio, V.                   Bonham, C. D. (1989) Measurements for terrestrial vegeta-
  (2008) Applied spatial data analysis with R. Springer,             tion. Wiley, New York.
  Düsseldorf.                                                      Borcard, D., Legendre, P., & Drapeau, P. (1992) Partialling
Blackburn, T. M. & Gaston, K. J. (1998) Some methodolog-             out the spatial component of ecological variation. Ecol-
  ical issues in macroecology. The American Naturalist,              ogy, 5, 1045–1055.
  151, 68–83.                                                      Borchers, D. L., Buckland, S. T., & Zucchini, W. (2002)
Blackburn, T. M., Cassey, P., & Gaston, K. J. (2006) Vari-           Estimating animal abundance: closed populations.
  ations on a theme: sources of heterogeneity in the                 Springer, London.
OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
298 REFERENCES
Borregaard, M. K. & Rahbek, C. (2006) Prevalence of             Buckland, S. T., Magurran, A. E., Green, R. E., & Few-
  intraspecific relationships between range size and abun-        ster, R. M. (2005) Monitoring change in biodiversity
  dance in Danish birds. Diversity & Distributions, 12,           through composite indices. Philosophical Transactions
  417–422.                                                        of the Royal London B, 360, 243–254.
Boswell, M. T. & Patil, G. P. (1970) Chance mechanisms          Buckley, L. B. & Jetz, W. (2008) Linking global turnover of
  generating the negative binomial distribution. In: Ran-         species and environments. Proceedings of the National
  dom Counts in Scientific Work, Vol 1, Patil, G. P. (ed).        Academy of Sciences. USA, 105, 17836–17841.
  Pennsylvania State, University Press, University Park,        Buckley-Beason, V. A., Johnson, W. E., Nash, W. G.,
  pp. 3–22.                                                       Stanyon, R., Menninger, J. C., Driscoll, C. A., Howard, J.,
Botta-Dukát, Z. (2005) Rao’s quadratic entropy as a mea-          Bush, M., Page, J. E., Roelke, M. E., Stone, G., Martelli,
  sure of functional diversity based on multiple traits.          P. P., Wen, C., Ling, L., Duraisingam, R. K., Lam, P. V.,
  Journal of Vegetation Science, 16, 33–540.                      O’Brien, S. J. (2006) Molecular evidence for species-level
Boulinier, T., Nichols, J., Sauer, J., Hines, J., & Pollock,      distinctions in clouded leopards. Current Biology, 16,
  K. (1998) Estimating species richness: the importance           2371–2376.
  of heterogeneity in species detectability. Ecology, 79,       Bulla, L. (1994) An index of evenness and its associated
  1018–1028.                                                      diversity measure. Oikos, 70, 167–171.
Bowring, S. A., Grotzinger, J. P., Isachsen, C. E., Knoll,      Bulmer, M. G. (1974) Fitting Poisson Lognormal Dis-
  A. H., Pelechaty, S. M., & Kolosov, P. (1993) Calibrat-         tribution to species-abundance data. Biometrics, 30,
  ing rates of early Cambrian evolution. Science, 261,            101–110.
  1293–1298.                                                    Bunge, J., Epstein, S. S., & Peterson, D. G. (2006) Comment
Bray, J. R. & Curtis, J. T. (1957) An ordination for the          on ‘Computational improvements reveal great bacterial
  upland forest communities of southern Wisconsin. Eco-           diversity and high metal toxicity in soil’. Science, 313,
  logical Monographs, 27, 325–349.                                918.
Brewer, A. & Williamson, M. (1994) A new relationship for       Burnham, K. P. & Anderson, D. R. (1998) Model Selec-
  rarefaction. Biodiversity and Conservation, 3, 373–379.         tion and Inference, a Practical Information-Theoretic
Brook, B., Sodhi, N., & Ng, P. (2003) Catastrophic extinc-        Approach. Springer, New York.
  tions follow deforestation in Singapore. Nature, 424,         Burnham, K. P. & Anderson, D. R. (2002) Model Selec-
  420–426.                                                        tion and Inference: A Practical Information-Theoretic
Brose, U., Martinez, N. D., & Williams, R. J. (2003) Estimat-     Approach, 2nd edn. Springer, New York.
  ing species richness: sensitivity to sample coverage and      Burnham, K. P. & Overton. W. S. (1979) Robust estima-
  insensitivity to spatial patterns. Ecology, 84, 2364–2377.      tion of population size when capture probabilities vary
Brown, J. H. (1987) Variation in desert rodent guilds: pat-       among animals. Ecology, 60, 927–936.
  terns, processes, and scales. In: Organization of Com-        Bush, A. & Bambach, R. (2004) Did alpha diversity
  munities: Past and Present, Gee, J. H. R. & Giller, P. S.       increase during the Phanerozoic? Lifting the veils of
  (eds). Blackwell, London, pp. 185–203.                          taphonomic, latitudinal, and environmental biases in
Brown, J. H. (1999) Macroecology: progress and prospect.          the study of paleocommunities. Journal of Geology, 112,
  Oikos, 87, 3–14.                                                625–642.
Brown, J. H. & Kodric-Brown, A. (1977) Turnover rates in        Butler, B. J. & Chazdon, R. L. (1998) Species richness, spa-
  insular biogeography: effect of immigration on extinc-          tial variation, and abundance of the soil seed bank of a
  tion. Ecology, 58, 445–449.                                     secondary tropical rain forest. Biotropica, 30, 214–222.
Brown, J. H. & West, G. B. (2000) Scaling in Biology. Oxford    Buzas, M. A. & Hayek, L. -A. C. (1996) Biodiversity res-
  University Press, Oxford.                                       olution: an integrated approach. Biodiversity Letters, 3,
Brown, J. H., Mehlman, D. H., & Stevens, G. C. (1995)             40–43.
  Spatial variation in abundance. Ecology, 76, 2028–2043.       Buzas, M. A. & Hayek, L. -A. C. (1998) SHE Analy-
Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake,          sis for biofacies identification. Journal of Foraminiferal
  J. L., Borchers, D. L., & Thomas, L. (2001) Introduc-           Research, 28, 233–239.
  tion to Distance Sampling. Oxford University Press,           Buzas, M. A., Koch, C. F., Culver, S. J., & Sohl, N. F. (1982)
  Oxford.                                                         On the distribution of species occurrence. Paleobiology,
Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake,          8, 143–150.
  J. L., Borchers, D. L., & Thomas, L. (2004) Advanced          Byrd, I. B. (1973) Homer Scott Swingle, 1902–1973. Wildlife
  Distance Sampling. OUP, Oxford.                                 Society Bulletin, 1, 157–159.
                                                                  OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
REFERENCES 299
Cadotte, M. W., Cardinale, B. J., & Oakley, T. H. (2008) Evo-       Cavender-Bares, J., Ackerly, D. A., Baum, D., & Bazzaz,
  lutionary history and the effect of biodiversity on plant           F. A. (2004) Phylogenetic overdispersion in Floridean
  productivity. Proceedings of the National Academy of                oak communities. The American Naturalist, 163,
  Sciences. USA, 105, 17012–17017.                                    823–843.
Cadotte, M. W., Cavender-Bares, J., Tilman, D., & Oakley,           Cavender-Bares, J., Kozak, K. H., Fine, P. V.A., & Kembel,
  T. H. (2009) Using phylogenetic, functional, and trait              S. W. (2009) The merging of community ecology and
  diversity to understand patterns of plant community                 phylogentic biology. Ecology Letters, 12, 693–715.
  productivity. PLoS One, 4, e5695.                                 CBOL Plant Working Group. (2009) A DNA barcode for
Cadotte, M. W., Davies, T. J., Regetz, J., Kembel, S. W.,             land plants. Proceedings of the National Academy of
  Clevand, E., & Oakley, T. (2010) Phylogenetic diversity             Sciences, 106, 12794–12797.
  metrics for ecological communities: integrating species           Chao, A. (1984) Non-parametric estimation of the number
  richness, abundance and evolutionary history. Ecology               of classes in a population. Scandinavian Journal of Sta-
  Letters, 13(1), 96–105.                                             tistics, 11, 265–270.
Cam, E., Nichols, J., Hines, J., Sauer, J., Alpizar-Jara, R., &     Chao, A. (1987) Estimating the population-size for capture
  Flather, C. (2002) Disentangling sampling and ecologi-              recapture data with unequal catchability. Biometrics, 43,
  cal explanations underlying species-area relationships.             783–791.
  Ecology, 83, 1118–1130.                                           Chao, A. (2001) An overview of closed capture-recapture
Camargo, J. A. (1993) Must dominance increase with the                models. Journal of Agricultural, Biological and Environ-
  number of subordinate species in competitive interac-               mental Statistics, 6, 158–175.
  tions? Journal of Theoretical Biology, 161, 537–542.              Chao, A. (2005) Species estimation and applications. In:
Cardinale, B. J., Palmer, M. A., & Collins, S. L.                     Encyclopedia of Statistical Sciences, Balakrishnan, N.,
  (2002) Species diversity enhances ecosystem func-                   Read, C. B., & Vidakovic, B. (eds), 2nd edn. Wiley, New
  tioning through interspecific facilitation. Nature, 415,            York, Vol. 12, pp. 7907–7916.
  426–429.                                                          Chao, A. & Bunge, J. (2002) Estimating the number of
Cardinale, M., Brusetti, L., Quatrini, P., Borin, S., Puglia,         species in a Stochastic abundance model. Biometrics, 58,
  A. M., Rizzi, A., Zanardini, E., Sorlini, C., Corselli, C.,         531–539.
  & Daffonchio, D. (2004) Comparison of different primer            Chao, A. & Lee, S. -M. (1992) Estimating the number of
  sets for use in automated ribosomal intergenic spacer               classes via sample coverage. Journal of the American
  analysis of complex bacterial communities. Applied and              Statistical Association, 87, 210–217.
  Environmental Microbiology, 70, 6147–6156.                        Chao, A. & Shen, T. -J. (2003a) SPADE: Species Prediction
Carroll, C. (2006) Interacting effects of climate change,             And Diversity Estimation. Program and user’s guide at
  landscape conversion, and harvest on carnivore pop-                 http://chao.stat.nthu.edu.tw/softwareCE.html.
  ulations at the range margin: marten and lynx in                  Chao, A. & Shen, T. -J. (2003b) Nonparametric estimation
  the northern Appalachians. Conservation Biology, 21,                of Shannon’s index of diversity when there are unseen
  1092–1104.                                                          species. Environment and Ecological Statistics, 10,
Caruso, T. & Migliorini, M. (2006) A new formulation of               429–443.
  the geometric series with applications to oribatid (Acari,        Chao, A., Yip, P., & Lin, H. S. (1996) Estimating the number
  Oribatida) species assemblages from human-disturbed                 of species via a martingale estimating function. Statis-
  Mediterranean areas. Ecological Modelling, 195,                     tica Sinica, 6, 403–418.
  402–406.                                                          Chao, A., Chazdon, R. L., Colwell, R. K., & Shen, T. -J.
Casas, F., Mougeot, F., Viñuela, J., & Bretagnolle, V. (2009)         (2005) A new statistical approach for assessing simi-
  Effects of hunting on the behaviour and spatial distri-             larity of species composition with incidence and abun-
  bution of farmland birds: importance of hunting-free                dance data. Ecology Letters, 8, 148–159.
  refuges in agricultural areas. Animal Conservation, 12,           Chao, A., Chazdon, R. L., Colwell, R. K., & Shen, T. -J.
  346–354.                                                            (2006) Abundance-based similarity indices and their
Castoe, T. A., Poole, A. W., Gu, W., Jason de Koning,                 estimation when there are unseen species in samples.
  A. P., Daza, J. M., Smith, E. N., & Pollock, D. D. (2009)           Biometrics, 62, 361–371.
  Rapid identification of thousands of copperhead snake             Chao, A., Jost, L., Chiang, S. -C., Jiang, Y. -H., & Chaz-
  (Agkistrodon contortrix) microsatellite loci from modest            don, R. (2008) A two-stage probabilistic approach to
  amounts of 454 shotgun genome sequence. Molecular                   multiple-community similarity indices. Biometrics, 64,
  Ecology Resources, 341–347.                                         1178–1186.
OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
300 REFERENCES
Chao, A., Colwell, R. K., Lin, C. -W., & Gotelli, N. (2009)         CIA Fact Book. (2009) https://www.cia.gov/library/
  Sufficient sampling for asymptotic minimum species                  publications/the-world-factbook/geos/XX.html.
  richness estimators. Ecology, 90, 1125–1133.                        Accessed 12 July 2009 12h17 UTC.
Chapin III, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L.,   Cianciaruso, M. V., Batalha, M. A., Gaston, K. J., & Petchey,
  Vitousek, P. M., Reynolds, H. L., Hooper, D. U., Lavorel,           O. L. (2009) Including intraspecific variability in func-
  S., Sala, O. E., Hobbie, S. E., Mack, M. C., & Díaz, S.             tional diversity. Ecology, 90, 81–89.
  (2000) Consequences of changing biodiversity. Nature,             Clarke, K. R. (1990) Comparisons of dominance curves.
  405, 234–242.                                                       Journal of Experimental Marine Biology and Ecology,
Chave, J., Muller-Landau, H. C., & Levin, S. A. (2002)                138, 143–157.
  Comparing classical community models: theoretical                 Clarke, J. A, & May, R. M. (2002) Taxonomic bias in con-
  consequences for patterns of diversity. The American                servation research. Science, 297, 191–192.
  Naturalist, 159, 1–23.                                            Clarke, K. R. & Warwick, R. M. (1998) A taxonomic dis-
Chen, I. C., Shiu, H., Benedick, S., Holloway, J. D., Chey,           tinctness index and its statistical properties. Journal of
  V. K., Barlow, H. S., Hill, J. K., & Thomas, C. D. (2009)           Applied Ecology, 35, 523–531.
  Elevation increases in moth assemblages over 42 years             Clarke, K. R. & Warwick, R. M. (2001) Change in Marine
  on a tropical mountain. Proceedings of the National                 Communities: An Approach to Statistical Analysis and
  Academy of Sciences. USA, 106, 1479–1483.                           Interpretation (PRIMER-E). Plymouth Marine Labora-
Chiarucci, A., Wilson, J. B., Anderson, B. J., & De Domini-           tory, Plymouth.
  cis, V. (1999) Cover versus biomass as an estimate of             Clifford, H. T. & Stephenson, W. (1975) An Intro-
  species abundance: does it make a difference to the con-            duction to Numerical Classification. Academic Press,
  clusions? Journal of Vegetation Science, 10, 35–42.                 New York.
Chiarucci, A., Bacaro, G., Rocchini, D., & Fattorini, L.            Clough, Y., Holzschuh, A., Gabriel, D., Purtauf, T.,
  (2008) Discovering and rediscovering the sample-based               Kleijn, D., Kruess, A., Steffan-Dewenter, I., & Tscharn-
  rarefaction formula in the ecological literature. Commu-            tke, T. (2007) Alpha and beta diversity of arthropods
  nity Ecology, 9, 121–123.                                           and plants in organically and conventionally man-
Chivian, D., Brodie, E. L., Alm, E. J., Culley, D. E., Dehal,         aged wheat fields. Journal of Applied Ecology, 44,
  P. S., DeSantis, T. Z., Gihring, T. M., Lapidus, A., Lin,           804–812.
  L. -H., Lowry, S. R., Moser, D. P., Richardson, P. M.,            Cochran, W. G. (1977) Sampling Techniques. Wiley, New
  Southam, G., Wanger, G., Pratt, L. M., Andersen, G. L.,             York.
  Hazen, T. C., Brockman, F. J., Arkin, A. P., & Onstott,           Coddington, J. A., Agnarsson, I., Miller, J. A., Kuntner,
  T. C. (2008) Environmental genomics reveals a single-               M., & Hormiga, G. (2009) Undersampling bias: the null
  species ecosystem deep within Earth. Science, 322, 275–             hypothesis for singleton species in tropical arthropod
  278.                                                                surveys. Journal of Animal Ecology, 78, 573–584.
Chown, S. L. & Gaston, K. J. (2008) Macrophysiology for a           Cohen, J. E. (1995) How Many People Can the Earth Sup-
  changing world. Proceedings of the Royal Society Lon-               port? W. W. Norton, New York.
  don, B, 275, 1469–1478.                                           Coleman, B. D., Mares, M. A., Willig, M. R., & Hsieh, Y. -H.
Chown, S. L. & Gaston, K. J. (2010) Body size varia-                  (1982) Randomness, area, and species richness. Ecology,
  tion in insects: a macroecological perspective. Biological          63, 1121–1133.
  Reviews, 85, 139–169.                                             Collins, S. L. & Glenn, S. M. (1997) Effects of organis-
Chown, S. L. & Terblanche, J. S. (2007) Physiological diver-          mal and distance scaling on analysis of species dis-
  sity in insects: ecological and evolutionary contexts.              tribution and abundance. Ecological Applications, 7,
  Advances in Insect Physiology, 33, 50–152.                          543–551.
Chown, S. L., Gaston, K. J., & Williams, P. H. (1998) Global        Collins, S. L., Micheli, F., & Hartt, L. (2000) A method to
  patterns in species richness of pelagic seabirds: the Pro-          determine rates and patterns of variability in ecological
  cellariiformes. Ecography, 21, 342–350.                             communities. Oikos, 91, 285–293.
Chown, S. L., van Rensburg, B. J., Gaston, K. J., Rodrigues,        Collins, S. L., Suding, K. N., Cleland, E. E., Batty, M.,
  A. S. L., & van Jaarsveld, A. S. (2003) Energy, species             Pennings, S. C., Gross, K. L., Grace, J. B., Gough, L.,
  richness, and human population size: conservation                   Fargione, J. E., & Clar, C. M. (2008) Rank clocks and
  implications at a national scale. Ecological Applications,          plant community dynamics. Ecology, 89, 3534–3541.
  13, 1233–1241.                                                    Colwell, R. K. (2009) Estimates: Statistical Estima-
Chytrý, M., Sedláková, I., & Tichý, L. (2009) Species rich-           tion of Species Richness and Shared Species from
  ness and species turnover in a successional heathland.              Samples User’s Guide and application published at:
  Applied Vegetation Science, 4, 89–96.                               http://purl.oclc.org/estimates.
                                                               OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
REFERENCES 301
Colwell, R. K. & Coddington, J. A. (1994) Estimating ter-        Constanza, R. et al. (1997) The value of the world’s
  restrial biodiversity through extrapolation. Philosophi-         ecosystem services and natural capital. Nature, 387,
  cal Transactions of the Royal Society, London, Series B,         253–257 .
  345, 101–118.                                                  Cornelissen, J. H. C., Lavorel, S., Garnier, E., Díaz, S., Buch-
Colwell, R. K., Mao, C. X., & Chang, J. (2004)                     mann, N., Gurvich, D. E., Reich, P. B., Ter, Morgan, H. D.,
  Interpolating, extrapolating, and comparing incidence-           van der Heijden, M. G. A., Pausas, J. G., and Poorter, H.
  based species accumulation curves. Ecology, 85,                  (2003). A handbook of protocols for standardised and
  2717–2727.                                                       easy measurement of plant functional traits worldwide.
Colwell, R. K., Brehm, G., Cardelús, C., Gilman, A. C., &          Australian Journal of Botany, 51, 335–380.
  Longino, J. T. (2008) Global warming, elevational range        Cornwell, W. K. & Ackerly, D. D. (2009) Community
  shifts, and lowland biotic attrition in the wet tropics.         assembly and shifts in plant trait distributions across an
  Science, 322, 258–261.                                           environmental gradient in coastal California. Ecological
Condit, R., Hubbell, S. P., LaFrankie, J. V., Sukumar, R.,         Monographs, 79, 109–126.
  Manokaran, N., Foster, R. B., & Ashton P. S. (1996)            Cornwell, W. K., Schwilk, D. W., & Ackerly, D. D. (2006) A
  Species-area and species-individual relationships for            trait-based test for habitat filtering: convex hull volume.
  tropical trees: a comparison of three 50-ha plots. Journal       Ecology, 87, 1465–1471.
  of Ecology, 84, 549–562.                                       Costello, M. J., Pohle, G., & Martin, A. (2004) Evaluating
Condit, R., Ashton, P. S., Baker, P., Bunyavejchewin, S.,          biodiversity in marine environmental assessments. In:
  Gunatilleke, S., Gunatilleke, N., Hubbell, S. P., Foster,        Research and Development Monograph Series, Series
  R. B., Itoh, A., LaFrankie, J. V., Lee, H. S., Losos, E.,        RaDM (ed.), Ottawa.
  Manokaran, N., Sukumar, R., & Yamakura, T. (2000)              Cowley, M. J.R., Thomas, C. D., Wilson, R. J., León-Cortés,
  Spatial patterns in the distribution of tropical tree            J. L., Gutiérrez, D., & Bulman, C. R. (2001) Density-
  species. Science, 288, 1414–1418.                                distribution relationships in British butterflies: II. An
Conlisk, E., Bloxham, M., Conlisk, J., Enquist, B., & Harte,       assessment of mechanisms. Journal of Animal Ecology,
  J. (2007) A new class of models of spatial distribution.         70, 426–441.
  Ecological Monographs, 77, 269–284.                            Crame, J. A. (2001) Taxonomic diversity gradients through
Conlisk, E., Conlisk, J., Enquist, B., Thompson, J., &             geological time. Diversity & Distributions, 7, 175–189.
  Harte, J. (2009) Improved abundance prediction from            Cressie, N. (1992) Statistics for Spatial Data. Wiley Inter-
  presence-absence data. Global Ecology and Biogeogra-             science, Chichester.
  phy, 18, 1–10.                                                 Crisp, M. D. & Cook, L. G. (2009) Explosive radiation
Connell, J. H. (1978) Diversity in tropical rain forests and       or cryptic mass extinction? Interpreting signatures in
  coral reefs. Science, 199, 1302–1310.                            molecular phylogenies. Evolution, 63, 2257–2265.
Connell, J. H. & Sousa, W. P. (1983) On the evidence             Crist, T. O. & Veech, J. A. (2006) Additive partitioning of
  needed to judge ecological stability or persistence. The         rarefaction curves and species-area relationships: unify-
  American Naturalist, 121, 789–824.                               ing alpha, beta, and gamma diversity with sample size
Connolly, S. R. & Miller, A. I. (2001a) Global Ordovi-             and area. Ecology Letters, 9, 923–932.
  cian faunal transitions in the marine benthos: proximate       Crist, T. O., Veech, J. A., Gering, J. C., & Summerville, K. S.
  causes. Paleobiology, 27, 779–795.                               (2003) Partitioning species diversity across landscapes
Connolly, S. R. & Miller, A. I. (2001b) Joint estimation           and regions: a hierarchical analysis of alpha, beta,
  of sampling and turnover rates from fossil databases:            and gamma diversity. The American Naturalist, 162,
  capture-mark-recapture methods revisited. Paleobiol-             734–743.
  ogy, 27, 751–767.                                              Crozier, R. H. (1997) Preserving the information content of
Connolly, S. R., Hughes, T. P., Bellwood, D. R., &                 species: genetic diversity, phylogeny, and conservation
  Karlson R. H. (2005) Community structure of corals               worth. Annual Review of Ecology and Systematics, 28,
  and reef fishes at multiple scales. Science, 309,                243–268.
  1363–1365.                                                     Cunningham, S. A., Summerhayes, G., & Westoby, M.
Connolly, S. R., Dornelas, M., Bellwood, D. R., & Hughes,          (1999) Evolutionary divergences in leaf structure and
  T. P. (2009) Testing species abundance models: a new             chemistry, comparing rainfall and soil nutrient gradi-
  bootstrap approach applied to Indo-Pacific coral reefs.          ents. Ecology, 69, 569–588.
  Ecology, 90, 3138–3149.                                        Curtis, T. P. & Sloan, W. T. (2004) Prokaryotic diversity and
Connor, E. F. & Simberloff, D. (1979) The assembly of              its limits: microbial community structure in nature and
  species communities: chance or competition? Ecology,             implications for microbial ecology. Current Opinion in
  60, 1132–1140.                                                   Microbiology, 7, 221–226.
OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
302 REFERENCES
Curtis, T. P., Sloan, W. T., & Scannell, J. W. (2002) Estimat-   Death, R. G. & Zimmerman, E. M. (2005) Interac-
 ing prokaryotic diversity and its limits. Proceedings of          tion between disturbance and primary productivity in
 the National Academy of Sciences of the United States             determining stream invertebrate diversity. Oikos, 111,
 of America, 99, 10494–10499.                                      392–402.
Daily, G. C., Alexander, S., Ehrlich, P. R., Goulder, L.,        de Bello, F., Thuiller, W., Lepš, J., Choler, P., Clément,
 Lubchenco, J., Matson, P. A., Mooney, H. A., Postel, S.,          J. -C., Macek, P., Sebastià, M. T., & Lavorel, S. (2009)
 Schneider, S. H., & Tilman, D. (1997) Ecosystem services:         Partitioning of diversity reveals the scale and extent of
 benefits supplied to human societies by natural ecosys-           trait convergence and divergence. Journal of Vegetation
 tems. Issues in Ecology, 1, 1–18.                                 Science, 20, 475–486.
Dale, M. R.T. & Fortin, M. J. (2002) Spatial autocorre-          DeLong, E. E. & Pace, N. R. (2001) Environmental diver-
 lation and statistical tests in ecology. Ecoscience, 9,           sity of Bacteria and Archaea. Systematic Biology, 50,
 162–167.                                                          470–478.
Dale, M. R.T., Dixon, P., Fortin, M.-J., Legendre, P., Myers,    de Mazancourt, C., Johnson, E., & Barraclough, T. G. (2008)
 D. E., & Rosenberg, M. S. (2002) Conceptual and mathe-            Biodiversity inhibits species’ evolutionary responses to
 matical relationships among methods for spatial analy-            changing environments. Ecology Letters, 11, 380–388.
 sis. Ecography, 25, 558–577.                                    DeQuiroz, K. (2007) Species concepts and species delimi-
Dalton, H. (1920) The measurement of the inequality of             tations. Systematic Biology, 56, 879–886.
 incomes. Economic Journal, 119, 348–361.                        Dewdney, A. K. (1998) A general theory of the sampling
Dampier, J. E. E., Luckai, N., Bell, F. W., & Towill, W. D.        process with applications to the “veil line”. Theoretical
 (2007) Do tree-level monocultures develop following               Population Biology, 54, 294–302.
 Canadian boreal silviculture? Tree-level diversity tested       Dewdney, A. K. (2000) A dynamical model of commu-
 using a new method. Biodiversity and Conservation, 16,            nities and a new species-abundance distribution. The
 2933–2948.                                                        Biological Bulletin, 198, 152–165.
Damschen, E. I., Haddad, N. M., Orrock, J. L., Tewks-            Diamond, J. M. & May, R. M. (1977) Species turnover rates
 bury, J. J., & Levey, D. J. (2006) Corridors increase             on islands: dependence on census intervals. Science,
 plant species richness at large scales. Science, 313,             197, 266–270.
 1284–1286.                                                      Díaz, S. & Cabido, M. (2001) Vive la différence: plant func-
Darwin, C. (1859) On the origin of species by means of             tional diversity matters to ecosystem processes. Trends
 natural selection, or the preservation of favoured races          in Ecology and Evolution, 16, 646–655.
 in the struggle for life. John Murray, London.                  Díaz, S., Lavorel, S., de Bello, F., Quétier, F., Grigulis, K.,
Dauvin, J. C. (1984) Dynamique d’écosystèmes macroben-             & Robson, T. M. (2007) Incorporating plant functional
 thiques des fonds sédimentaires de la baie de Mor-                diversity effects in ecosystem service assessments. Pro-
 laix et leur perturbation par les hydrocarbures de                ceedings of the National Academy of Sciences, 104,
 l’Amoco Cadiz’. Thèse d’Etat, Université de Paris, Paris,         20684–20689.
 456pp.                                                          Diggle, P. J. (1983) Statistical Analysis of Spatial Point Pat-
Davis, M. B. & Shaw, R. G. (2001) Range shifts and adap-           terns. Academic Press, London.
 tive responses to Quaternary climate change. Science,           Diniz, J. A. F., Bini, L. M., & Hawkins, B. A. (2003)
 292, 673–679.                                                     Spatial autocorrelation and red herrings in geograph-
Davison, A., Blackie, R. L. E., & Scothern, G. P. (2009)           ical ecology. Global Ecology and Biogeography, 12,
 DNA barcoding of stylommatophoran land snails: a test             53–64.
 of existing sequences. Molecular Ecology Research, 9,           Diserud, O. H. & Engen, S. (2000) A general and dynamic
 1092–1101.                                                        species abundance model, embracing the lognormal
Dawson, W., Burslem, D. F. R. P., & Hulme, P. E. (2009) The        and the gamma models. The American Naturalist, 155,
 suitability of weed risk assessment as a conservation             497–511.
 tool to identify invasive plant threats in East African         Diserud, O. H. & Ødegaard, F. (2007) A multiple-site sim-
 rainforests. Biological Conservation, 142, 1018–1024.             ilarity measure. Biology Letters, 3, 20–22.
Dayan, T. & Simberloff, D. (2005) Ecological and                 Dobyns, J. R. (1997) Effects of sampling intensity on the
 community-wide character displacement: the next gen-              collection of spider (Araneae) species and the estima-
 eration. Ecology Letters, 8, 875–894.                             tion of spider richness. Environmental Entomology, 26,
Deagle, B. E., Kirkwood, R., & Jarman, S. N. (2009) Analy-         150–162.
 sis of Australian fur seal diet by pyrosequencing prey          Donaldson, J., Nänni, I., Zachariades, C., & Kemper, J.
 DNA in faeces. Molecular Ecology, 18, 2022–2038.                  (2002) Effects of habitat fragmentation on pollinator
                                                                     OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
REFERENCES 303
  diversity and plant reproductive success in renosterveld               B., Gibb, H., Gotelli, N., Gove, A., Guénard, B., Janda,
  shrublands of South Africa. Conservation Biology, 16,                  M., Kaspari, M., Longino, J. T., Majer, J., McGlynn, T. P.,
  1267–1276.                                                             Menke, S. B., Parr, C., Philpott, S., Pfeiffer, M., Retana, J.,
Dormann, C. F. (2007a) Assessing the validity of autologis-              Suarez, A., & Vasconcelos, H. (2009) Climatic drivers of
  tic regression. Ecological Modelling, 207, 234–242.                    hemispheric asymmetry in global patterns of ant species
Dormann, C. F. (2007b) Effects of incorporating spatial                  richness. Ecology Letters, 12, 324–333.
  autocorrelation into the analysis of species distribution            Dutilleul, P., Clifford, P., Richardson, S., & Hemon, D.
  data. Global Ecology and Biogeography, 16, 129–138.                    (1993) Modifying the t test for assessing the corre-
Dormann, C. F., McPherson, J. M., Araújo, M. B., Bivand,                 lation between two spatial processes. Biometrics, 49,
  R., Bolliger, J., Carl, G., Davies, R. G., Hirzel, A., Jetz, W.,       305–314.
  & Kissling, W. D. (2007) Methods to account for spatial              DuToit, J. T. (2003) Large herbivores and savanna hetero-
  autocorrelation in the analysis of species distributional              geneity. In: The Kruger Experience: Ecology and Man-
  data: a review. Ecography, 30, 609.                                    agement of Savanna Heterogeneity, DuToit, J. T., Rogers,
Dornelas, M. & Connolly, S. R. (2008) Multiple modes in                  K. H., & Biggs, H. C. (eds). Island Press, Washington,
  a coral species abundance distribution. Ecology Letters,               pp. 292–309.
  11, 1008–1016.                                                       Dykhuizen, D. E. (1998) Santa Rosalia revisited: Why
Dornelas, M., Connolly, S. R., & Hughes, T. P. (2006) Coral              are there so many species of bacteria? Antonie Van
  reef diversity refutes the neutral theory of biodiversity.             Leeuwenhoek International Journal of General and
  Nature, 440, 80–82.                                                    Molecular Microbiology, 73, 25–33.
Dornelas, M., Moonen, A. C., Magurran, A. E., & Barberi,               EASAC. (2009) Ecosystem Services and Biodiversity in
  P. (2009) Species abundance distributions reveal envi-                 Europe. The Royal Society, London.
  ronmental heterogeneity in modified landscapes. Jour-                Economo, E. & Kiett, T. (2008) Species diversity in neutral
  nal of Applied Ecology, 46, 666–672.                                   metacommunities: a network approach. Ecology. Letters
Dornelas, M., Phillip, D. A. T., and Magurran, A. E. (2010)              11, 52–62.
  Abundance and dominance become less predictable as                   Edwards, A. W.F. (1992) Likelihood – Expanded Edition.
  species richness decreases. Global Ecology and Biogeog-                Johns Hopkins University Press, Baltimore.
  raphy, in press.                                                     Efron, B. & Thisted, R. (1976) Estimating the number
Doroghazi, J. R. & Buckley, D. H. (2008) Evidence from                   of unseen species: how many words did Shakespeare
  GC-TRFLP that bacterial communities in soil are lognor-                know? Biometrika, 63, 35–41.
  mally distributed. Plos One, 3, e2910.                               Efron, B. & Tibshirani, R. J. (1993) An Introduction to the
Dray, S. & Legendre, P. (2008) Testing the species traits-               Bootstrap. Chapman & Hall/CRC, Boca Raton, FL.
  environment relationships: the fourth-corner problem                 Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier,
  revisited. Ecology, 89, 3400–3412.                                     S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick,
Dray, S., Legendre, P., & Peres-Neto, P. R. (2006) Spa-                  J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A.,
  tial modelling: a comprehensive framework for princi-                  Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y.,
  pal coordinate analysis of neighbour matrices (PCNM).                  Overton, J. M. M., Peterson, A. T., Phillips, S. J., Richard-
  Ecological Modelling, 196, 483–493.                                    son, K., Scachetti-Pereira, R., Schapire, R. E., Soberon, J.,
Drayton, B. & Primack, R. B. (1996) Plant species lost in an             Williams, S., Wisz, M. S., & Zimmermann, N. E. (2006)
  isolated conservation area in metropolitan Boston from                 Novel methods improve prediction of species’ distribu-
  1894 to 1993. Conservation Biology, 10, 30–39.                         tions from occurrence data. Ecography, 29, 129–151.
Driscoll, C. A., Menotti-Raymond, M., Roca, A., Hupe, K.,              Ellis, E. C. & Ramankutty, N. (2008) Putting people in the
  Johnson, W. E., Geffen, E., Harley, E. H., Delibes, M.,                map: anthropogenic biomes of the world. Frontiers in
  Pontier, D., Kitchener, A. C., Yamaguchi, N., O’Brien,                 Ecology and the Environment, 6, 439–447.
  S. J., & Macdonald, D. W. (2007) The near eastern origin             Ellison, A. M., Record, S., Arguello, A., & Gotelli, N. J.
  of cat domestication. Science, 317, 519–523.                           (2007) Rapid inventory of the ant assemblage in a
Drobner, U., Bibby, J., Smith, B., & Wilson, J. B. (1998)                temperate hardwood forest: species composition and
  The relation between community biomass and even-                       assessment of sampling methods. Environental Ento-
  ness: What does community theory predict, and can                      mology, 36, 766–775.
  these predictions be tested? Oikos, 82, 295–302.                     Elton, C. (1946) Competition and the structure of ecologi-
Dunn, R. R., Sanders, N. J., Menke, S. B., Weiser, M. D.,                cal communities. Journal of Animal Ecology, 15:54–68.
  Fitzpatrick, M. C., Laurent, E., Lessard, J. -P., Agosti, D.,        Elzinga, C. L., Salzer, D. W., & Willoughby, J. W. (1998)
  Andersen, A., Bruhl, C., Cerda, X., Ellison, A., Fisher,               Measuring & Monitoring Plant Populations. US Dept.
OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
304 REFERENCES
  of the Interior, Bureau of Land Management; Nature             species richness in South Africa. Biology Letters, 2,
  Conservancy, Denver, CO.                                       184–188.
Engen, S. & Lande, R. (1996a) Population dynamic              Evans, K. L., van Rensburg, B. J., Gaston, K. J., & Chown,
  models generating species abundance distributions of           S. L. (2006b) People, species richness and human pop-
  the gamma type. Journal of Theoretical Biology, 178,           ulation growth. Global Ecology and Biogeography, 15,
  325–331.                                                       625–636.
Engen, S. & Lande, R. (1996b) Population dynamic models       Evans, K. L., Gaston, K. J., Sharp, S. P., McGowan, A.,
  generating the lognormal species abundance distribu-           & Hatchwell, B. J. (2009) The effect of urbanisation on
  tion. Mathematical Biosciences, 132, 169–183.                  avian morphology and latitudinal gradients in body
Engen, S., Lande, R., Walla, T., & DeVries, P. J. (2002)         size. Oikos, 118, 251–259.
  Analyzing spatial structure of communities using the        Evans, M., Hastings, N., & Peacock, B. (1993) Statistical
  two-dimensional Poisson lognormal species abundance            Distributions, 2nd edn. Wiley, New York.
  model. The American Naturalist, 160, 60–73.                 Faith, D. P. (1992) Conservation evaluation and phyloge-
Engen, S., Saether, B. E., Sverdrup-Thygeson, A., Grotan,        netic diversity. Biological Conservation, 61, 1–10.
  V., & Odegaard, F. (2008) Assessment of species diver-      Fargione, J., Brown, C. S., & Tilman, D. (2003) Community
  sity from species abundance distributions at different         assembly and invasion: an experimental test of neu-
  localities. Oikos, 117, 738–748.                               tral versus niche processes. Proceedings of the National
Epperson, B. K. (2003) Geographical Genetics. Princeton          Academy of Sciences of the United States of America,
  University Press, Princeton.                                   100, 8916–8920.
Erickson, R. O. (1945) The Clematis fremontii var. riehlii    Farrell, L. E., Roman, J., & Sunquist, M. E. (2000) Dietary
  population in the Ozarks. Annals of the Missouri Botan-        separation of sympatric carnivores identified by molec-
  ical Garden, 32, 413–460.                                      ular analysis of scats. Molecular Ecology, 9, 1583–1590.
Erwin, D. H. (2006) Extinction: How life on Earth Nearly      Felsenstein, J. (1985) Phylogenies and the comparative
  Ended 250 Million Years Ago. Princeton University              method. The American Naturalist, 125, 1–15.
  Press, Princeton.                                           Felsenstein, J. (2004) Inferring Phylogenies. Sinauer Asso-
Etienne, R. S. (2005) A new sampling formula for neutral         ciates, Sunderland, MA, USA.
  biodiversity. Ecology Letters, 8, 253–260.                  Feng, M. C., Nowierski, R. M., & Zeng, Z. (1993) Popu-
Etienne, R. S. (2007) A neutral sampling formula for mul-        lations of Sitobion avenae and Aphidius ervi on sprint
  tiple samples and an ‘exact’ test of neutrality. Ecology       wheat in the northwestern United States. Entomologia
  Letters, 10, 608–618.                                          Experimentalis et Applicata, 67, 109–117.
Etienne, R. S. & Alonso, D. (2005) A dispersal-limited sam-   Fewster, R. M., Buckland, S. T., Siriwardena, G. M., Baillie,
  pling theory for species and alleles. Ecology Letters, 8,      S. R., & Watson, J. D. (2000) Analysis of population
  1147–1156.                                                     trends for farmland birds using generalized additive
Etienne, R. S. & Olff, H. (2004) A novel genealogical            models. Ecology, 81, 1970–1984.
  approach to neutral biodiversity theory. Ecology Let-       Fiedler, K. & Schulze, C. H. (2004) Forest modification
  ters, 7, 170–175.                                              affects diversity (but not dynamics) of speciose tropical
Etienne, R. S. & Olff, H. (2005) Confronting different mod-      pyraloid moth communities. Biotropica, 36, 615–627.
  els of community structure to species-abundance data:       Figueiredo, M. S. L. & Grelle, C. E. V. (2009) Predicting
  a Bayesian model comparison. Ecology Letters, 8, 493–          global abundance of a threatened species from its occur-
  504.                                                           rence: implications for conservation planning. Diversity
Etienne, R. S., Latimer, A. M., Silander, J. A., & Cowling,      & Distributions, 15, 117–121.
  R. M. (2006) Comment on “Neutral ecological theory          Filippi-Codaccioni, O., Clobert, J., & Julliard, R.. (2009)
  reveals isolation and rapid speciation in a biodiversity       Urbanization effects on the functional diversity of
  hot spot”. Science, 311, 610.                                  avian agricultural communities. Acta Oecologia, 35,
Etienne, R. S., Alonso, D., & McKane, A. J. (2007a) The          705–710.
  zero-sum assumption in netural biodiversity theory.         Finch, S., Skinner, G., & Freeman, G. H. (1975) The distrib-
  Journal of Theoretical Biology, 248, 522–536.                  ution and analysis of cabbage root fly egg populations.
Etienne, R. S., Apol, M. E. F., Olff, H., & Weissing, F. J.      The Annals of Applied Biology, 79, 1–18.
  (2007b) Modes of speciation and the neutral theory of       Fisher, J. A. D. & Frank, K. T. (2004) Abundance-
  biodiversity. Oikos, 116, 241–258.                             distribution relationships and conservation of exploited
Evans, K. L., Rodrigues, A. S. L., Chown, S. L., & Gas-          marine fishes. Marine Ecology Progress Series, 279,
  ton, K. J. (2006a) Protected areas and regional avian          201–213.
                                                                OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
REFERENCES 305
Fisher, M. M. & Triplett, E. W. (1999) Automated                  Foote, M. (2001b) Evolutionary rates and the age distribu-
  approach for ribosomal intergenic spacer analysis of              tion of living and extinct taxa. In: Evolutionary Patterns
  microbial diversity and its application to freshwater             – Growth, Form, and Tempo in the Fossil Record, Jack-
  bacterial communities. Applied and Environmental                  son, J. B. C., Lidgard, S., & McKinney, F. K. (eds). The
  Microbiology, 65, 4630–4636.                                      University of Chicago Press, Chicago, pp. 245–294.
Fisher, R. A., Corbet, A. S., & Williams, C. B. (1943) The        Foote, M. (2001c) Inferring temporal patterns of preser-
  relation between the number of species and the number             vation, origination, and extinction from taxonomic sur-
  of individuals in a random sample of an animal popu-              vivorship analysis. Paleobiology, 27, 602–630.
  lation. Journal of Animal Ecology, 12, 42–58.                   Foote, M. (2003) Origination and extinction through the
Fisher, J. A. D., Frank, K. T., Petrie, B., Leggett, W. C., &       Phanerozoic: a new approach. The Journal of Geology,
  Shackell, N. L. (2008) Temporal dynamics within a con-            111, 125–148.
  temporary latitudinal diversity gradient. Ecology Let-          Foote, M. (2005) Pulsed origination and extinction in the
  ters, 11, 883–897.                                                marine realm. Paleobiology, 31, 6–20.
Flaten, G. R., Botnen, H., Grung, B., & Kvalheim, O. M.           Foote, M. (2007a) Extinction and quiescence in marine ani-
  (2007) Quantifying disturbances in benthic communi-               mal genera. Paleobiology, 33, 261–272.
  ties – comparison of the community disturbance index            Foote, M. (2007b) Symmetric waxing and waning of
  (CDI) to other multivariate methods. Ecological Indica-           marine invertebrate genera. Paleobiology, 33, 517–529.
  tors, 7, 254–276.                                               Foote, M. & Raup, D. M. (1996) Fossil preservation
Flather, C. (1996) Fitting species-accumulation functions           and the stratigraphic ranges of taxa. Paleobiology, 22,
  and assessing regional land use impacts on avian diver-           121–140.
  sity. Journal of Biogeography, 23, 155–168.                     Foote, M., Crampton, J. S., Beu, A. G., & Cooper, R. A.
Fleishman, E., Thomson, J. R., Mac Nally, R., Murphy,               (2008) On the bidirectional relationship between geo-
  D. D., & Fay, J. P. (2005) Using indicator species to             graphic range and taxonomic duration. Paleobiology,
  predict species richness of multiple taxonomic groups.            34, 421–433.
  Conservation Biology, 19, 1125–1137.                            Foran, D. R., Crooks, K. R., & Minta, S. C. (1997) Species
Folch, J., Cocero, M. J., Chesné, P., Alabart, J. L.,               identification from scat: an unambiguous genetic
  Dominguez, V., Cognié , Y., Roche, A., Vernández-Áriaz,           method. Wildlife Society Bulletin, 25, 835–839.
  A., Marti, J. I., Sánchez, P., Echegoyen, E., Beckers,          Ford, N. B. & Lancaster, D. L. (2007) The species-
  J. F., Sánchez Bonastre, A., & Vignon, X. (2009) First            abundance distribution of snakes in a bottomland hard-
  birth of an animal from an extinct subspecies (Capra              wood forest of the southern United States. Journal of
  pyrenaica pyrenaica) by cloning. Theriogenology, 71,              Herpetology, 41, 385–393.
  1026–1034.                                                      Forest, F., Grenyer, R., Rouget, M., Davies, T. J., Cowling,
Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist,       R.M, Faith, D. P., Balmford, A., Manning, J. C., Proches,
  T., Gunderson, L., & Holling, C. S. (2004) Regime shifts,         S., van der Bank, M., Reeves, G., Hedderson, T. A. J.,
  resilience, and biodiversity in ecosystem management.             & Salvolainen, V. (2007) Preserving the evolutionary
  Annual Review of Ecology Evolution and Systematics,               potential of floras in biodiversity hotspots. Nature, 445,
  35, 557–581.                                                      757–760.
Foote, M. (1988) Survivorship analysis of Cambrian and            Fornara, D. A. & Tilman, D. (2009) Ecological mechanisms
  Ordovician trilobites. Paleobiology, 14, 258–271.                 associated with the positive diversity – productivity
Foote, M. (1994) Temporal variation in extinction risk and          relationship in an N-limited grassland. Ecology, 90,
  temporal scaling of extinction metrics. Paleobiology, 20,         408–418.
  424–444.                                                        Fortin, M. J. & Dale, M. R.T. (2005) Spatial Analysis:
Foote, M. (1997) Estimating taxonomic durations and                 A Guide for Ecologists. Cambridge University Press,
  preservation probability. Paleobiology, 23, 278–300.              Cambridge.
Foote, M. (2000) Origination and extinction components            Foster, S. D. & Dunstan, P. K. (2009) The analysis of biodi-
  of taxonomic diversity: general problems. In: Deep time           versity using rank abundance distributions. Biometrics,
  – Paleobiology’s perspective, Erwin, D. H. & Wing,                661, 186–195.
  S. L. (eds). Paleobiology Memoir, Paleontological Soci-         Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002)
  ety and University of Chicago Press, pp. 74–102.                  Geographically Weighted Regression: The Analysis of
Foote, M. (2001a) Estimating completeness of the fossil             Spatially Varying Relationships. Wiley, Chichester.
  record. In: Paleobiology II, Briggs, D. E. G. & Crowther,       Foxcroft, L. C., Rouget, M., Richardson, D. M., & Mac-
  P. R. (eds). Blackwell, Oxford, pp. 500–504.                      Fadyen, S. (2004) Reconstructing 50 years of Opun-
OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
306 REFERENCES
  tia stricta invasion in the Kruger National Park, South        Garnier, E., Laurent, G., Bellmann, A., Debain, S., Berthe-
  Africa: environmental determinants and propagule                lier, P., Ducout, B., Roumet, C., & Navas, M.-L. (2001)
  pressure. Diversity & Distributions, 10, 427–437.               Consistency of species ranking based on functional leaf
Foxcroft, L. C., Richardson, D. M., Rouget, M., & Mac-            traits. The New Phytologist, 152, 69–83.
  Fadyen, S. (2009) Patterns of alien plant distribution         Garnier, E., Lavorel, S., Ansquer, P., Castro, H., Cruz,
  at multiple spatial scales in a large national park:            P., Dolezal, J., Eriksson, O., Fortunel, C., Freitas, H.,
  implications for ecology, management and monitoring.            Golodets, C., Grigulis, K., Jouany, C., Kazakou, E., Kigel,
  Diversity & Distributions, 15, 367–378.                         J., Kleyer, M., Lehsten, V., Lepš, J., Meier, T., Pakeman,
Frankham, R., Ballou, J. D., & Briscoe, D. A. (eds) 2002.         R., Papadimitriou, M., Papanastasis, V. P., Quested, H.,
  Introduction to Conservation Genetics. Cambridge Uni-           Quétier, F., Robson, M., Roumet, C., Rusch, G., Skarpe,
  versity Press.                                                  C., Sternberg, M., Theau, J.-P., Thébault, A., Vile, D.,
Freckleton, R. P., Gill, J. A., Noble, D., & Watkinson, A. R.     & Zarovali, M. P. (2006) Assessing the effects of land-
  (2005) Large-scale population dynamics, abundance-              use change on plant traits, communities and ecosystem
  occupancy relationships and the scaling from local to           functioning in grasslands: a standardized methodology
  regional population size. Journal of Animal Ecology, 74,        and lessons from an application to 11 European Sites.
  353–364.                                                        Annals of Botany, 99, 967–985.
Freeman, S. N., Noble, D. G., Newson, S. E., & Baillie S. R.     Gaston, K. J. (1991) How large is a species’ geographic
  (2007) Modelling population changes using data from             range? Oikos, 61, 434–438.
  different surveys: the Common Birds Census and the             Gaston, K. J. (1994) Rarity. Chapman & Hall, London.
  Breeding Bird Survey. Bird Study, 54, 61–72.                   Gaston, K. J. (ed) (1996) Biodiversity: A biology of num-
Freese, L., Auster, P. J., Heifetz, J., & Wing, B. L. (1999)      bers and difference. Wiley, New York.
  Effects of trawling on seafloor habitat and associated         Gaston, K. J. (1996a) Species-range size distributions: pat-
  invertebrate taxa in the Gulf of Alaska. Marine Ecology-        terns, mechanisms and implications. Trends in Ecology
  Progress Series, 182, 119–126.                                  and Evolution, 11, 197–201.
Frezal, L. & Leblois, R. (2008) Four years of DNA barcod-        Gaston, K. J. (1996b) Biodiversity – latitudinal gradients.
  ing: current advances and prospects. Infection, Genetics        Progress in Physical Geography, 20, 466–476.
  and Evolution, 8, 727–736.                                     Gaston, K. J. (2003) The Structure and Dynamics of Geo-
Frontier, S. (1985) Diversity and structure in aquatic            graphic Ranges. Oxford University Press, Oxford.
  ecosystems. Oceanography and Marine Biology – An               Gaston, K. J. (2006) Biodiversity and extinction: macroeco-
  Annual Review, 23, 253–312.                                     logical patterns and people. Progress in Physical Geog-
Gans, J., Wolinsky, M., & Dunbar, J. (2005) Computational         raphy, 30, 258–269.
  improvements reveal great bacterial diversity and high         Gaston, K. J. (2009) Geographic range limits: achieving
  metal toxicity in soil. Science, 309, 1387–1390.                synthesis. Proceedings of the Royal Society London, B,
Garcia, L. V. (2004) Escaping the Bonferroni iron claw in         276, 1395–1406.
  ecological studies. Oikos, 105, 657.                           Gaston, K. J. & Blackburn, T. M. (2000) Pattern and Process
Garcia-Martinez, J., Acinas, S. G., Anton, A. I., &               in Macroecology. Blackwell, Oxford.
  Rodriguez-Valera, F. (1999) Use of the 16S-23S ribo-           Gaston, K. J. & Fuller, R. A. (2008) Commonness, pop-
  somal genes spacer region in studies of prokary-                ulation depletion and conservation biology. Trends in
  otic diversity. Journal of Microbiological Methods, 36,         Ecology and Evolution, 23, 14–19.
  55–64.                                                         Gaston, K. J. & Fuller, R. A. (2009) The sizes of species’
Gardner, T. A., Cote, I. M., Gill, J. A., Grant, A., & Watkin-    geographic ranges. Journal of Applied Ecology, 46, 1–9.
  son, A. R. (2003) Long-term region-wide declines in            Gaston, K. J. & Lawton, J. H. (1989) Insect herbivores on
  Caribbean corals. Science, 301, 958–960.                        bracken do not support the core-satellite hypothesis.
Gardner, T. A., Barlow, J., Aruajo, I. S., Ávila-Pires, T. C.,    The American Naturalist, 134, 761–777.
  Bonaldo, A. B., Costa, J. E., Esposito, M. C., Ferreira,       Gaston, K. J. & Lawton, J. H. (1990) Effects of scale and
  L. V., Hawes, J., Hernandez, M. I. M., Hoogmoed, M. S.,         habitat on the relationship between regional distribu-
  Lieite, R. N., Lo-Man-Hung, N. F., Malcolm, J. R., Mar-         tion and local abundance. Oikos, 58, 329–335.
  tins, M. B., Mestre, L. A. M., Miranda-Santos, R., Overal,     Gaston, K. J. & He, F. (2002) The distribution of species
  W. L., Parry, L., Peters, S. L., Roberio-Junior, M. A., da      range size: a stochastic process. Proceedings of the
  Silva, M. N. F., Motta, C. D. S., & Peres, C. A. (2007)         Royal Society London, B, 269, 1079–1086.
  The cost-effectiveness of biodiversity surveys in tropical     Gaston, K. & May, R. M. (1992) The taxonomy of taxono-
  forests. Ecology Letters, 11, 139–150.                          mists. Nature, 356, 281–283.
                                                                OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
REFERENCES 307
Gaston, K. J. & McArdle, B. H. (1994) The temporal vari-          Gelman, A. (2003) A Bayesian formulation of exploratory
 ability of animal abundances: measures, methods and                data analysis and goodness-of-fit testing. International
 patterns. Philosophical Transactions of the Royal Soci-            Statistical Review, 71, 369–382.
 ety, London Lond. B, 345, 335–358.                               Genome 10K Community of Scientists. (2009) Genome
Gaston, K. J. & Warren, P. H. (1997) Interspecific                  10K: a proposal to obtain whole-genome sequence
 abundance-occupancy relationships and the effects of               for 10000 vertebrate species. Journal of Heredity, 100,
 disturbance: a test using microcosms. Oecologia, 112,              659–674.
 112–117.                                                         Gerrodette, T. (1993) TRENDS: Software for a power
Gaston, K. J., Blackburn, T. M., & Lawton, J. H. (1997)             analysis of linear regression. Wildlife Society Bulletin,
 Interspecific abundance-range size relationships: an               21, 515–516.
 appraisal of mechanisms. Journal of Animal Ecology, 66,          Gibbs, J. E. (1995) MONITOR: Software for power analysis
 579–601.                                                           in population monitoring programs. In. USGS Pautux-
Gaston, K. J., Blackburn, T. M., & Gregory, R. D. (1998a)           ent Wildlife Research Center Laurel, Maryland.
 Interspecific differences in intraspecific abundance-            Gibbs, J. P., Droege, S., & Eagle, P. (1998) Monitor-
 range size relationships of British breeding birds. Ecog-          ing populations of plants and animals. BioScience, 48,
 raphy, 21, 149–158.                                                935–940.
Gaston, K. J., Blackburn, T. M., Gregory, R. D., &                Gienapp, P., Leimu, R., & Merilä, J. (2007) Responses to
 Greenwood, J. J.D. (1998b) The anatomy of the inter-               climate change in avian migration time – microevolu-
 specific abundance-range size relationship for the                 tion versus phenotypic plasticity. Climate Research, 35,
 British avifauna: I. Spatial patterns. Ecology Letters, 1,         25–35.
 38–46.                                                           Gienapp, P., Teplitsky, C., Alho, J. S., Mills, J. A., & Merilä,
Gaston, K. J., Blackburn, T. M., & Gregory, R. D.                   J. (2008) Climate change and evolution: disentangling
 (1999a) Does variation in census area confound den-                environmental and genetic responses. Molecular Ecol-
 sity comparisons? Journal of Applied Ecology, 36,                  ogy, 17, 167–178.
 191–204.                                                         Gilchrist, G. W., Huey, R. B., Balanyá, J., Pascual, M., &
Gaston, K. J., Blackburn, T. M., & Gregory, R. D. (1999b)           Serra, L. (2004) A time series of evolution in action: a lat-
 Intraspecific abundance-range size relationships: case             itudinal cline in wing size in South American Drosophila
 studies of six bird species in Britain. Diversity & Dis-           subobscura. Evolution, 58, 768–780.
 tributions 5, 197–212.                                           Gill, S. R., Pop, M., DeBoy, R. T., Eckburg, P. B., Turnbaugh,
Gaston, K. J., Blackburn, T. M., Greenwood, J. J.D.,                P. J., Samuel, B. S., Gordon, J. I., Relman, D. A., Fraser-
 Gregory, R. D., Quinn, R. M., & Lawton, J. H.                      Liggett, C. M., & Nelson, K. E. (2006) Metagenomic
 (2000) Abundance-occupancy relationships. Journal of               analysis of the human distal gut microbiome. Science,
 Applied Ecology, 37 (Suppl. 1), 39–59.                             312, 1355–1359.
Gaston, K. J., Borges, P. A.V., He, F., & Gaspar, C. (2006)       Gillespie, T. W., Foody, G. M., Rocchini, D., Giorgi, A. P.,
 Abundance, spatial variance, & occupancy: species dis-             & Saatchi S. (2008) Measuring and modelling biodiver-
 tribution in the Azores. Journal of Animal Ecology, 75,            sity from space. Progress in Physical Geography, 32,
 646–656.                                                           203–221.
Gaston, K. J., Chown, S. L., & Evans, K. L. (2008a) Eco-          Gislason, H. & Rice, J. (1998) Modelling the response of
 geographic rules: elements of a synthesis. Journal of              size and diversity spectra of fish assemblages to changes
 Biogeography, 35, 483–500.                                         in exploitation. ICES Journal of Marine Science, 55,
Gaston, K. J., Jackson, S. F., Cantú-Salazar, L., & Cruz-           362–370.
 Piñón, G. (2008b) The ecological performance of pro-             Gleason, H. A. (1929) The significance of Raunkiaer’s law
 tected areas. Annual Review of Ecology, Evolution and              of frequency. Ecology, 10, 406–408.
 Systematics, 39, 93–113.                                         Golicher, D. J., O’Hara, R. B., Ruiz-Montoya, L., &
Gaston, K. J., Chown, S. L., Calosi, P., et al. (2009) Macro-       Cayuela, L. (2006) Lifting a veil on diversity: a Bayesian
 physiology: a conceptual re-unification. The American              approach to fitting relative-abundance models. Ecologi-
 Naturalist, 174, 595–612.                                          cal Applications, 16, 202–212.
Gebremedhin, B., Ficetola, G. F., Naderi, S., Rezaei, H. R.,      Good, I. J. (1953) The population frequencies of species
 Maudet, C., Rioux, D., Luikart, G., Flagstad, Ø., Thuiller,        and the estimation of population parameters. Bio-
 W., & Taberlet, P. (2009) Frontiers in identifying conser-         metrika, 40, 237–264.
 vation units: from neutral markers to adaptive genetic           Good, I. J. (2000) Turing’s anticipation of empirical Bayes
 variation. Animal Conservation, 12, 107–109.                       in connection with the cryptanalysis of the naval
OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
308 REFERENCES
  Enigma. Journal of Statistical Computation and Simu-            Graham, J. H., Hughie, H. H., Jones, S., Wrinn, K., Krzysik,
  lation, 66, 101–111.                                              A. J., Duda, J. J., Freeman, D. C., Emlen, J. M., Zak, J. C.,
Goßner, M., Chao, A., Bailey, R., & Prinzing, A. (2009)             Kovacic, D. A., Chamberlin-Graham, C., & Balbach, H.
  Native fauna on exotic trees: phylogenetic conservatism           (2004) Habitat disturbance and the diversity and abun-
  and geographic contingency in two lineages of phy-                dance of ants (Formicidae) in the Southeastern Fall-
  tophages on two lineages of trees. The American Nat-              Line Sandhills – art. no. 30. Journal of Insect Science, 4,
  uralist, 173, 599–614.                                            30–30.
Gotelli, N. J. (1991) Metapopulation models: the rescue           Grant, P. R. & Schluter, D. (1984) Interspecific competition
  effect, the propagule rain, and the core-satellite hypoth-        inferred from patterns of guild structure. In: Ecological
  esis. The American Naturalist, 138, 768–776.                      Communities: Conceptual Issues and the Evidence,
Gotelli, N. J. (2008) A Primer of Ecology, 4th edn. Sinauer         Strong, D. R., Simberloff, D., Abele, L. G., & Thistle,
  Associates, Sunderland, MA.                                       A. B. (eds). Princeton University Press, Princeton, USA,
Gotelli, N. J. & Colwell, R. K. (2001) Quantifying bio-             pp. 201–233.
  diversity: procedures and pitfalls in the measurement           Grassle, J. F. & Smith, W. (1976) A similarity measure sen-
  and comparison of species richness. Ecology Letters, 4,           sitive to the contribution of rare species and its use in
  379–391.                                                          investigation of variation in marine benthic communi-
Gotelli, N. & Entsminger, G. L. (2009) EcoSim: Null                 ties. Oecologia, 25, 13–22.
  Models Software for Ecology. Version 7. Acquired                Gray, J. S. (1979) Pollution-induced changes in popula-
  Intelligence Inc. & Kesey-Bear, Jericho, VT 05465.                tions. Philosophical Transactions of the Royal Society of
  http://garyentsminger.com/ecosim.htm.                             London B, 286, 545–561.
Gotelli, N. J. & Graves, G. R. (1996) Null Models in Ecol-        Gray, J. S. (1981) Detecting pollution induced changes in
  ogy. Smithsonian Institution Press, WA, USA.                      communities using the log-normal distribution of indi-
Gotelli, N., Anderson, M. J., Arita, H. T., Chao, A., Colwell,      viduals among species. Marine Pollution Bulletin, 12,
  R. K., Connolly, S. R., Currie, D. J., Dunn, R. R., Graves,       173–176.
  G. R., Green, J. L., Grytnes, J. A., Jiang, Y.-H., Jetz, W.,    Gray, J. S. (1983) Use and misuse of the log-normal plotting
  Lyons, S. K., McCain, C. M., Magurran, A. E., Rahbek,             method for detection of effects of pollution – a reply.
  C., Rangel, T. F.L. V.B., Soberon, J., Webb, C. O., & Willig,     Marine Ecology-Progress Series, 11, 203–204.
  M. R. (2009) Patterns and causes of species richness:           Gray, J. S. (1987) Species-abundance patterns. In: Orga-
  a general simulation model for macroecology. Ecology              nization of communities – past and present, Gee,
  Letters, 12, 873–886.                                             J. H. R. & Giller, P. S. (eds). Blackwell, Oxford, pp.
Govender, N., Trollope, W. S. W., & van Wilgen, B. W.               53–67.
  (2006) The effect of fire season, fire frequency, rainfall      Gray, J. S. & Mirza, F. B. (1979) Possible method for the
  and management on fire intensity in savanna vegeta-               detection of pollution-induced disturbance on marine
  tion in South Africa. Journal of Applied Ecology, 43,             benthic communities. Marine Pollution Bulletin, 10,
  748–758.                                                          142–146.
Gower, J. C. (1971) A general coefficient of similarity and       Gray, J. S., Clarke, K. R., Warwick, R. M., & Hobbs,
  some of its properties. Biometrics, 27, 857–871.                  G. (1990) Detection of the initial effects of pollution
Gower, J. C. (1985) Measures of similarity, dissimilarity           on marine benthos: an example from the Ekofisk and
  and distance. In Enclopedia of Statistical Sciences, Kotz,        Eldfisk oilfields, North Sea. Marine Ecology Progress
  S. & Johnson, N. L. (eds). Wiley, New York, Vol. 5,               Series, 66, 285–299.
  pp. 397–405.                                                    Gray, J. S., Bjogesaerter, A., & Ugland, K. I. (2005) The
Grace, J. B. (2006) Structural Equation Modeling and Nat-           impact of rare species on natural assemblages. Journal
  ural Systems. Cambridge University Press, Cambridge.              of Animal Ecology, 74, 1131–1139.
Gradstein, F., Ogg, J., & Smith, A. (2005) A geolog-              Gray, J. S., Bjorgesaeter, A., & Ugland, K. I. (2006) On plot-
  ical Times Scale 2004. Cambridge University Press,                ting species abundance distributions. Journal Of Animal
  Cambridge.                                                        Ecology, 75, 752–756.
Graham, C. H. & Fine, P. V. A. (2008) Phylogenetic beta           Green, J. L. & Plotkin, J. B. (2007) A statistical theory
  diversity: linking ecological and evolutionary processes          for sampling species abundances. Ecology Letters, 10,
  across space in time. Ecology Letters, 11, 1265–1277.             1037–1045.
Graham, C. H. & Hijmans, R. J. (2006) A comparison of             Gregorius, H. R. (1987) The relationship between the con-
  methods for mapping species ranges and species rich-              cepts of genetic diversity and differentiation. Theoreti-
  ness. Global Ecology and Biogeography, 15, 578–587.               cal and Applied Genetics, 74, 397–401.
                                                               OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
REFERENCES 309
Gregorius, H. R. (1996) Differentiation between popu-            Hannah, L. & Kay, J. A. (1977) Concentration in the mod-
  lations and its measurement. Acta Biotheoretica, 44,            ern industry: theory, measurement, and the U. K. expe-
  23–36.                                                          rience. MacMillan, London.
Gregorius, H. R. (2010) Linking diversity and differentia-       Hanski, I. (1982) Dynamics of regional distribution: the
  tion. Diversity, 2, 370–394.                                    core and satellite species hypothesis. Oikos, 38, 210–221.
Gregory, R. D., Noble, D., Field, R., Marchant, J., Raven,       Hanski, I. (1994) A practical model of metapopulation
  M., & Gibbons, D. W. (2003) Birds as indicators of biodi-       dynamics. Journal of Animal Ecology, 63, 151–162.
  versity. Ornis Hungarica, 12–13, 11–24.                        Hanski, I. (1997) Metapopulation dynamics, from concepts
Greig-Smith, P. (1957) Quantitative Plant Ecology. Butter-        and observations to predictive models. In: Metapopula-
  worth, London.                                                  tion Biology, Hanski, I. & Gilpin, M. E. (eds). Academic
Greig-Smith, P. (1983) Quantitative Plant Ecology, 3rd edn.       Press, San Diego, pp. 69–91.
  Blackwell, London.                                             Hanski, I. & Gyllenberg, M. (1997) Uniting two general
Greve, M. (2007) Avifaunal responses to environmental             patterns in the distribution of species. Science, 275,
  conditions and land-use changes in South Africa: diver-         397–400.
  sity, composition and body size. M.Sc. Thesis, Stellen-        Hardy, O. J. (2008) Testing the spatial phylogenetic struc-
  bosch University, 185pp.                                        ture of local communities: statistical performances of
Greve, M., Gaston, K. J., van Rensburg, B. J., & Chown,           different null models and test statistics on a locally neu-
  S. L. (2008) Environmental factors, regional body size          tral community. The Journal of Ecology, 96, 914–926.
  distributions, and spatial variation in body size of local     Hardy, O. J. & Jost, L. (2008) Interpreting and estimating
  avian assemblages. Global Ecology and Biogeography,             measures of community phylogenetic structuring. The
  17, 514–523.                                                    Journal of Ecology, 96, 849–852.
Grime, J. P. (1973a) Control of species density in herba-        Hardy, O. J. & Senterre, B. (2007) Characterizing the phylo-
  ceous vegetation. Journal of Environmental Manage-              genetic structure of communities by additive partition-
  ment, 1, 151–167.                                               ing of phylogenetic diversity. The Journal of Ecology, 95,
Grime, J. P. (1973b) Competitive exclusion in herbaceous          493–506.
  vegetation. Nature, 242, 344–347.                              Harms, K. E., Condit, R., Hubbell, S. P., & Foster, R. B.
Grinnell, J. (1922) The role of the ‘accidental’. Auk, 39,        (2001) Habitat associations of trees and shrubs in a
  373–380.                                                        50-ha neotropical forest plot. Journal of Ecology, 89,
Groves, R. M. (1989) Survey Errors and Survey Costs.              947–959.
  Wiley, New York.                                               Harper, J. L. (1981) The meanings of rarity. In: The Biolog-
Gunnarsson, T. (2006) A Mirror of Nature: Nordic Land-            ical Aspects of Rare Plant Conservation, Synge, H. (ed).
  scape Painting 1840–1910. Statens Museum for Kunst,             Wiley, New York, pp. 189–203.
  Copenhagen, pp. 11–37.                                         Harrison, P. (1992) The Third Revolution. Population,
Guo, Q., Brown, J. H., & Valone, T. J. (2000) Abun-               Environment and a Sustainable World. Penguin Books,
  dance and distribution of desert annuals: are spatial and       London.
  temporal patterns related? The Journal of Ecology, 88,         Harrison, S., Ross, S. J., & Lawton, J. H. (1992) Beta diver-
  551–560.                                                        sity on geographic gradients in Britain. Journal of Ani-
Gurd, D. B. 2007. Predicting resource partitioning and            mal Ecology, 61, 151–158.
  community organization of filter-feeding dabbling              Harte, J. (2008) From spatial pattern in the distribution and
  ducks from functional morphology. The American Nat-             abundance of species to a unified theory of ecology: the
  uralist, 169, 334–343.                                          role of maximum entropy methods. Applied Optimiza-
Halfpenny, J. 1986. A Field Guide to Mammal Track-                tion, 102, 243.
  ing in Western America. Johnson Books, Boulder, CO,            Harte, J., Kinzig, A., & Green, J. (1999) Self-similarity in
  pp. 134–148.                                                    the distribution and abundance of species. Science, 284,
Hall, S. J. & Greenstreet, S. P. (1998) Taxonomic dis-            334–336.
  tinctness and diversity measures: responses in marine          Harte, J., Conlisk, E., Ostling, A., Green, J. L., & Smith,
  fish communities. Marine Ecology Progress Series, 166,          A. B. (2005) A theory of spatial structure in ecologi-
  227–229.                                                        cal communities at multiple spatial scales. Ecological
Hallam, S. J., Putnam, N., Preston, C. M., Detter, J. C.,         Monographs, 75, 179–197.
  Rokhsar, D., Richardson, P. M., & DeLong, E. F. (2004)         Harte, J., Zillio, T., Conlisk, E., & Smith, A. B. (2008) Maxi-
  Reverse methanogenesis: testing the hypothesis with             mum entropy and the state variable approach to macro-
  environmental genomics. Science, 305, 1457–1462.                ecology. Ecology, 89, 2700–2711.
OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
310 REFERENCES
Hartley, S., Kunin, W. E., Lennon, J. J., & Pocock, M. J. O.    Hector, A., Schmid, B., Beierkuhnlein, C., Caldeira,
  (2004) Coherence and discontinuity in the scaling of           M. C., Diemer, M., Dimitrakopoulos, P. G., Finn, J. A.,
  species’ distribution patterns. Proceedings of the Royal       Freitas, H., Giller, P. S. Good, J., Harris, R., Högberg,
  Society London, B, 271, 81–88.                                 P., Huss-Danell, K., Joshi, J., Jumpponen, A., Körner,
Hassell, M. P., Southwood, T. R. E., & Reader, P. M. (1987)      C., Leadley, P. W., Loreau, M., Minns, A., Mulder,
  The dynamics of the viburnum whitefly (Aleurotrachelus         C. P.H., O’Donovan, G., Otway, S. J., Pereira, J. S., Prinz,
  jelinekii): a case study of population regulation. Journal     A., Read, D. J., Scherer-Lorenzen, M., Schulze, E.-D.,
  of Animal Ecology, 56, 283–300.                                Siamantziouras, A.-S. D., Spehn, E. M., Terry, A. C.,
Hauer, R. F. & Resh, V. H. (2006) Macroinvertebrates. In:        Troumbis, A. Y., Woodward, F. I., Yachi, S., & Lawton,
  Methods in Stream Ecology, Hauer, F. R. & Lamberti,            J. H. (1999) Plant diversity and productivity in European
  G. A. (eds). Academic Press/Elsevier San Diego, CA,            grasslands. Science, 286, 1123–1127.
  pp. 435–463.                                                  Heemsbergen, D. A., Berg, M. P., Loreau, M., van Hal, J. R.,
Hawkins, C. P., Norris, R. H., Hogue, J. N., & Feminella,        Faber, J. H., & Verhoef, H. A. (2004) Biodiversity effects
  J. W. (2000) Development and evaluation of predic-             on soil processes explained by interspecific functional
  tive models for measuring the biological integrity of          dissimilarity. Science, 306, 1019–1020.
  streams. Ecological Applications, 10, 1456–1477.              Heino, J. (2005) Positive relationship between regional
Hawkins, B. A., Diniz-Filho, J. A. F., Bini, L. M., De Marco,    distribution and local abundance in stream insects: a
  P., & Blackburn, T. M. (2007) Red herrings revisited: spa-     consequence of niche breadth or habitat niche position?
  tial autocorrelation and parameter estimation in geo-          Ecography, 28, 345–354.
  graphical ecology. Ecography, 30, 375.                        Heino, J. (2008) Temporally stable abundance-occupancy
Hayden, E. C. (2009) 10,000 genomes to come. Nature,             relationships and occupancy frequency patterns in
  462, 21.                                                       stream insects. Oecologia, 157, 337–347.
He, F. & Condit, R. (2007) The distribution of species: occu-   Helmus, M. R., Bland, T. J., Williams, C. K., & Ives,
  pancy, scale, and rarity. In: Scaling Biodiversity, Storch,    A. R. (2007) Phylogenetic measures of biodiversity. The
  D., Marquet, P. A., & Brown, J. H. (eds). Cambridge            American Naturalist, 169, E68–E83.
  University Press, Cambridge, pp. 32–50.                       Heltshe, J. & Forrester, N. E. (1983) Estimating species
He, F. & Gaston, K. J. (2000a) Estimating species abun-          richness using the jackknife procedure. Biometrics, 39,
  dance from occurrence. The American Naturalist, 156,           1–11.
  553–559.                                                      Henderson, P. A. (2007) Discrete and continuous change in
He, F. & Gaston, K. J. (2000b) Occupancy-abundance rela-         the fish community of the Bristol Channel in response to
  tionships and sampling scales. Ecography, 23, 503–511.         climate change. Journal of the Marine Biological Associ-
He, F. & Gaston, K. J. (2003) Occupancy, spatial variance        ation, 87, 589–598.
  and the abundance of species. The American Naturalist,        Henderson, P. A. & Holmes, R. H. A. (1991) On
  162, 366–375.                                                  the population dynamics of dab, sole and flounder
He, F. & Tang, D. (2008) Estimating the niche preemption         within Bridgwater bay in the lower severn Estuary,
  parameter of the geometric series. Acta Oecologica, 33,        England. Netherlands Journal of Sea Research, 27,
  105–107.                                                       337–344.
He, F., Gaston, K. J., & Wu, J. (2002) On species occupancy-    Henderson, P. A. & Magurran, A. E. (2010) Linking species
  abundance models. Écoscience, 9, 119–126.                      abundance distributions in numerical abundance and
Heard, S. B. (1992) Patterns in tree balance among cladis-       biomass through simple assumptions about commu-
  tic, phenetic, and randomly generated phylogenetic             nity structure. Proceedings of the Royal Society London,
  trees. Evolution, 46, 1818–1826                                published online, 277, 1561–1570.
4pt plus4pt minus4pt Hebert, P. D. N., Cywinsky, A., Ball,      Hendry, A. P. & Kinnison, M. T. (1999) The pace of modern
  S. L., & deWaard, J. R. (2003) Biological identifications      life: measuring rates of contemporary microevolution.
  through DNA barcodes. Proceedings of the Royal Soci-           Evolution, 53, 1637–1653.
  ety London, B, 270, 313–321.                                  Hendry, A. P., Farrugia, T. J., & Kinnison, M. T.
Hebert, P. D. N., Stoeckle, M. Y., Zemlak, T. S., & Francis,     (2008) Human influences on rates of phenotypic
  C. M. (2004) Identification of birds through DNA bar-          change in wild populations. Molecular Ecology, 17,
  codes. PLoS, Biology, 2, 1657–1663.                            20–29.
Heck, K. L., Jr., van Belle, G., & Simberloff, D. (1975)        Hengeveld, R. (1990). Dynamic Biogeography. Cambridge
  Explicit calculation of the rarefaction diversity measure-     University Press, Cambridge.
  ment and the determination of sufficient sample size.         Hesse, R., Allee, W. C., & Schmidt, K. P. (1937) Ecological
  Ecology, 56, 1459–1461.                                        Animal Geography. Wiley, New York.
                                                             OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
REFERENCES 311
Hewitt, J. E., Anderson, M. J., & Thrush, S. F. (2005)          occupancy relationships. Journal of Animal Ecology, 71,
  Assessing and monitoring ecological community health          846–854.
  in marine systems. Ecological Applications, 15, 942–953.     Holt, A. R., Warren, P. H., & Gaston, K. J. (2004a) The
Hickerson, M. J., Meyer, C. P., & Moritz, C. (2006) DNA         importance of habitat heterogeneity, biotic interactions
  barcoding will often fail to discover new animal species      and dispersal in abundance-occupancy relationships.
  over broad parameter space. Systems Biology, 55,              Journal of Animal Ecology, 73, 841–851.
  729–739.                                                     Holt, R. D., Knight, T. M., & Barfield, M. (2004b) Allee
Hicks, G. R. F. (1980) Structure of phytal harpacticoid         effects, immigration, and the evolution of species’
  copepod assemblages and the influence of habitat com-         niches. The American Naturalist, 163, 253–262.
  plexity and turbidity. Journal of experimental marine        Holyoak, M., Jarosik V., & Novak, I. (1997) Weather-
  Biology and Ecology, 44, 157–192.                             induced changes in moth activity bias measurement
Hilborn, R. & Mangel, M. (1997) The Ecological Detective,       of long-term population dynamics from light trap
  Confronting Models with Data. Princeton University            samples. Entomologia Experimentalis et Applicata, 83,
  Press, New Jersey.                                            329–335.
Hill, M. O. (1973) Diversity and evenness: a uni-              Holyoak, M., Leibold, M., & Holt, R. (2005) Metacommu-
  fying notation and its consequences. Ecology, 54,             nities: Spatial Dynamics and Ecological Communities.
  427–432.                                                      University of Chicago Press, Chicago.
Hillebrand, H. (2004) On the generality of the latitudi-       Hong, S. H., Bunge, J., Jeon, S. O., & Epstein, S. S. (2006)
  nal diversity gradient. The American Naturalist, 163,         Predicting microbial species richness. Proceedings of
  192–211.                                                      the National Academy of Sciences of the United States
Hillebrand, H., Bennett, D. M., & Cadotte, M. W. (2008)         of America, 103, 117–122.
  Consequences of dominance: a review of evenness              Hooper, D. U. & Vitousek, P. M. (1997) The effects of plant
  effects on local and regional ecosystem processes. Ecol-      composition and diversity on ecosystem processes. Sci-
  ogy, 89, 1510–1520.                                           ence, 277, 1302–1305.
Hilt, N., Brehm, G., & Fiedler, K. (2006) Diversity and        Hooper, D. U., Chapin, F. S., Ewel, J. J., Hector, A.,
  ensemble composition of geometrid moths along a suc-          Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M.,
  cessional gradient in the Ecuadorian Andes. Journal of        Loreau, M., Naeem, S., Schmid, B., Setala, H., Symstad,
  Tropical Ecology, 22, 155–166.                                A. J., Vandermeer, J., & Wardle, D. A. (2005) Effects
Hinsley, S. A., Pakeman, R., Bellamy, P. E. & New-              of biodiversity on ecosystem functioning: a consen-
  ton, I. (1996) Influences of habitat fragmentation on         sus of current knowledge. Ecological Monographs, 75,
  bird species distributions and regional population size.      3–35.
  Proceedings of the Royal Society London, B, 263,             Horn, H. S. (1966) Measurement of “overlap” in compar-
  307–313.                                                      ative ecological studies. The American Naturalist, 100,
Hobbs, R. J., Arico, S., Aronson, J., et al. (2006) Novel       419–424.
  ecosystems: theoretical and management aspects of the        Horn, H. I. (ed.) (1975) Markovian Properties of Forest
  new ecological world order. Global Ecology and Bio-           Succession. Harvard University Press, Cambridge, MA.
  geography, 15, 1–7.                                          Horner-Devine, M. C., Lage, M., Hughes, J. B., & Bohan-
Hoehn, P., Tscharntke, T., Tylianakis, J. M., & Steffan-        nan, B. J. M. (2004) A taxa – area relationship for bacte-
  Dewenter, I. (2008) Functional group diversity of bee         ria. Nature, 432, 750–753.
  pollinators increases crop yield. Proceedings of the         Hortal, J., Borges, P. A. V., & Caspar, C. (2006) Evaluating
  Royal Society London, B, 275, 2283–2291.                      the performance of species richness estimators: sensitiv-
Holdridge, L. R., Grenke, W. C., Hatheway, W. H., Liang,        ity to sample grain size. Journal of Animal Ecology, 75,
  T., & Tosi, J. A. (1971) Forest Environments in Tropical      274–287.
  Life Zones. Pergamon Press, Oxford.                          Houchmandzadeh, B. (2008) Neutral clustering in a
Holmes, S. (2003) Bootstrapping phylogenetic trees, the-        simple experimental ecological community. Physical
  ory and methods. Statistical Science, 18, 241–255.            Review Letters, Aug 15, 101(7), 078103. Epub 2008.
Holt, R. (2008) Theoretical perspectives on resource           Huang, D., Meier, R., Todd, P. A., & Chou, L. M. (2008)
  pulses. Ecology, 89, 671–681.                                 Slow mitochondrial COI evolution at the base of the
Holt, A. R., Gaston, K. J., & He, F. (2002a) Occupancy-         metazoan tree and its implications for DNA barcoding.
  abundance relationships and spatial distribution. Basic       Journal of Molecular Evolution, 66, 167–174.
  and Applied Ecology , 3, 1–13.                               Hubalek, Z. (1982) Coefficients of association and similar-
Holt, A. R., Warren, P. H., & Gaston, K. J. (2002b)             ity, based on binary (presence-absence) data: an evalua-
  The importance of biotic interactions in abundance-           tion. Biological Reviews, 57, 669–689.
OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
312 REFERENCES
Hubbell, S. P. (2001) A Unified Theory of Biodiversity and     Hurlbert, S. H. (1990) Spatial distribution of the montane
 Biogeography. Princeton University Press, Princeton.            unicorn. Oikos, 58, 257–271.
Hubbell, S. P., Foster, R. B., O’Brien, S. T., Harms, K. E.,   Hurlbert, A. H. & Jetz, W. (2007) Species richness,
 Condit, R., Wechsler, B., Wright, S. J., & De Lao, S. L.        hotspots, and the scale dependence of range maps in
 (1999) Light-gap disturbances, recruitment limitation,          ecology and conservation. Proceedings of the National
 and tree diversity in a neotropical forest. Science, 283,       Academy of Sciences. USA, 104, 13384–13389.
 554.                                                          Hurlbert, A. H. & White, E. P. (2005) Disparity between
Huber, J. A., Mark Welch, D., Morrison, H. G., Huse, S. M.,      range map – and survey-based analyses of species rich-
 Neal, P. R., Butterfield, D. A., & Sogin, M. L. (2007)          ness: patterns, processes and implications. Ecology Let-
 Microbial population structures in the deep marine              ters, 8, 319–327.
 biosphere. Science, 318, 97–100.                              Huston, M. A. (1979) A general hypothesis of species
Huelsenbeck, J. P. & Rannala, B. (1997) Maximum like-            diversity. The American Naturalist, 113, 81–101.
 lihood estimation of topology and node times using            Huston, M. A. (1994) Biological Diversity: The Coexistence
 stratigraphic data. Paleobiology, 23, 174–180.                  of Species on Changing Landscapes. Cambridge Uni-
Hugenholtz, P. & Pace, N. R. (1996) Identifying micro-           versity Press, Cambridge.
 bial diversity in the natural environment: a molecu-          Huston, M. L. (1997) Hidden treatments in ecological
 lar phylogenetic approach. Trends in Biotechnology, 14,         experiments: re-evaluating the ecosystem function of
 190–197.                                                        biodiversity. Oecologia, 110, 449–460.
Hughes, R. G. (1986) Theories and models of species abun-      Hutchings, J. A. (2000) Collapse and recovery of marine
 dance. The American Naturalist, 128, 879–899.                   fishes. Nature, 406, 882–885.
Hughes, J. B. (2000) The scale of resource specialization      Hutchinson, G. E. (1957) Homage to Santa Rosalia; or why
 and the distribution and abundance of lycaenid butter-          are there so many kinds of animals? The American Nat-
 flies. Oecologia, 123, 375–383.                                 uralist, 93, 145–159.
Hughes, J. B., Hellmann, J. J., Ricketts, T. H., & Bohan-      Isaac, N. J. B., Turvey, S. T., Collen, B., Waterman, C., &
 nan, B. J. M. (2000) Counting the uncountable: statistical      Baillie, J. E. M. (2007) Mammals on the EDGE: conser-
 approaches to estimating microbial diversity. Applied           vation priorities based on threat and phylogeny. PLoS
 and Environmental Microbiology, 67, 4399–4406.                  ONE, 2, e296.
Hui, C. & McGeoch, M. A. (2007a) A self-similarity model       Izsak J. (2006) Some practical aspects of fitting and testing
 for the occupancy frequency distribution. Theoretical           the Zipf-Mandelbrot model – a short essay. Scientomet-
 Population Biology, 71, 61–70.                                  rics, 67, 107–120.
Hui, C. & McGeoch, M. A. (2007b) Modeling species dis-         Jablonski, D. (2000) Micro- and macroevolution: scale and
 tributions by breaking the assumption of self-similarity.       hierarchy in evolutionary biology and paleobiology. In:
 Oikos, 116, 2097–2107.                                          Deep time – Paleobiology’s Perspective, Erwin, D. H.
Hui, C. & McGeoch, M. A. (2007c) Capturing the “droopy-          & Wing, S. L. (eds). Paleobiology Memoir, Paleontolog-
 tail” in the occupancy-abundance relationship. Eco-             ical Society and University of Chicago Press, Chicago,
 science, 14, 103–108.                                           pp. 15–52.
Hui, C. & McGeoch, M. A. (2008) Does the self-similar dis-     Jaccard, P. (1900) Contribution an Problème de l’immi-
 tribution model lead to unrealistic predictions? Ecology,       gration post-glaciaire de la flore alpine. Bulletin de la
 89, 2946–2952.                                                  Société Vaudoise des Sciences Naturelles, 36, 87–130.
Hui, C., McGeoch, M. A., & Warren, M. (2006) A spatially       Jaccard, P. (1901) Etude compararative de la distribution
 explicit approach to estimating species occupancy and           florale dans une portion des Alpes et du Jura. Bulletin de
 spatial correlation. The Journal of Animal Ecology, 75,         la Société Vaudoise des Sciences Naturelles, 37, 647–579.
 140–147.                                                      Jackson, S. F. & Gaston, K. J. (2008) Land use change
Hui, C., Veldtman, R., & McGeoch, M. A. (2010) Measures,         and the dependence of national priority species on
 perceptions and scaling patterns of aggregated species          protected areas. Global Ecology and Biogeography, 14,
 distributions. Ecography, 33, 95–102.                           2132–2138.
Hurlbert, S. H. (1971) The nonconcept of species diver-        Jackson, J. B. C., Kirby, M. X., Berger, W. H., et al. (2001)
 sity: a critique and alternative parameters. Ecology, 52,       Historical overfishing and the recent collapse of coastal
 577–586.                                                        ecosystems. Science, 293, 629–638.
Hurlbert, S. H. (1984) Pseudoreplication and the design        James, F. C. & Wamer, N. O. (1982) Relationships between
 of ecological field experiments. Ecological Monographs,         temperate forest bird communities and vegetation
 54, 187–211.                                                    structure. Ecology, 63, 159–171.
                                                                   OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
REFERENCES 313
Janson, S. & Vegelius, J. (1981) Measures of ecological asso-        Karjalainen, J., Rahkola, M., Viljanen, M., Andronikova,
   ciation. Oecologia, 49, 371–376.                                    I. N., & Avinskii, V. A. (1996) Comparison of methods
Jansen G, Savolainen R, & Versäläinen K. (2009) DNA                    used in zooplankton sampling and counting in the joint
   barcoding as a heuristic tool for classifying unde-                 Russian-Finnish evaluation of the trophic state of Lake
   scribed Nearctic Myrmica ants (Hymenoptera: Formici-                Ladoga. Hydrobiologia, 322, 249–253.
   dae). Zoologica Scripta, 38, 527–536.                             Kearney, M. & Porter, W. P. (2009) Mechanistic niche mod-
Janzen, D. H., Hallwachs, W., Blandin, P., Burns, J. M.,               elling: combining physiological and spatial data to pre-
   Cadiou, J.- M., Chacon, I., Dapkey, T., Deans, A. R.,               dict species’ ranges. Ecology Letters, 12, 334–350.
   Epstein, M. E., Espinoza, B., Franclemont, J. G., Haber,          Keating, K. A. & Quinn, J. F. (1998) Estimating species
   W. A., Hajibabei, M., Hall, J. P. W., Hebert, P. D. N.,             richness: the Michaelis-Menten model revisisted. Oikos,
   Gauld, I. D., Harvey, D. J., Hausmann, A., Kitching, I. J.,         81, 411–416.
   Lafontaine, D., Landry, J. -F., Lemaire, C., Miller, J. Y.,       Keddy, P. A. (1992) Assembly and response rules: two
   Montero, J., Munroe, E., Green, C. R., Ratnasingham, S.,            goals for predictive community ecology. Journal of Veg-
   Rawlins, J. E., Robbins, R. K., Rodriguez, J. J., Rougerie,         etation Science, 3, 157–164.
   R., Sharkey, M. J., Smith, M. A., Solis, M. A., Sullivan,         Kelly, A. E. & Goulden, M. L. (2008) Rapid shifts in
   J. B., Thiaucourt, .P, Wahl, D. B., Weller, S. J., Whitfield,       plant distribution with recent climate change. Proceed-
   J. B., Willmott, K. R., Wood, D. M., Woodley, N. E., &              ings of the National Academy of Sciences. USA, 105,
   Wilson, J. J. (2009) Integration of DNA barcoding into              11823–11826.
   an ongoing inventory of complex tropical biodiversity.            Kembel, S. W. & Hubbell, S. P. (2006) The phylogenetic
   Molecular Ecology Research, 9(Suppl. 1), 1–26.                      structure of a neotropical forest tree community. Ecol-
Järvinen, O. (1982) Species-to-genus ratios in biogeog-                ogy, 87, S86–S99.
   raphy: a historical note. Journal of Biogeography, 9,             Kempton, R. A. (1979) The structure of species abundance
   363–370.                                                            and measurement of diversity. Biometrics, 35, 307–321.
Jetz, W. & Rahbek, C. (2002) Geographic range size and               Kempton, R. A. & Taylor, L. R. (1974) Log-series and log-
   determinants of avian species richness. Science, 297,               normal parameters as diversity discriminants for Lepi-
   1548–1551.                                                          doptera. Journal of Animal Ecology, 43, 381–399.
Johnson, J. B. & Omland, K. S. (2004) Model selection in             Kempton, R. A. & Taylor, L. R. (1976) Models and statistics
   ecology and evolution. Trends in Ecology and Evolu-                 for species diversity. Nature, 262, 818–820.
   tion, 19, 101–108.                                                Kempton, R. A. & Taylor, L. R. (1978) The Q-statistic and
Jones, M. M., Tuomisto, H., Borcard, D., Legendre, P.,                 the diversity of floras. Nature, 275, 252–253.
   Clark, D. B., & Olivas, P. C. (2008) Explaining variation         Kempton, R. A. & Wedderburn, R. W.M. (1978) A compar-
   in tropical plant community composition: influence of               ison of three measures of species diversity. Biometrics,
   environmental and spatial data quality. Oecologia, 155,             34, 25–37.
   593–604.                                                          Kendrick, G. A., Holmes, K. W., & Van Niel, K. P. (2008)
Jorgensen, S. E., Xu, F. -L., Salas, F., & Marques, J. C. (eds.)       Multi-scale spatial patterns of three seagrass species
   (2005) Application of indicators for the assessment of              with different growth dynamics. Ecography, 31, 191.
   ecosystem health. CRC Press, Boca Raton, FL.                      Kennedy, C. E. J. & Southwood, T. R. E. (1984) The num-
Jost, L. (2006) Entropy and diversity. Oikos, 113, 363–375.            ber of species of insects associated with British trees: a
Jost, L. (2007) Partitioning diversity into independent                reanalysis. Journal of Animal Ecology, 53, 455–478.
   alpha and beta components. Ecology, 88, 2427–2439.                Kevan, P. G., Greco, C. F., & Belaoussoff, S. (1997) Log-
Jost, L. (2008) GST and its relatives do not measure differ-           normality of biodiversity and abundance in diagnosis
   entiation. Molecular Ecology, 17, 4015–4026.                        and measuring of ecosystemic health: pesticide stress
Jost, L. (2009) Mismeasuring biological diversity: response            on pollinators on blueberry heaths. Journal of Applied
   to Hoffman and Hoffman (2008). Ecological Economics,                Ecology, 34, 1122–1136.
   68, 925–927.                                                      King, T. A., Williams, J. C., Davies, W. D., & Shelton, W. L.
Jost, L., DeVries, P., Walla, T., Greeney, H., Chao, A., &             (1981) Fixed versus random sampling of fishes in a large
   Ricotta, C. (2010) Partitioning diversity for conservation          reservoir. Transactions of the American Fisheries Soci-
   analyses. Diversity and Distributions, 16, 65–76.                   ety, 110, 563–568.
Jurasinski, G., Retzer, V., & Beierkuhnlein, C. (2009) Inven-        Kinzig, A., Tilman, D., & Pacala, S. (2001) The Func-
   tory, differentiation, and proportional diversity: a con-           tional Consequences of Biodiversity: Empirical Progress
   sistent terminology for quantifying species diversity.              and Theoretical Extensions. Princeton University Press,
   Oecologia, 159, 15–26.                                              Princeton, NJ.
OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
314 REFERENCES
Kissling, W. D. & Carl, G. (2008) Spatial autocorrelation     Krausman, P. R. (2002) Introduction to Wildlife Manage-
  and the selection of simultaneous autoregressive mod-         ment: The Basics. Prentice-Hall, Upper Saddle River, NJ.
  els. Global Ecology and Biogeography, 17, 59–71.            Krebs, C. J. (1972) Ecology. Harper & Row, New York.
Kitchener, A. C., Beaumont, M. A., & Richardson, D. (2006)    Krebs, C. J. (1989) Ecological Methodology. Harper and
  Geographical variation in the clouded leopard, Neofe-         Row, New York.
  lis nebulosa, reveals two species. Current Biology, 16,     Krebs, C. J. (1999) Ecological Methodology, 2nd edn. Addi-
  2377–2383.                                                    son Wesley Longman, Menlo Park, CA.
Kleijn, D., Baquero, R. A., Clough, Y., et al. (2006) Mixed   Kreft, H. & Jetz, W. (2007) Global patterns and determi-
  biodiversity benefits of agri-environment schemes in          nants of vascular plant diversity. Proceedings of the
  five European countries. Ecology Letters, 9, 243–254.         National Academy of Sciences, 104, 5925.
Klein Goldewijk, K. (2001) Estimating global land use         Kress, W. J., Erickson, D. L., Jones, F. A., Swenson,
  change over the past 300 years: the HYDE database.            N. G., Perez, R., Sanjur, O., & Bermingham, E. (2009)
  Global Biogeochemical Cycles, 15, 417–33.                     Plant DNA barcodes and a community phylogeny
Knight, T. M., McCoy, M. W., Chase, J. M., McCoy, K. A.,        of a tropical forest dynamics plot in Panama. Pro-
  & Holt, R. D. (2005) Trophic cascades across ecosystems.      ceedings of the National Academy of Sciences, 106,
  Nature, 437, 880–883.                                         18621–18626.
Kobayashi, S. & Kimura, K. (1994) The number of               Kruskal, J. (1964) Nonmetric multidimensional scaling: a
  species occurring in a sample of a biotic community           numerical method. Phychometrika, 29, 115–129.
  and its connections with species-abundance relation-        Kulczynski, S. (1928) Die Pflanzenassoziationen der Pieni-
  ship and spatial distribution. Ecological Research, 9,        nen. Bulletin international de l’Academie Polonaise des
  281–294.                                                      Sciences et des Lettres, Classe des sciences mathéma-
Koch, L. F. (1957) Index of biotal dispersity. Ecology, 38,     tiques et naturelles, Série B Suppl 2, 57–203.
  145–148.                                                    Kunin, W. E. (1998) Extrapolating species abundance
Kohn, M., Knauer, F., Stoffella, A., Schröder, W., & Pääbo,     across spatial scales. Science, 281, 1513–1515.
  S. (1995) Conservation genetics of the European brown       Kunin, W. E. & Gaston, K. J. (eds) (1997) The Biology
  bear – a study using excremental PCR of nuclear and           of Rarity: Causes and Consequences of Rare-Common
  mitochondrial sequences. Molecular Ecology, 4, 95–103.        Differences. Chapman & Hall, London.
Kohn, M. H., Murphy, W. J., Ostrander, E. A., & Wayne,        Kuno, E. (1986) Evaluation of statistical precision and
  R. K. (2006) Genomics and conservation genetics.              design of efficient sampling for the population estimates
  Trends in Ecology and Evolution, 21, 629–637.                 based on frequency of sampling. Research in Population
Kolasa, J. (1989) Ecological systems in hierarchical per-       Ecology, 28, 305–319.
  spective: breaks in community structure and other con-      Kvitrud, M. A., Riemer, S. D., Brown, R. F., Bellinger, M. R.,
  sequences. Ecology, 70, 36–47.                                & Banks, M. A. (2005) Pacific harbor seals (Phoca vit-
Kolb, A., Barsch, F., & Diekmann, M. (2006) Determinants        ulina) and salmon: genetics presents hard numbers for
  of local abundance and range size in forest vascular          elucidating predator-prey dynamics. Marine Biology,
  plants. Global Biogeochemical Cycles, 15, 237–247.            147, 1459–1466.
Koleff, P., Gaston, K. J., & Lennon, J. J. (2003) Measuring   Lack, D. L. (1947) Darwin’s Finches. Cambridge Univer-
  beta diversity for presence – absence data. Journal of        sity Press, Cambridge.
  Animal Ecology, 72, 367–382.                                Lahaye, R., van der Bank, M., Bogarin, D., Warner, J.,
Konig, G. (1835) Die Forst-Mathematik. Beckersche Buch-         Pupulin, F., Gogot, G., Maurin, O., Duthoit, S., Barra-
  handlung, Gotha.                                              clough, T. G., & Savolainen, V. (2008) DNA barcoding
Kosso, P. (1992) Reading the book of nature: an introduc-       in floras of biodiversity hotspots. Proceedings of the
  tion to the philosophy of science. Cambridge University       National Academy of Sciences, 105, 2923–2928.
  Press, Cambridge.                                           Laliberté, E. & Legendre, P. (2010) A distance-based frame-
Kraft, N. J. B. & Ackerly, D. D. (2009) Response to Com-        work for measuring functional diversity from multiple
  ment on “Functional Traits and Niche-Based Tree Com-          traits. Ecology, 91, 299–305.
  munity Assembly in an Amazonian Forest”. Science,           Laliberté, E. and Shipley, W. (2009) http://ftp3.ie.
  324, 1015.                                                    freebsd.org/pub/CRAN/web/packages/FD/FD.pdf.
Kraft, N. J. B., Cornwell, W. K., Webb, C. O., & Ackerly,     Lambshead, P. J. D., Platt, H. M., & Shaw, K. M. (1983) The
  D. D. (2007) Trait evolution, community assembly, and         detection of differences among assemblages of marine
  the phylogenetic structure of ecological communities.         benthic species based on an assessment of dominance
  The American Naturalist, 170, 271–283.                        and diversity. Journal of Natural History, 17, 859–874.
                                                                  OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
REFERENCES 315
Lamouroux, N., Doledec, S., & Gayraud, S. (2004) Bio-               Lawton, J. H. & Gaston, K. J. (2001) Indicator species. In:
  logical traits of stream macroinvertebrate commu-                   Encyclopedia of Biodiversity, Levin, S. A. (ed). Acad-
  nities: effects of microhabitat, reach, and basin fil-              emic Press, New York, Vol. 3, pp. 437–450.
  ters. Journal of North American Benthic Society, 23,              Lawton, J. H., Bignell, D. E., Bolton, B., Bloemers,
  449–466.                                                            G. F., Eggleton, P., Hammond, P. M., Hodda, M.,
Lance, G. N. & Williams, W. T. (1967) Mixed-data classifi-            Holt, R. D., Larsen, T. B., Mawdsley, N. A., Stork,
  catory programs. I. Agglomerative systems. Australian               N. E., Srivastava, D. S., & Watt, A. D. (1998) Bio-
  Computational Journal, 1, 15–20.                                    diversity inventories, indicator taxa and effects of
Lande, R. (1996) Statistics and partitioning of species               habitat modification in tropical forest. Nature, 391,
  diversity, and similarity among multiple communities.               72–76.
  Oikos, 76, 5–13.                                                  Legendre, P. & Legendre, L. (1998) Numerical Ecology
Lande, R., Engen, S., & Saether, B. -E. (2003) Stochas-               2nd edn. Elsevier, Amsterdam.
  tic Population Dynamics in Ecology and Conservation.              Legendre, P., Galzin, R., & Harmelin-Vivien, M. L. (1997)
  Oxford University Press, Oxford.                                    Relating behaviour to habitat: solutions to the fourth-
Lankau, R. A. & Strauss, S. Y. (2007) Mutual feedbacks                corner problem. Ecology, 78, 547–562.
  maintain both genetic and species diversity in a plant            Legendre, P., Borcard, D., & Peres-Neto, P. R. (2008) Ana-
  community. Science, 317, 1561–1563.                                 lyzing or explaining beta diversity? Comment. Ecology,
Larsen, D. P., Kincaid, T. M., Jacobs, S. E., & Urquhart, N. S.       89, 3238–3244.
  (2001) Designs for evaluating local and regional scale            Leger, E. A. & Forister, M. L. (2009) Colonization, abun-
  trends. BioScience, 51, 1069–1078.                                  dance, and geographic range size of gravestone lichens.
Larsen, D., Kaufmann, P., Kincaid, T., & Urquhart, N.                 Basic and Applied Ecology, 10, 279–287.
  (2004) Detecting persistent change in the habitat of              Leitner, W. A. & Rosenzweig, M. L. (1997) Nested species-
  salmon-bearing streams in the Pacific Northwest. Cana-              area curves and stochastic sampling: a new theory.
  dian Journal of Fisheries and Aquatic Sciences, 61,                 Oikos, 79, 503–512.
  283–291.                                                          Lekve, K., Boulinier, T., Stenseth, N. C., Gøsaeter, J., Fro-
La Sorte, F. A. & Boecklen, W. J. (2005) Tempo-                       mentin, J. -M., Hines, J. E., & Nichols, J. D. (2002) Spatio-
  ral turnover of common species in avian assem-                      temporal dynamics of species richness on coastal fish
  blages in North America. Journal of Biogeography, 32,               communities. Proceedings of the Royal Society London,
  1151–1160.                                                          269, 1781–1789.
Latimer, A. M., Silander, J. A., Gelfand, A. E., Rebelo,            Lennon, J. J. (2000) Red-shifts and red herrings in geo-
  A. G., & Richardson, D. M. (2004) Quantifying threats               graphical ecology. Ecography, 23, 101–113.
  to biodiversity from invasive alien plants and other fac-         Lennon, J. J., Koleff, P., Greenwood, J. J.D., & Gaston, K. J.
  tors: a case study from the Cape Floristic Region. South            (2001) The geographical structure of British bird distri-
  African Journal of Science, 100, 81–86.                             butions: diversity, spatial turnover and scale. Journal of
Lauer, T. E. & Spacie, A. (2004) Space as a limiting                  Animal Ecology, 70, 966–979.
  resource in freshwater systems: competition between               Lennon, J. J., Kunin, W. E., Hartley, S., & Gaston, K. J.
  zebra mussels (Dreissena polymorpha) and freshwater                 (2007) Species distribution patterns, diversity scaling
  sponges (Porifera). Hydrobiologia, 517, 137–145.                    and testing for fractals in southern African birds. In:
Lawes, J., Gilbert, J., & Masters, M. (1882) Agricultural,            Scaling Biodiversity, Storch, D., Marquet, P. A., &
  botanical and chemical results of experiments on the                Brown, J. H. (eds). Cambridge University Press, Cam-
  mixed herbage of permanent meadow, conducted for                    bridge, pp. 51–76.
  more than twenty years on the same land. II. The botani-          Leprieur, F., Beauchard, O., Blanchet, S., Oberdorff, T.,
  cal results. Philosophical Transactions of the Royal Soci-          & Brosse, S. (2008) Fish invasions in the world’s river
  ety, London B., 173, 1181–1413.                                     systems: when natural processes are blurred by human
Lawton, J. H. (1990) Species richness and population                  activities. PLoS Biology, 6, e28 (1–7).
  dynamics of animal assemblages. Patterns in body                  Lepš, J. & Smilauer, P. (2003) Multivariate Analysis of Eco-
  size: abundance space. Philosophical Transactions of the            logical Data using CANOCO. Cambridge University
  Royal Society, London, Series B, 330, 283–291.                      Press, Cambridge.
Lawton, J. H. (1999a) http://www.worries. Oikos, 85,                Lepš, J., de Bello, F., Lavorel, S., & Berman, S. (2006) Quan-
  190–192.                                                            tifying and interpreting functional diversity of natural
Lawton, J. H. (1999b) Are there general laws in ecology?              communities: practical considerations matter. Preslia,
  Oikos, 84, 177–192.                                                 78, 481–501.
OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
316 REFERENCES
le Roux, P. C. & McGeoch, M. A. (2008) Rapid range                Lynch, M. & Lande, R. (1993) Evolution and extinction
  expansion and community reorganization in response                in response to environmental change. In: Biotic Inter-
  to warming. Global Change Biology, 14, 2950–2962.                 actions and Global Change, Kareiva, P. M., Kingsolver,
Lichstein, J. W., Simons, T. R., Shriner, S. A., & Franzreb,        J. G., & Huey, R. B. (eds). Sinauer Associates, Sunder-
  K. E. (2003) Spatial autocorrelation and autoregres-              land, pp. 234–250.
  sive models in ecology. Ecological Monographs, 72,              Lyons, J. (1986) Capture efficiency of a beach seine for
  445–463.                                                          seven freshwater fishes in a north-temperate lake. North
Limpert, E., Stahel, W. A., & Abbt, M. (2001) Log-normal            American Journal of Fisheries Management, 6, 288–289.
  distributions across the sciences: keys and clues. Bio-         Mabunda, D., Pienaar, D. J., & Verhoef, J. (2003) The
  Science, 51, 341–352.                                             Kruger National Park: a century of management and
Liu, W. T., Marsh, T. L., Cheng, H., & Forney, L. J. (1997)         research. In: The Kruger Experience: Ecology and Man-
  Characterization of microbial diversity by determining            agement of Savanna Heterogeneity, DuToit, J. T., Rogers,
  terminal restriction fragment length polymorphisms of             K. H., & Biggs, H. C. (eds). Island Press, Washington,
  genes encoding 16S rRNA. Applied and Environmental                pp. 3–21.
  Microbiology, 63, 4516–4522.                                    MacArthur, R. (1957) On the relative abundance of bird
Locke, J. W. (1994) Statistical measurement control. In:            species. Proceedings of the National Academy of Sci-
  Quality and Statistics: Total Quality Management,                 ences, 43, 293–295.
  Kowalewski, M. J. (ed). ASTM Philadelphia, PA,                  MacArthur, R. (1960) On the relative abundance of species.
  pp. 30–42.                                                        The American Naturalist, 94, 25–36.
Loehle, C. (2006) Species abundance distributions result          MacArthur, R. H. (1965) Patterns of species diversity. Bio-
  from body size-energetics relationships. Ecology, 87,             logical Reviews, 40, 510–533.
  2221–2226.                                                      MacArthur, R. H. (1972) Geographical Ecology: Patterns in
Loehle, C. & Hansen, A. (2005) Community structure and              the Distribution of Species. Princeton University Press,
  scaling relations for the avifauna of the US pacific and          Princeton, NJ.
  inland northwest. Ecological Complexity, 2, 59–70.              MacArthur, R. & Levins, R. (1967) The limiting similarity,
Loh, J., Green, R. E., Ricketts, T., Lamoreux, J., Jenkins, M.,     convergence, and divergence of coexisting species. The
  Kapos, V., & Randers, J. (2005) The Living Planet Index:          American Naturalist, 101, 377–385.
  using species population time series to track trends            MacArthur, R. H. & Wilson, E. O. (1967) The Theory
  in biodiversity. Philosophical Transactions of the Royal          of Island Biogeography. Princeton University Press,
  Society, London, Series B, 360, 289–295.                          Princeton.
Longino, J. T., Coddington, J., & Colwell, R. K. (2002) The       Mace, G.M & Baillie, J. E. M. (2007) The 2010 biodiversity
  ant fauna of a tropical rain forest: estimating species           indicators: challenges for science and policy. Conserva-
  richness three different ways. Ecology, 83, 689–702.              tion Biology, 21, 1406–1413.
Lopez, J. V., Culver, M., Stephens, J. C., Johnson, W. E.,        Mace, G. M., Collar, N. J., Gaston, K. J., Hilton-Taylor, C.,
  & O’Brien, S. J. (1997) Rates of nuclear and cytoplasmic          Akçakaya, H. R., Leader-Williams, N., Milner-Gulland,
  mitochondrial DNA sequence divergence in mammals.                 E. J., & Stuart, S. N. (2008) Quantification of extinction
  Molecular Biology and Evolution, 14, 277–286.                     risk: IUCN’s system for classifying threatened species.
Loreau, M. (2010) Linking biodiversity and ecosystems:              Conservation Biology, 22, 1424–1442.
  towards a unifying ecological theory. Philosophical             MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S,
  Transactions of the Royal Society, London, Series B, 365,         Royle, J. A, & Langtimm, C. A. (2002) Estimating site
  49–60.                                                            occupancy rates when detection probabilities are less
Loreau, M., Naeem, S., & Inchausti, P. (2002) Biodiver-             than one. Ecology, 83, 2248–2255.
  sity and Ecosystem Functioning: Synthesis and Perspec-          MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson,
  tives. Oxford University Press, USA.                              M. G., & Franklin, A. B. (2003) Estimating site occu-
Luck, G. W. (2007) A review of the relationships between            pancy, colonization, and local extinction when a species
  human population density and biodiversity. Biological             is detected imperfectly. Ecology, 84, 2200–2207.
  Reviews, 82, 607–645.                                           MacKenzie, D. I., Nichols, J. D., Royle J. A., Pollock, K. H.,
Lukhtanov, V. A., Sourakov, A., Zakharov, E. V., & Hebert,          Bailey, L. L., & Hines, J. E. (2006) Occupancy Estima-
  P. D.N. (2009) DNA barcoding Central Asian butter-                tion and Modeling: Inferring Patterns and Dynamics of
  flies: increasing geographical dimension does not sig-            Species Occurrence. Academic Press, San Diego.
  nificantly reduce the success of species identification.        MacNally, R. (2007) Use of the abundance spectrum and
  Molecular Ecology and Research, 9, 1302–1310.                     relative-abundance distributions to analyze assemblage
                                                                   OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
REFERENCES 317
 change in massively altered landscapes. The American                 multiple covariate distance sampling. The Auk, 124,
 Naturalist, 170, 319–330.                                            1229–1243.
Magurran, A. E. (1988) Ecological Diversity and its Mea-             Marquet, P. A., Keymer, J. A., & Hernan, C. (2003) Breaking
 surement. Princeton University Press, Princeton, NJ.                 the stick in space: of niche models, metacommunities
Magurran, A. E. (2004) Measuring Biological Diversity.                and patterns in the relative abundance of species. In:
 Blackwell Science, Oxford.                                           Macroecology: Concepts and Consequences, Blackburn,
Magurran, A. E. (2005) Evolutionary Ecology: The Trinida-             T. M. & Gaston, K. J. (eds). Blackwell Science, Oxford,
 dian Guppy. Oxford University Press, Oxford.                         pp. 64–86.
Magurran, A. E. (2007) Species abundance distributions               Marriott, E. (2002) The Plague Race. A Tale of Fear, Science
 over time. Ecology Letters, 10, 347–354.                             and Heroism. Picador, London.
Magurran, A. E. (2008) Diversity over time. Folia Geob-              Marshall, C. R. (1990) Confidence intervals on strati-
 otanica, 43, 319–327.                                                graphic ranges. Paleobiology, 16, 1–10.
Magurran, A. E. (2009) Threats to freshwater fish. Science,          Marshall, C. R. (1994) Confidence intervals on strati-
 325, 1215–1216.                                                      graphic ranges: partial relaxation of the assumption of
Magurran, A. E., Baillie, S. R., Buckland, S. T., Dick, J. McP.,      randomly distributed fossil horizons. Paleobiology, 20,
 Elston, D. A., Scott, E. M., Smith, R. I., Somerfield, P. J.,        459–469.
 Watt, A. D. (2010) Long-term data sets in biodiversity              Marshall, C. R. (1995) Distinguishing between sudden and
 research and monitoring: assessing change in ecological              gradual extinctions in the fossil record: predicting the
 communities through time. Trends in Ecology and Evo-                 position of the iridium anomaly using the ammonite
 lution, in press.                                                    fossil record on Seymour Island, Antarctica. Geology,
Magurran, A. E. & Henderson, P. A. (2003) Explaining                  23, 731–734.
 the excess of rare species in natural species abundance             Marshall, C. R. (1997) Confidence intervals on strati-
 distributions. Nature, 422, 714–716.                                 graphic ranges with nonrandom distributions of fossil
Magurran, A. E. & Phillip, D. A. T. (2001) Implications of            horizons. Paleobiology, 23, 165–173.
 species loss in freshwater fish assemblages. Ecography,             Marshall, C. R. & Ward, P. D. (1996) Sudden and gradual
 24, 645–650.                                                         molluscan extinctions in the latest Cretaceous of west-
Mandelbrot, B. B. (1963) New methods in statistical eco-              ern European Tethys. Science, 274, 1360–1363.
 nomics. Journal of Political Economy, 71, 421–440.                  Martin, J., Runge, M. C., Nichols, J. D., Lubow, B. C., &
Mandelbrot, B. B. (1982) The fractal geometry of nature.              Kendall, W. L. (2009) Structured decision making as a
 W. H. Freeman and Co, New York.                                      conceptual framework to identify thresholds for con-
Manly, B. F. J. (1991) Randomisation and Monte Carlo                  servation and management. Ecological Applications, 19,
 Methods in Biology. Chapman & Hall, London.                          1079–1090.
Manly, B. F. J. (2004) Multivariate Statistical Methods: A           Martinez, W. L. & Martinez, A. R. (2002) Computa-
 Primer. Chapman & Hall/CRC.                                          tional Statistics Handbook with MATLAB. Chapman &
Manley, P. N., Zielinski, W. J., Schlesinger, M. D., & Mori,          Hall/CRC, Boca Raton.
 S. R. (2004) Evaluation of a multiple-species approach to           Mason, N. W.H., MacGillivray, K., Steel, J. B., & Wilson,
 monitoring species at the ecoregional scale. Ecological              J. B. (2003) An Index of functional diversity. Journal of
 Applications, 14, 296–310.                                           Vegetation Science, 14, 571–578.
Mantel, N. (1967) The detection of disease clustering and            Mason, N. W.H., Mouillot, D., Lee, W. G., & Wilson,
 a generalized regression approach. Cancer Research, 27,              J. B. (2005) Functional richness, functional evenness and
 209–220.                                                             functional divergence: the primary components of func-
Mao, C. X. & Colwell, R. K. (2005) Estimation of species              tional diversity. Oikos, 111, 112–118.
 richness: mixture models, the role of rare species, and             Maurer, B. A. (1999) Untangling Ecological Complexity.
 inferential challenges. Ecology, 86, 1143–1153.                      University of Chicago Press, Chicago.
Mao, C. X. & Li, J. (2009) Comparing species assem-                  May, R. M. (1975) Patterns of species abundance and diver-
 blages via species accumulation curves. Biometrics, 65,              sity. In: Ecology and Evolution of Communities, Cody,
 1063–1067.                                                           M. L. & Diamond, J. M. (eds). Harvard University Press
Mao, C. X., Colwell, R. K., & Chang, J. (2005) Estimating             Cambridge, MA, pp. 81–120.
 species accumulation curves using mixtures. Biomet-                 May, R. M. (1990) Taxonomy as destiny. Nature, 347,
 rics, 61, 433–441.                                                   129–130.
Marques, T. A., Thomas, L., Fancy, S. G., & Buckland,                May, R. M. (2007) Unanswered questions and why
 S. T. (2007) Improving estimates of bird density using               they matter. In Theoretical Ecology: Principles and
OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
318 REFERENCES
 Applications, 3rd edn, May, R. M. & McLean, A. R. (eds),       McGill, B. J. & Nekola, J. C. (2010) Mechanisms in macro-
 pp. 205–215. Oxford University Press, Oxford.                   ecology: AWOL or purloined letter? Towards a prag-
Mayfield, M., Boni, M., Daily, G., & Ackerly, D. D.              matic view of mechanism. Oikos, 119, 591–603.
 (2005) Species and functional diversity of native and          McGill, B. J., Hadly, E. A., & Maurer, B. A. (2005) Commu-
 human-dominated plant communities. Ecology, 86,                 nity inertia of quaternary small mammal assemblages
 2365–2372.                                                      in North America. Proceedings of the National Acad-
Mazancourt, C. (2001) Consequences of community drift.           emy of Sciences of the United States of America, 102,
 Science, 293, 1772.                                             16701–16706.
McDonald, R. I., Kareiva, P., & Forman, R. T. T. (2008)         McGill, B. J., Maurer, B. A., & Weiser, M. D. (2006a)
 The implications of current and future urbanization for         Empirical evaluation of the neutral theory. Ecology, 87,
 global protected areas and biodiversity conservation.           1411–1423.
 Biological Conservation, 141, 1695–1703.                       McGill, B. J., Enquist, B. J., Weiher, E., & Westoby,
McElwain, J. C., Wagner, P. J., & Hesselbo, S. P. (2009)         M. (2006b) Rebuilding community ecology from func-
 Fossil plant relative abundances indicate sudden loss           tional traits. Trends in Ecology and Evolution, 21,
 of Late Triassic biodiversity in Greenland. Science, 324,       178–185.
 1554–1556.                                                     McGill, B. J., Etienne, R. S., Gray, J. S., Alonso, D., Ander-
McGeoch, M. A. (1998) The selection, testing and appli-          son, M. J., Benecha, H. K., Dornelas, M., Enquist, B. J.,
 cation of terrestrial insects as bioindicators. Biological      Green, J. L., He, F., Hurlbert, A. H., Magurran, A. E.,
 Reviews, 73, 181–201.                                           Marquet, P. A., Maurer, B. A., Ostling, A., Soykan, C. U.,
McGeoch, M. A. (2007) Insects and bioindication: theory          Ugland, K. I., & White, E. P. (2007) Species abundance
 and practice. In: Insect Conservation Biology, Stewart,         distributions: moving beyond single prediction theories
 A. J., New, T. R., & Lewis, O. T. (eds), CABI, Wallingford,     to integration within an ecological framework. Ecology
 pp. 144–174.                                                    Letters, 10, 995–1015.
McGeoch, M. A. & Gaston, K. J. (2002) Occupancy fre-            McGowan, A. J. & Smith, A. B. (2008) Are global Phanero-
 quency distributions: patterns, artefacts and mecha-            zoic marine diversity curves truly global? A study
 nisms. Biological Reviews, 77, 311–331.                         of the relationship between regional rock records and
McGeoch, M. A., Van Rensburg, B. J., & Botes, A. (2002)          global Phanerozoic marine diversity. Paleobiology, 34,
 The verification and application of bioindicators: a case       80–103.
 study of dung beetles in a savanna ecosystem. Journal          McIntire, E. J. B. & Fajardo, A. (2009) Beyond description:
 of Applied Ecology, 39, 661–672.                                the active and effective way to infer processes from spa-
McGeoch, M. A., Kalwij, J. M., & Rhodes, J. I. (2009) A          tial patterns. Ecology, 90, 46–56.
 spatial assessment of Brassica napus gene flow potential       McIntosh, R. P. (1962) Raunkiaer’s “Law of Frequency”.
 to wild and weedy relatives in the Fynbos Biome. South          Ecology, 43, 533–535.
 African Journal of Science, 105, 109–115.                      McIntosh, R. P. (1967) An index of diversity and the
McGeoch, M. A., Schroeder, M., Ekbom, B., & Larsson, S.          relation of certain concepts of diversity. Ecology, 48,
 (2007) Saproxylic beetle diversity in a managed boreal          392–404.
 forest: importance of stand characteristics and forestry       McKinney, M. L. (2002) Influence of settlement time,
 conservation measures. Diversity & Distributions, 13,           human population, park shape and age, visitation and
 418–429.                                                        roads on the number of alien plant species in pro-
McGill, B. (2003a) Does Mother Nature really prefer rare         tected areas in the USA. Diversity & Distributions, 8,
 species or are log-left-skewed SADs a sampling arte-            311–318.
 fact? Ecology Letters, 6, 766–773.                             McKinney, M. L. (2006) Urbanization as a major cause
McGill, B. J. (2003b) A test of the unified neutral theory of    of biotic homogenization. Biological Conservation, 127,
 biodiversity. Nature, 422, 881–885.                             247–260.
McGill, B. J. (2003c) Strong and weak tests of macroecolog-     McKinney, M. L. & Lockwood, J. L. (1999) Biotic homog-
 ical theory. Oikos, 102, 679–685.                               enization: a few winners replacing many losers in the
McGill, B. J. (2006) A renaissance in the study of abun-         next mass extinction. Trends in Ecology and Evolution,
 dance. Ecology, 314, 770–772.                                   14, 450–453.
McGill, B. J. (2010) Towards a unification of unified theo-     McNaughton, S. J. & Wolf, L. L. (1970) Dominance and the
 ries of biodiversity. Ecology Letters, 13, 627–642.             niche in ecological systems. Science, 167, 131–139.
McGill, B. & Collins, C. (2003) A unified theory for macro-     McPeek, M. A. (2007) The macroevolutionary conse-
 ecology based on spatial patterns of abundance. Evolu-          quences of ecological differences among species. Pale-
 tionary Ecology Research, 5, 469–492.                           ontology, 50, 111–129.
                                                                OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
REFERENCES 319
McPeek, M. A. (2008) The ecological dynamics of clade             Montroll, E. & Shlesinger, M. F. (1982) On 1/f noise and
 diversification and community assembly. The American              other distributions with long tails. Proceedings of the
 Naturalist, 172, E270–E284.                                       National Academy of Sciences, 79, 3380–3383.
McPherson, J. M. & Jetz, W. (2007) Type and spatial struc-        Moodley, Y. & Bruford, M. W. (2007) Molecular biogeogra-
 ture of distribution data and the perceived determinants          phy: towards an integrated framework for conserving
 of geographical gradients in ecology: the species rich-           pan-African biodiversity. PLoS ONE, 5, e454.
 ness of African birds. Global Ecology and Biogeography,          Mooers, A. O. & Heard, S. B. (1997) Evolutionary process
 16, 657–667.                                                      from phylogenetic tree shape. The Quarterly Review of
McRae, B. H., Schumaker, N. H., McKane, R. B., Busing,             Biology, 72, 31–54.
 R. T., Solomon, A. M., & Burdick, C. A. (2008) A multi-          Mooers, A. O., Heard, S. B., & Chrostowski, E. (2005) Evo-
 moldel framework for simulating wildlife population               lutionary heritage as a metric for conservation. In: Phy-
 response to land-use and climate change. Ecological               logeny and Conservation, Purvis, A., Brooks, T. L., &
 Modelling, 219, 77–91.                                            Gittleman, J. L. (eds). Oxford University Press, Oxford,
Meier, R., Shiyang, K., Vaidya, G., & Ng, P. K. L. (2006)          pp. 120–138.
 DNA barcoding and taxonomy in Diptera: a tale of high            Mora, C., Tittensor, D. P., & Myers, R. A. (2008) The
 intraspecific variability and low identification success.         completeness of taxonomic inventories for describ-
 Systematic Biology, 55, 715–728.                                  ing the global diversity and distribution of marine
Meier, R., Zhang, G., & Ali, F. (2008) The use of mean             fishes. Proceedings of the Royal Society London, B, 275,
 instead of smallest interspecific distances exaggerates           149–155.
 the size of the “Barcoding Gap” and leads to misiden-            Moreno, C. E. & Halffter, G. (2001) Spatial and temporal
 tification. Systematic Biology, 57, 809–813.                      analysis of α, β and γ diversity of bats in a fragmented
Mercado-Silva, N. & Escandon-Sandoval, D. S. (2008) A              landscape. Biodiversity and Conservation, 10, 367–382.
 comparison of seining and electrofishing for fish com-           Morin, P. J. (1999) Community Ecology. Wiley-Blackwell,
 munity bioassessment in a Mexican Atlantic slope mon-             Malden, PA.
 tane river. North American Journal of Fisheries Manage-          Morisita, M. (1959) Measuring of interspecific association
 ment, 28, 1725–1732.                                              and similarity between communities. Memoires of the
Milesi, C., Hashimoto, H., Running, S. W., & Nemani,               Faculty of Science, Kyushu University, Series E (Biolol-
 R. W. (2005) Climate variability, vegetation productivity         ogy), 3, 65–80.
 and people at risk. Global and Planetary Change, 47,             Morlon, H., Chuyong, G., Condit, R., Hubbell, S., Ken-
 221–231.                                                          fack, D., Thomas, D., Valencia, R., & Green, J. L. (2008)
Millar, C. D., Huynen, L., Subramanian, S., Mohandesan,            A general framework for the distance – decay of sim-
 E., & Lambert, D. M. (2008) New developments in                   ilarity in ecological communities. Ecology Letters, 11,
 ancient genomics. Trends in Ecology and Evolution, 23,            904.
 386–393.                                                         Morlon, H., White, E. P., Etienne, R. S., Green, J. L.,
Millennium Ecosystem Assessment. (2005) Ecosystems                 Ostling, A., Alonso, D., Enquist, B. J., He, F., Hurlbert,
 and Human Well-being: Biodiversity Synthesis. World               A., Magurran, A. E., Maurer, B. A., McGill, B. J., Olff, H.,
 Resources Institute, Washington, DC.                              Storch, D., & Zillio T. (2009) Taking species abundance
Miller, A. I. & Foote, M. (1996) Calibrating the                   distributions beyond individuals. Ecology Letters, 12,
 Ordovician Radiation of marine life: implications                 488–501.
 for Phanerozoic diversity trends. Paleobiology, 22,              Morris, P. J., Ivany, L. C., Schopf, K. M., & Brett, C. E.
 304–309.                                                          (1995) The challenge of paleoecological stasis: reassess-
Minchin, P. R. (1987) An evaluation of the relative robust-        ing sources of evolutionary stability. Proceedings of the
 ness of techniques for ecological ordination. Vegetatio,          National Academy of Sciences, USA, 92, 11269–11273.
 69, 89–107.                                                      Moss, D., Furse, M. T., Wright, J. F., & Armitage, P. D.
Misra, M. K. & Misra, B. N. (1981) Species diversity and           (1987) The prediction of the macroinvertebrate fauna of
 dominance in a tropical grassland community. Folia                unpolluted running-water sites in Great Britain using
 Geobotanica, 16, 309–316.                                         environmental data. Freshwater Biology, 17, 41–52.
Monaghan, M. T., Wild, R., Elliot, M., Fujisawa, T., Balke,       Motomura, I. (1932) On the statistical treatment of com-
 M., Inward, D. J. G., Lees, D. C., Ranaivosolo, R., Eggle-        munities. Zoological Magazine, Tokyo, 44, 379–383.
 ton, P., Barraclough, T. G., & Vogler, A. P. (2009) Acceler-     Mouchet, M., Guilhaumon, F., Villéger, S., Mason,
 ated species inventory on Madagascar using coalescent-            N. W. H., Tomasini, J. A., & Mouillot, D. (2008) Towards
 based models of species delineation. Systematic Biology,          a consensus for calculating dendrogram-based func-
 58, 298–311.                                                      tional diversity indices. Oikos, 117, 794–800.
OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
320 REFERENCES
Mouillot, D., Mason, N. W. H., Dumay, O., & Wilson, J. B.      Nee, S., Harvey, P. H., & Cotgreave, P. (1992) Population
 (2005) Functional regularity: a neglected aspect of func-       persistence and the natural relationship between body
 tional diversity. Oecologia, 142, 353–359.                      size and abundance. In Conservation of Biodiversity for
Moulton, M. P. & Pimm, S. L. (1987) Morphological assort-        Sustainable Development, Sandlund, O. T., Hindar, K.,
 ment in introduced Hawaiian passerines. Evolutionary            & Brown, A. H. D. (eds). Scandavanian University Press,
 Ecology, 1, 113–124.                                            Oslo, pp. 124–136.
Mulder, C. P. H., Uliasi, D. D., & Doak, D. F. (2001) Phys-    Nemani, R., Keeling, C. D., Hashimoto, H., Jolly, W. M.,
 ical stress and diversity-productivity relationships: the       Piper, S. C., Tucker, C. J., Myneni, R. B., & Running,
 role of positive interactions. Proceedings of the National      S. W. (2003) Climate-driven increases in global terres-
 Academy of Sciences USA, 98, 6704–6708.                         trial net primary production from 1982 to 1999. Science,
Murphy, B. R. & Willis, D. W. (1996) Fisheries Techniques.       300, 1560–1563.
 American Fisheries Society, Bethesda, MD, USA.                Newson, S. E., Woodburn, R., Noble, D. G., & Baillie, S. R.
Murray, R. D., Holling, M., Dott, H. E. M., & Vandome,           (2005) Evaluating the breeding bird survey for produc-
 P. (1998) The Breeding Birds of South-East Scotland. A          ing national population size and density estimates. Bird
 tetrad atlas 1988–1994. The Scottish Ornithologists Club,       Study, 52, 42–54.
 Edinburgh.                                                    Newson, S. E., Evans, K. L., Noble, D. G., Greenwood,
Murray, B. R., Rice, B. L., Keith, D. A., Myerscough, P. J.,     J. J. D., & Gaston, K. J. (2008) Use of distance sampling
 Howell, J., Floyd, A. G., Mills, K., & Westoby, M. (1999)       to improve estimates of national population sizes for
 Species in the tail of rank-abundance curves. Ecology,          common and widespread breeding birds in the UK.
 80, 1806–1816.                                                  Journal of Applied Ecology, 45, 1330–1338.
Muyzer, G., Dewaal, E. C., & Uitterlinden, A. G. (1993)        Nicholls, H. (2009) Darwin 200: Let’s make a mammoth.
 Profiling of complex microbial-populations by dena-             Nature, 456, 310–314.
 turing gradient gel-electrophoresis analysis of poly-         Nixon, K. C. & Wheeler, Q. D. (1992) Measures of phyloge-
 merase chain reaction-amplified genes-coding for 16s            netic diversity. In: Extinction and Phylogeny, Novacek,
 ribosomal-RNA. Applied and Environmental Microbi-               M. J. & Wheeler, Q. D. (eds). Columbia University Press,
 ology, 59, 695–700.                                             New York, pp. 216–234.
Nachman, G. (1981) A mathematical model of the func-           Norden, N., Chazdon, R., Chao, A., Jiang, Y. -H., &
 tional relationship between density and spatial distri-         Vilchez-Alvarado, B. (2009) Resilience of tropical rain
 bution of a population. Journal of Animal Ecology, 50,          forests: rapid tree community reassembly in secondary
 453–460.                                                        forests. Ecology Letters, 12, 385–394.
Nachman, G. (1984) Estimates of mean population den-           Nusslein, K. & Tiedje, J. M. (1999) Soil bacterial commu-
 sity and spatial distribution of Tetranychus urticae (Aca-      nity shift correlated with change from forest to pasture
 rina: Tetranychidae) and Phytoseiulus persimilis (Aca-          vegetation in a tropical soil. Applied and Environmental
 rina: Phytoseiidae) based upon the proportion of                Microbiology, 65, 3622–3626.
 empty sampling units. Journal of Applied Ecology, 21,         Ochiai, A. (1957) Zoogeographic studies on the soleoid
 903–913.                                                        fishes found in Japan and its neighboring regions. Bul-
Naeem, S., Bunker, D. E., Hector, A., Loreau, M., & Per-         letin of the Japanese Society of Scientific Fisheries, 22,
 rings, C. (2009) Biodiversity, Ecosystem Functioning,           526–530.
 and Human Wellbeing: An Ecological and Economic               O’Dwyer, J. P., Lake, J. K., Ostling, A., Savage, V. M., &
 Perspective. Oxford University Press, Oxford.                   Green, J. L. (2009) An integrative framework for stochas-
Nakatsu, C. H. (2007) Soil microbial community analysis          tic size-structured community assembly. Proceedings of
 using denaturing gradient gel electrophoresis. Soil Sci-        the National Academy of Science, 106, 6170–6175.
 ence Society of America Journal, 71, 562–571.                 Ogutu, J. O. & Owen-Smith, N. (2003) ENSO, rainfall and
Nanney, D. L. (2004) No trivial pursuit. BioScience, 54,         temperature influences on extreme population declines
 720–721.                                                        among African savanna ungulates. Ecology Letters, 6,
National Research Council. (2000) Ecological Indicators          412–419.
 for the Nation. National Academy Press, Washington,           O’Hara, R. B. (2005) Species richness estimators: how
 DC.                                                             many species can dance on the head of a pin. Journal
Nee, S. (2003) The unified phenomenological theory of            of Animal Ecology, 74, 375–386.
 biodiversity. In: Macroecology: Concepts and Conse-           Oksanen,J.,Kindt,R.,Legendre,P.,O’Hara,B.,Simpson,G.L.,
 quences, Blackburn, T. M. & Gaston, K. J. (eds). Black-         & Stevens, M. H. H. (2008) vegan: Community Ecology
 well Science, Oxford, pp. 31–44.                                Package. In: R package version. http://cran.r-project.org.
                                                                  OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
REFERENCES 321
Olden, J. D. (2006) Biotic homogenization: a new research           Palumbi, S. R. & Cipriano, F. (1998) Species identification
  agenda for convervation biogeography. Journal of Bio-               using genetic tools: the value of nuclear and mitochon-
  geography, 33, 2027–2039.                                           drial gene sequences in whale conservation. The Journal
Olsen, G. J., Lane, D. J., Giovannoni, S. J., Pace, N. R., &          of Heredity, 89, 459–464.
  Stahl, D. A. (1986) Microbial ecology and evolution – a           Pan, H. Y., Chao, A., & Foissner, W. (2009) A non-
  ribosomal-RNA approach. Annual Review of Microbi-                   parametric lower bound for the number of species
  ology, 40, 337–365.                                                 shared by multiple communities. Journal of Agri-
Olson, V. A., Davies, R. G., Orme, C. D. L., Thomas,                  cultural, Biological and Environmental Statistics, 14,
  G. H., Meiri, S., Blackburn, T. M., Gaston, K. J., Owens,           452–468.
  I. P. F., & Bennett, P. M. (2009) Global biogeography             Pardo, L. (2006) Statistical Inference Based on Divergence
  and ecology of body size in birds. Ecology Letters, 12,             Measures. Chapman & Hall/CRC, Taylor & Francis
  249–259.                                                            Group, Boca Raton, FL.
Oremland, R. S., Capone, D. G., Stolz, J. F., & Fuhrman,            Parmesan, C. (2006) Ecological and evolutionary
  J. (2005) Whither or wither geomicrobiology in the era              responses to recent climate change. Annual Review of
  of ‘community metagenomics’. Nature Reviews Micro-                  Ecology, Evolution and Systematics, 37, 637–669.
  biology, 3, 572–578.                                              Parr, C. L. & Chown, S. L. (2003) Burning issues for con-
Osborn, A. M., Moore, E. R. B., & Timmis, K. N. (2000)                servation: a critique of faunal fire research in Southern
  An evaluation of terminal-restriction fragment length               Africa. Austral Ecology, 28, 384–395.
  polymorphism (T-RFLP) analysis for the study of micro-            Parr, C. L., Robertson, H. G., Biggs, H. C., & Chown,
  bial community structure and dynamics. Environmen-                  S. L. (2004) Response of African savanna ants to long-
  tal Microbiology, 2, 39–50.                                         term fire regimes. Journal of Applied Ecology, 41,
Øvreås, L. (2000) Population and community level                      630–642.
  approaches for analyzing microbial diversity in natural           Parsons, R. F. & Cameron, D. G. (1974) Maximum plant
  environments. Ecology Letters, 3, 236–251.                          species diversity in terrestrial communities. Biotropica,
Ovreas L. & Torsvik, L. Microbial diversity and commu-                6, 202–203.
  nity structure in two different agricultural soil commu-          Parsons, K. M., Piertney, S. B., Middlemas, S. J., Ham-
  nities. Microbial Ecology, 36, 303–315.                             mond, P. S., & Armstrong, J. D. (2005) DNA-based iden-
Øvreås, L., Daae, F. L., Torsvik, V., & Rodriguez-Valera, F.          tification of salmonid prey species in seal faeces. Journal
  (2003) Characterization of microbial diversity in hyper-            of Zoology, 266, 275–281.
  saline environments by melting profiles and reasso-               Passmore, A. J., Jarman, S. N., Swadling, K. M.,
  ciation kinetics in combination with terminal restric-              Kawaguchi, S., McMinn, A., & Nicol, S. (2006)
  tion fragment length polymorphism (T-RFLP). Micro-                  DNA as a dietary biomarker in Antarctic krill,
  bial Ecology, 46, 291–301.                                          Euphausia superba. Journal of Marine Biotechnology, 8,
Owen-Smith, N., Kerley, G. I. H., Page, B., Slotow, R., &             686–696.
  van Aarde, R. J. (2006) A scientific perspective on the           Patrício, J., Salas, F., Pardal, M. A., Jørgensen, S. E., &
  management of elephants in the Kruger National Park                 Marques, J. C. (2006) Ecological indicators performance
  and elsewhere. South African Journal of Science, 102,               during a re-colonisation field experiment and its com-
  389–394.                                                            pliance with ecosystem theories. Ecological Indicators,
Pace, N. R. (1997) A molecular view of microbial diversity            6, 43–57.
  and the biosphere. Science, 276, 734–740.                         Patuxent Wildlife Research Center (2001) Breeding Bird
Pace, N. R., Stahl, D. A., Lane, D. J., & Olsen, G. J.                Survey FTP site. URL ftp://www.mp2-pwrc.usgs.gov/
  (1986) The analysis of natural microbial-populations by             pub/bbs/Datafiles/
  ribosomal-RNA sequences. Advances in Microbial Ecol-              Pausas, J. G. & Verdú, M. (2008) Fire reduces mor-
  ogy, 9, 1–55.                                                       phospace occupation in plant communities. Ecology, 89,
Packer, L., Gibbs, J., Sheffield, C., & Hanner, R. (2009) DNA         2181–2186.
  barcoding and the mediocrity of morphology. Molecu-               Pautasso, M. & Gaston, K. J. (2005) Resources and global
  lar Ecology and Research, 9(Suppl. 1), 42–50.                       avian assemblage structure in forests. Ecology Letters,
Palomares, F., Godoy, J. A., Piriz, A., O’Brien, S. J., & John-       8, 282–289.
  son, W. E. (2002) Faecal genetic analysis to determine the        Pavoine, S., Ollier, S., & Pontier, D. (2005a) Measur-
  presence and distribution of elusive carnivores: design             ing diversity from dissimilarities with Rao’s quadratic
  and feasibility of the Iberian Lynx. Molecular Ecology,             entropy: are any dissimilaries suitable? Theoretical Pop-
  11, 2171–2182.                                                      ulation Biology, 67, 231–239.
OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
322 REFERENCES
Pavoine, S., Ollier, S., & Dufour, A. B. (2005b) Is the             Petchey, O. L. & Gaston, K. J. (2006) Functional diversity:
  originality of a species measurable? Ecology Letters, 8,            back to basics and looking forward. Ecology Letters, 9,
  579–586.                                                            741–758.
Pavoine, S., Love, M., & Bonsall, M. B. (2009) Hierarchical         Petchey, O. L. & Gaston, K. J. (2007) Dendrograms and
  partitioning of evolutionary and ecological patterns in             measuring functional diversity. Oikos, 116, 1422–1426.
  the organization of phylogenetically-structured species           Petchey, O. L., O’Gorman, E. J., & Flynn, D. F. B. (2009)
  assemblages: application to rockfish (genus: Sebastes)              A functional guide to functional diversity measures.
  in the Southern California Bight. Ecology Letters, 12,              In: Biodiversity, Ecosystem Functioning, and Human
  898–908.                                                            Wellbeing: An Ecological and Economic Perspective,
Payton, M. E., Greenstone, M. H., & Schenker, N. (2003)               Naeem, S., Bunker, D. E., Hector, A., Loreau, M., &
  Overlapping confidence intervals or standard error                  Perrings, C. (eds). Oxford University Press, Oxford,
  intervals: What do they mean in terms of statistical sig-           pp. 49–59.
  nificance? 6 pp. Journal of Insect Science, 3, 34, available      Peters, S. E. (2006) Genus extinction, origination, and the
  online: insectscience.org/3.34.                                     durations of sedimentary hiatuses. Paleobiology, 32,
Pearson, T. H. (1975) The benthic ecology of Loch Linnhe              387–407.
  and Loch Eil, a sea-loch system on the west coast of              Peters, S. E. & Foote, M. (2002) Determinants of extinction
  Scotland. IV. Changes in the benthic fauna attributable             in the fossil record. Nature, 416, 420–424.
  to organic enrichment. Journal of Experimental Marine             Peterson, J. T. & Paukert, C. P. (2009) Converting non-
  Biology and Ecology, 20, 1–41.                                      standard fish sampling data to standardized data. In:
Pease, C. M. (1988) Biases in the survivorship curves of              Standard Methods for Sampling North American Fresh-
  fossil taxa. Journal of Theoretical Biology, 130, 31–48.            water Fishes, Bonar, S. A., Hubert, W. A., & Willis, D. W.
Peet, R. K. (1974) The measurement of species diversity.              (eds). American Fisheries Society, Bethesda, MD.
  Annual Review of Ecology and Systematics, 5, 285–307.             Phillips, J. (1860) Life on Earth: its Origin and Succession.
Perry, J. N., Liebhold, A. M., Rosenberg, M. S., Dun-                 Macmillan, Cambridge.
  gan, J., Miriti, M., Jakomulska, A. & Citron-Pousty, S.           Phillip, D. A. (1998) Biodiversity of freshwater fishes of
  (2002) Illustrations and guidelines for selecting statisti-         Trinidad and Tobago, West Indies. In: School of Biology.
  cal methods for quantifying spatial pattern in ecological           University of St Andrews, St Andrews, p. 99.
  data. Ecography, 25, 578.                                         Pianka, E. R. (1989) Latitudinal gradients in species diver-
Perry, J. N. & Woiwod, I. P. (1992) Fitting Taylor’s power            sity. Trends in Ecology and Evolution, 4, 223.
  law. Oikos, 65, 538–542.                                          Pielou, E. C. (1975) Species abundance distributions. In:
Perry, J. N. & Taylor, L. R. (1985) Adès: new ecologi-                Ecological Diversity. Wiley Interscience, New York,
  cal families of species-specific frequency distributions            pp. 19–31.
  that describe repeated spatial samples with an intrinsic          Pielou, E. C. (1977) Mathematical Ecology. Wiley, New
  power-law variance-mean property. Journal of Animal                 York.
  Ecology, 54, 931–953.                                             Pillans, S., Ortiz, J.-C., Pillans, R. D., & Possingham, H. P.
Perry, J. N. & Taylor, L. R. (1986) Stability of real interacting     (2007) The impact of marine reserves on nekton diver-
  populations in space and time: implications, alterna-               sity and community composition in subtropical eastern
  tives and the negative binomial kc. Journal of Animal               Australia. Biological Conservation, 136, 455–469.
  Ecology, 55, 1053–1068.                                           Piña-Alguilar, R. E., Lopez-Saucedo, J., Sheffield, R., Ruiz-
Pertoldi, C., Wójcik, J. M., Malgorzata, T., Kawalko, A.,             Galaz, L. I., Barroso-Padilla, J. J., & Gutiérrez-Gutiérrez,
  Kristensen, T. N., Loeschcke, V., Gregersen, V. R., Colt-           A. 2009. Revival of extinct species using nuclear trans-
  man, D., Wilson, G. A., Randi, E., Henryon, M., &                   fer: hope for the mammoth, true for the Pyrenean ibex,
  Bendixen, C. (2009) Genome variability in European                  but is it time for “conservation cloning”?. Cloning and
  and American bison detected using the BovineSNP50                   Stem Cells, 11, 341–346.
  BeadChip. Conservation Genetics, 11, 627–634. doi:                Piñeyro-Nelson, A., Van Heerwaarden, J., Perales, H. R.
  10.1007/s10592–009–9977-y.                                          et al. (2009) Transgenes in Mexican maize: molecular
Petchey, O. L. & Gaston, K. J. (2002) Functional diver-               evidence and methodological considerations for GMO
  sity (FD), species richness and community composition.              detection in landrace populations. Molecular Ecology,
  Ecology Letters, 5, 402–411.                                        18, 750–761.
Petchey, O. L. & Gaston, K. J. (2004) How do different              Platt, J. R. (1964) Strong inference. Science, 146, 347–353.
  measures of functional diversity perform? Ecology, 85,            Platt, H. M., Shaw, K. M., & Lambshead, P. J.D. (1984)
  847–857.                                                            Nematode species abundance patterns and their use in
                                                                 OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
REFERENCES 323
  the detection of environmental perturbations. Hydrobi-           Preston, F. W. (1962) The canonical distribution of com-
  ologia, 118, 59–66.                                                monness and rarity: Parts 1 and 2. Ecology, 43, 185–215,
Plotkin, J. B. & Muller-Landau, H. C. (2002) Sampling                410–432.
  the species composition of a landscape. Ecology, 83,             Price, P. W., Diniz, I. R., Morais, H. C., & Marques, E. S. A.
  3344–3356.                                                         (1995) The abundance of insect herbivore species in the
Podani, J. (2005) Multivariate exploratory data analysis of          tropics: the high local richness of rare species. Biotrop-
  ordinal data in ecology: pitfalls, problems and solutions.         ica, 27, 468–478.
  Journal of Vegetation Science, 16, 497–510.                      Primack, R. B. (1998). Essentials of Conservation Biology,
Podani, J. & Schmera, D. (2006) On dendrogram-based                  2nd edn. Sinauer Associates, Sunderland, MA.
  measures of functional diversity. Oikos, 115, 179–185.           Pueyo, S. (2006) Diversity: between neutrality and struc-
Podani, J. & Schmera, D. (2007) How should a den-                    ture. Oikos, 112, 392–405.
  drogram based measure of functional diversity func-              Pueyo, Y., Alados, C. L., & Ferrer-Benimeli, C. (2006) Is the
  tion? A rejoinder to Petchey and Gaston. Oikos, 116,               analysis of plant community structure better than com-
  1427–1430.                                                         mon species-diversity indices for assessing the effects of
Poff, N. L., Olden, J. D., Vieira, N. K. M., Finn, D. S.,            livestock grazing on a Mediterranean arid ecosystem?
  Simmons, M. P., & Kondratieff, B. C. (2006) Functional             Journal of Arid Environments, 64, 698–712.
  trait niches of North American lotic insects: traits-based       Purvis, A. & Hector, A. (2000) Getting the measure of
  ecological applications in light of phylogenetic relation-         biodiversity. Nature, 405, 212–219.
  ships. Journal of North American Benthic Society, 25,            Pybus, O. G. & Harvey, P. H. (2000) Testing macro-
  730–755.                                                           evolutionary models using incomplete molecular
Pollard, E. (1979) A national scheme for monitoring the              phylogenies. Proceedings of the Royal Society London,
  abundance of butterflies. The first three years. Proceed-          B, 267, 2267–2272.
  ings and Transactions of the British Entomological and           Quince, C., Curtis, T. P., & Sloan, W. T. (2008) The rational
  Natural History Society, 12, 77–90.                                exploration of microbial diversity. The ISME Journal, 2,
Poon, E. L. & Margules, C. R. (2004) Searching for new               997–1006.
  populations of rare plant species in remote locations.           Quince, C., Lanzen, A., Curtis, T. P., Davenport, R. J.,
  In: Sampling Rare or Elusive Species, Thompson, W. L.              Hall, N., Head, I. M., Read, L. F., & Sloan, W. T. (2009)
  (ed). Island Press, Washington, DC, pp. 189–207.                   Accurate determination of microbial diversity from 454
Poos, M. S., Walker, S. C., & Jackson, D. A. (2009)                  pyrosequencing data. Nature Methods 6, 639–641.
  Functional-diversity indices can be driven by method-            Quinn, G. P. & Keough, M. J. (2002) Experimental Design
  ological choices and species richness. Ecology, 90,                and Data Analysis for Biologists. Cambridge University
  341–347.                                                           Press, Cambridge.
Popper, K. R. (1959) The Logic of Scientific Discovery.            R Development Core Team. (2005) R: A Language and
  Hutchinson.                                                        Enviornment for Statistical Computing. R Foundation
Porter, W. P., Sabo, J. L., Tracy, C. R., Reichman, O. J., &         for Statistical Computing, Vienna, Austria.
  Ramankutty, N. (2002) Physiology on a landscape scale:           Rabeni, C. F., Peterson, J. T., Lyons, J., & Mercado-Silva, N.
  plant-animal interactions. Integrative and Comparative             (2009) Sampling fish in warmwater wadeable streams.
  Biology, 42, 431–453.                                              In: Standard Methods for Sampling North American
Pradel, R. (1996) Utilization of Capture-Mark-Recapture              Freshwater Fishes, Bonar, S. A., Hubert, W. A., & Willis,
  for the study of recruitment and population growth                 D. W. (eds). American Fisheries Society, Bethesda.
  rate. Biometrics, 52, 703–709.                                   Rabinowitz, D. (1981) Seven forms of rarity. In: Biological
Prendergast, J. R., Quinn, R. M., Lawton, J. H., Eversham,           Aspects of Rare Plant Conservation, Synge, H. (ed.).
  B. C., & Gibbons, D. W. (1993) Rare Species, the Coin-             Wiley, Chichester, pp. 205–217.
  cidence of Diversity Hotspots and Conservation Strate-           Rabinowitz, D., Cairns, S., & Dillon, T. (1986) Seven forms
  gies. Nature, 365, 335–337.                                        of rarity and their frequency in the flora of the British
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery,       Isles. In: Conservation Biology: The Science of Scarcity
  B. P. (2007) Numerical Recipes: The Art of Scientific              and Diversity, Soulé, M. J. (ed). Sinauer, Sunderland,
  Computing. Cambridge University Press, Cambridge.                  MA, pp. 182–204.
Preston, F. W. (1948) The commonness and rarity of                 Rahbek, C. & Graves, G. R. (2001) Multiscale assess-
  species. Ecology, 29, 254–283.                                     ment of patterns of avian species richness. Proceed-
Preston, F. W. (1960) Time and space and the variation of            ings of the National Academy of Sciences. USA, 98,
  species. Ecology, 41, 612–627.                                     4534–4539.
OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
324 REFERENCES
Rand, T. A., Tylianakis, J. M., & Tscharntke, T. (2006)           distinctive species often capture more phylogenetic
  Spillover edge effects: the dispersal of agriculturally         diversity than expected. Journal of Theoretical Biology,
  subsidized insect natural enemies into adjacent natural         251, 606–615.
  habitats. Ecology Letters, 9, 603–614.                        Regan, H. M., Hierl, L. A., Franklin, J., Deutschman,
Rangel, T., Diniz-Filho, J. A. F., & Bini, L. M. (2006)           D. H., Schmalbach, H. L., Winchell, C. S., & Johnson,
  Towards an integrated computational tool for spatial            B. S. (2008) Species prioritization for monitoring and
  analysis in macroecology and biogeography. Global               management in regional multiple species conservation
  Ecology and Biogeography, 15, 321–327.                          plans. Diversity & Distributions, 14, 462–471.
Ranjard, L., Poly, F., Combrisson, J., Richaume, A., Gour-      Reid, W. V. (1998) Biodiversity hotspots. Trends in Ecology
  biere, F., Thioulouse, J., & Nazaret, S. (2000) Hetero-         and Evolution, 13, 275–280.
  geneous cell density and genetic structure of bacte-          Renkonen, O. (1938) Statistisch-ökologische Untersuchun-
  rial pools associated with various soil microenviron-           gen über die terrestrische Käferwelt der finnischen
  ments as determined by enumeration and DNA fin-                 Bruchmoore. Annale Zoologici Societatis Zoologicae-
  gerprinting approach (RISA). Microbial Ecology, 39,             Botanicae Fennicae Vanamo, 6, 1–231.
  263–272.                                                      Rice, J. C. (2000) Evaluating fishery impacts using metrics
Rao, C. R. (1982) Diversity and dissimilarity coefficients:       of community structure. ICES Journal of Marine Sci-
  a unified approach. Theoretical Population Biology, 21,         ence, 57, 682–688.
  24–43.                                                        Richards, P. W. 1969. Speciation in the tropical rain forest
Rapoport, E. H. 1982. Areography: Geographical Strate-            and the concept of the niche. Biological Journal of the
  gies of Species. Pergamon, Oxford.                              Linnean Society, 1, 149–153.
Ratnasingham, S. & Hebert, P. D. N. (2007) BOLD: the bar-       Richardson, D. M., Holmes, P. M., Esler, K. J., Galatow-
  code of life data system (www.barcodinglife.org). Mole-         itsch, S. M., Stromberg, J. C., Kirkman, S. P., Pyšek, P.,
  cular Ecology Notes 7:355–364.                                  & Hobbs, R. J. (2007) Riparian vegetation: degradation,
Raunkaier, C. (1909) Formationsundersogelse og Forma-             alien plant invasions, and restoration prospects. Diver-
  tionsstatistik. Svensk Botanisk Tidskrift, 30, 20–132.          sity & Distributions, 13, 126–139.
Raunkaier, C. (1934) Life Forms and Statistical Plant Geog-     Ricklefs, R. E. 2008. Disintegration of the ecological com-
  raphy. Oxford University Press, Oxford.                         munity. The American Naturalist, 172, 741–750.
Raup, D. M. (1975) Taxonomic diversity estimation using         Ricklefs, R. E. & Travis, J. (1980) A morphological
  rarefaction. Paleobiology, 1, 333–342.                          approach to the study of avian community organiza-
Raup, D. M. (1978) Cohort analyses of generic survivor-           tion. Auk, 97, 321–338.
  ship. Paleobiology, 4, 1–15.                                  Ricotta, C. (2004) A parametric diversity measure combin-
Raup, D. M. (1979) Size of the Permo-Triassic bottleneck          ing the relative abundances and taxonomic distinctive-
  and its evolutionary implications. Science, 206, 217–218.       ness of species. Diversity & Distributions, 10, 143–146.
Raup, D. M. (1991) A kill curve for Phanerozoic marine          Ricotta, C. (2005) A note on functional diversity measures.
  species. Paleobiology, 17, 37–48.                               Basic and Applied Ecology, 6, 479–486.
Raup, D. M. & Boyajian, G. E. (1988) Patterns of                Ricotta, C. & Moretti, M. (2008) Quantifying functional
  generic extinction in the fossil record. Paleobiology, 14,      diversity with graph-theoretical measures: advantages
  109–125.                                                        and pitfalls. Community Ecology, 9, 11–16.
Raup, D. M. & Sepkoski, J. J., Jr. (1982) Mass extinctions in   Ricotta, C. & Szeidl, L. (2009) Diversity partitioning of
  the marine fossil record. Science, 215, 1501–1503.              Rao’s quadratic entropy. Theoretical Population Biol-
Raxworthy, C. J., Pearson, R. G., Rabibisoa, N., Rakoton-         ogy, 76, 299–302.
  drazafy, A. M., Ramanamanjato, J.-B., Raselimanana,           Riitters, K. H., O’Neill, R. V., Hunsaker, C. T., Wickham,
  A. P., Wu, S., Nussbaum, R. A., & Stone, D. A. (2008)           J. D., Yankee, D. H., Timmins, S. P., Jones, K. B., & Jack-
  Extinction vulnerability of tropical montane endemism           son, B. L. (1995) A factor analysis of landscape pattern
  from warming and upslope displacement: a preliminary            and structure metrics. Landscape Ecology, 10, 23–39.
  appraisal for the highest massif in Madagascar. Global        Robbins, C. S., Bystrak, D., & Geissler, P. H. (1986) The
  Change Biology, 14, 1703–1720.                                  Breeding Bird Survey: Its First Fifteen Years, 1965–1979.
Redding, D. W. & Mooers, A. O. (2006) Incorporating               US Dept of the Interior, Fish and Wildlife Service, Wash-
  evolutionary measures into conservation prioritisation.         ington, DC.
  Conservation Biology, 20, 1670–1678.                          Roca. A. L., Georgiadis, N., Pecon-Slattery, J., & O’Brien,
Redding, D. W., Hartmann, K., Mimoto, A., Bokal, D.,              S. J. (2001) Genetic evidence for two species of elephant
  DeVos, M., & Mooers, A. O. (2008) Evolutionarily                in Africa. Science, 293, 1747–1477.
                                                                OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
REFERENCES 325
Roche Diagnostics. (2009) Using Multiplex Identifier                J. A. (eds). Columbia University Press New York,
  (MID) Adaptors for the GS FLX Titanium Chemistry                  pp. 311–348.
  – Basic MID Set. Technical Bulletin Genome Sequencer            Rosenzweig, M. L. (2003) Reconciliation ecology and the
  FLX System, Mannheim, Germany, pp. 1–11.                          future of species diversity. Oryx, 37, 194–205.
Rodrigues, A. S. L., Gregory, R. D., & Gaston, K. J. (2000)       Rosenzweig, M. L. (2004) Applying species-area relation-
  Robustness of reserve selection procedures under tem-             ships to the conservation of species diversity. In: Fron-
  poral species turnover. Proceedings of the Royal Society          tiers of Biogeography: New Directions in the Geogra-
  London, 267, 49–55.                                               phy of Nature, Lomolino, M. V. & Heany, L. (eds). Sin-
Roe, A. D. & Sperling, F. A. H. (2007) Patterns of evolution        auer Associates, Sunderland, MA, pp. 325–343.
  of mitochondrial cytochrome c oxidase I and II DNA              Rosenzweig, M. L., Turner, W. R. Cox, J. G., & Ricketts,
  and implications for DNA barcoding. Molecular Phylo-              T. H.. (2003) Estimating diversity in unsampled habitats
  genetics and Evolution, 44, 325–345.                              of a biogeographical province. Conservation Biology,
Roesch, L. F., Fulthorpe, R. R., Riva, A., Casella, G., Had-        17, 864–874.
  win, A. K. M., Kent, A. D., Daroub, S. H., Camargo,             Rosewell, J., Shorrocks, B., & Edwards, K. (1990) Competi-
  F. A. O., Farmerie, W. G., & Triplett, E. W. (2007) Pyrose-       tion on a divided and ephemeral resource: testing the
  quencing enumerates and contrasts soil microbial diver-           assumptions. I. Aggregation. Journal of Animal Ecol-
  sity. The ISME Journal, 1, 283–290.                               ogy, 59, 977–1001.
Romanov, M. N., Tuttle, E. M., Houck, M. L., Modi, W. S.,         Rosing, M. T. & Frei, R. (2004) U-rich Archaean sea-floor
  Chemnick, L. G., Karody, M. L., Stremel Mork, E. M.,              sediments from Greenland – indications of > 3700 Ma
  Otten, C. A., Renner, T., Jones, K. C., Dandekar, S., Papp,       oxygenic photosynthesis. Earth and Planetary Science
  J. C., Da, Y., NISC Comparative Sequencing Program,               Letters, 217, 237–244.
  Green, E. D., Magrini, V., Hickenbotham, M. T., Glass-          Rossi, R. E., Mulla, D. J., Journel, A. G., & Franz, E. H.
  cock, J., McGrath, S., Mardis, E. R., & Ryder, O. A.              (1992) Geostatistical tools for modeling and interpreting
  (2009) The value of avian genomics to the conservation            ecological spatial dependence. Ecological Monographs,
  of wildlife. BMC Genomics, 10: doi:10.1186/1471–2164–             62, 277–314.
  10-S2-S10.                                                      Roughgarden, J. (2009) Is there a general theory of
Romanuk, T. N. & Kolasa, J. (2001) Simplifying the com-             community ecology? Biology and Philosophy, 24,
  plexity of temporal diversity dynamics: a differentiation         521–529.
  approach. Ecoscience, 8, 259–263.                               Routledge, R. (1979) Diversity indices: which ones are
Rondinini, C., Wilson, K. A., Boitani, L., Grantham, H., &          admissible? Journal of Theoretical Biology, 76, 503–515.
  Possingham, H. P. (2006) Tradeoffs of different types of        Routledge, R. D. & Swartz, T. B. (1991) Taylor’s power law
  species occurrence data for use in systematic conserva-           reexamined. Oikos, 60, 107–112.
  tion planning. Ecology Letters, 9, 1136–1145.                   Rovito, S. M., Parra-Olea, S., Vásquez-Almazán, C. R.,
Rondon, M. R., August, P. R., Bettermann, A. D., Brady,             Papenfuss, T. J., & Wake, D. B. (2009) Dramatic declines
  S. F., Grossman, T. H., Liles, M. R., Loiacono, K. A.,            in neotropical salamander populations are an impor-
  Lynch, B. A., MacNeil, I. A., Minor, C., Tiong, C. L.,            tant part of the global amphibian crisis. Proceed-
  Gilman, M., Osburne, M. S., Clardy, J., Handelsman, J.,           ings of the National Academy of Sciences. USA, 106,
  & Goodman, R. M. (2000) Cloning the soil metagenome:              3231–3236.
  a strategy for accessing the genetic and functional diver-      Royal Society. (2003) Measuring Biodiversity for Conser-
  sity of uncultured microorganisms. Applied and Envi-              vation. The Royal Society, London.
  ronmental Microbiology, 66, 2541–2547.                          Royle, R. A., Nichols, J. D., & Kéry, M. (2005) Modelling
Rosenfeld, J. S. (2002) Functional redundancy in ecology            occurrence and abundance of species when detection is
  and conservation. Oikos, 98, 156–162.                             imperfect. Oikos, 110, 353–359.
Rosenzweig, M. L. (1992) Species diversity gradients: we          Rubinoff, D., Cameron, S., & Will, K. (2006) A genomic
  know more and less than we thought. Journal of Mam-               perspective on the shortcomings of mitochondrial DNA
  malogy, 73, 715–730.                                              for “barcoding” identification. The Journal of Heredity,
Rosenzweig, M. L. (1995) Species Diversity in Space and             97, 581–594.
  Time. Cambridge University Press, Cambridge.                    Li, R., Fan, W., Tian, G., Zhu, H., He, L., Cai, J., Huang, Q.,
Rosenzweig, M. L. (1998) Preston’s ergodic conjec-                  Cai, Q., Li, B., Bai, Y., Zhang, Z., Zhang, Y., Wang, W., Li,
  ture: the accumulation of species in space and time.              J., Wei, F., Li, H., Jian, M., Li, J., Zhang, Z., Nielsen, R.,
  In: Biodiversity Dynamics: Turnover of Populations,               Li, D., Gu, W., Yang, Z., Xuan, Z., Ryder, O. A., Leung, F.
  Taxa, and Communities, McKinney, M. L. & Drake,                   C.-C., Zhou, Y., Cao, J., Sun, X., Fu, Y., Fang, X., Guo, X.,
OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
326 REFERENCES
  Wang, B., Hou, R., Shen, F., Mu, B., Ni, P., Lin, R., Qian,        community analysis. Journal of Applied Ecology, 44,
  W., Wang, G., Yu, C., Nie, W., Wang, J., Wu, Z., Liang,            330–339.
  H., Min, J., Wu, Q., Cheng, S., Ruan, J., Wang, M., Shi,         Salas, F., Marcos, C., Neto, J. M., Patrıcio, J., Perez-
  Z., Wen, M., Liu, B., Ren, X., Zheng, H., Dong, D., Cook,          Ruzafa, A., & Marques, J. C. (2006a) User-friendly guide
  K., Shan, G., Zhang, H., Kosiol, C., Xie, X., Lu, Z., Zheng,       for using benthic ecological indicators in coastal and
  H., Li, Y., Steiner, C., Lam, T., Lin, S., Zhang, Q., Li, G.,      marine quality assessment. Ocean and Coastal Manage-
  Tian, J., Gong, T., Liu, H., Zhang, D., Fang, L., Ye, C.,          ment, 49, 308–331.
  Zhang, J., Hu, W., Xu, A., Ren, Y., Zhang, G., Bruford,          Salas, F., Patrıcio, J., Marcos, C., Pardal, M. A., Perez-
  M. W., Li, Q., Ma, L., Guo, Y., An, N., Hu, Y., Zheng, Y.,         Ruzafa, A., & Marques, J. C. (2006b) Are taxonomic dis-
  Shi, Y., Li, Z., Liu, Q., Chen, Y., Zhao, J., Qu, N., Zhao,        tinctness measures compliant to other ecological indi-
  S., Tian, F., Wang, X., Wang, H., Xu, L., Liu, X., Vinar,          cators in assessing ecological status? Marine Pollution
  T., Wang, Y., Lam, T.-W., Yiu, S.-M., Liu, S., Zhang, H.,          Bulletin, 52, 162–174.
  Li, D., Huang, Y, Wang, X., Yang, G., Jiang, Z., Wang, J.,       Samways, M. J. (1989) Insect conservation and the distur-
  Qin, N., Li, L., Li, J., Bolund, L., Kristiansen, K., Wong,        bance landscape. Agriculture, Ecosystems & Environment,
  G. K.-S., Olson, M., Zhang, X., Li, S., Yang, H., Wang, J.,        27, 183–194.
  & Wang, J. (2010). The sequence and de novo assembly             Sanders, H. (1968) Marine benthic diversity: a compara-
  of the giant panda genome. Nature, 463, 311–317.                   tive study. The American Naturalist, 102, 243.
Rusch, D. B., Halpern, A. L., Sutton, G., Heidelberg,              Sara, M. (2008) Breeding abundance of threatened rap-
  K. B., Williamson, S., Yooseph, S., Wu, D., Eisen, J. A.,          tors as estimated from occurrence data. The Ibis, 150,
  Hoffman, J. M., Remington, K., Beeson, K., Tran, B.,               776–778.
  Smith, H., Baden-Tillson, H., Stewart, C., Thorpe, J.,           Sawyer, A. J. (1989) Inconstancy of Taylor’s b: simulated
  Freeman, J., Andrews-Pfannkoch, C., Venter, J. E., Li, K.,         sampling with different quadrat sizes and spatial distri-
  Kravitz, S., Heidelberg, J. F., Utterback, T., Rogers, Y. -H.,     butions. Research in Population Ecology, 31, 11–24.
  Falcón, L. I., Souza, V., Bonilla-Rosso, G., Eguiarte, L. E.,    Scharff, N., Coddington, J. A., Griswold, C. E., Hormiga,
  Karl, D. M., Sathendranath, S., Platt, T., Bermingham, E.,         G., & De Place Bjørn, P. (2003) When to quit? Estimating
  Gallardo, V., Tamayo-Castillo, G., Ferrari, M. R., Straus-         spider species richness in a northern European decidu-
  berg, R. L., Nealson, K., Friedman, R., Frazier, M., &             ous forest. Journal of Arachnology, 31, 246–273.
  Venter, J. C. (2007) The Sorcerer II global ocean sampling       Scheaffer, R. L., Mendenhall, W., & Ott, L. (2006) Elemen-
  expedition: Northwest Atlantic through Eastern tropical            tary Survey Sampling. Thomson Brooks/Cole, South-
  Pacific. PLoS Biology, 5, 398–431.                                 bank, Vic., Belmont, CA.
Russell, G. J., Diamond, J. M., Pimm, S. L., & Reed,               Schechtman, E. & Wang, S. (2004) Jackknifing two-sample
  T. M. (1995) A century of turnover: community dynam-               statistics. Journal of statistical Planning and Inference,
  ics at three timescales. Journal of Animal Ecology, 64,            119, 329–340.
  628–641.                                                         Scheiner, S. M., Cox, S. B., Willig, M., Mittelbach, G. G.,
Rust, K. F. & Rao, J. N. K. (1996) Variance estimation for           Osenberg, C., & Kaspari, M. (2000) Species richness,
  complex surveys using replication techniques. Statisti-            species-area curves and Simpson’s paradox. Evolution-
  cal Methods in Medical Research, 5, 283–310.                       ary Ecology Research, 2, 791–802.
Ryti, R. T. & Case, T. J. (1986) Overdispersion of                 Schiermeier, Q. (2005) Hurricane link to climate change is
  ant colonies: a test of hypotheses. Oecologia, 69,                 hazy. Nature, 437, 461–461.
  446–453.                                                         Schleper, C., Jurgens, G., & Jonuscheit, M. (2005) Genomic
Sachs, J. D. (2008) Common Wealth: Economics for a                   studies of uncultivated archaea. Nature Reviews Micro-
  Crowded Planet. Penguin Press, London.                             biology, 3, 479–488.
Sadler, P. M. & Cooper, R. A. (2003) Best-fit intervals            Schloss, P. D. & Handelsman, J. (2006a) Introducing
  and consensus sequences: a comparison of the resolv-               SONS, a tool for operational taxonomic unit-based com-
  ing power of traditional biostratigraphy and computer              parisons of microbial community memberships and
  assisted correlation. In: High-Resolution Stratigraphic            structures. Applied Environmental Microbiology, 72,
  Approaches in Paleontology, Harries, P. (ed). Plenum               6773–6779.
  Press, New York, pp. 49–94.                                      Schloss, P. D. & Handelsman, J. (2006b) Toward a census of
Saint-Germain, M., Buddle, C. M., Larrivée, M., Mercado,             bacteria in soil. Plos Computational Biology, 2, 786–793.
  A., Motchula, T., Reichert, E., Sackett, T. E., Sylvain,         Schmera, D., Erös, T., & Podani, J. (2009) A measure for
  Z., & Webb, A. (2007) Should biomass be considered                 assessing functional diversity in ecological communi-
  more frequently as a currency in terrestrial arthropod             ties. Aquatic Microbial Ecology, 43, 157–167.
                                                                   OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
REFERENCES 327
Schulze, E. -D. & Mooney, H. A. (1994) Biodiversity and              Shimida, A. (1984) Whittaker’s plant diversity sampling
  Ecosystem Function. Springer, Berlin, Germany.                        method. Israel Journal of Botany, 33, 41–46.
Schulze, C. H., Waltert, M., Kessler, P. J. A., et al. (2004)        Shimitani, K. (2001) On the measurement of species
  Biodiversity indicator groups of tropical land-use sys-               diversity incorporating species differences. Oikos, 93,
  tems: comparing plants, birds, and insects. Ecological                135–147.
  Applications, 14, 1321–1333.                                       Shorrocks, B. & Rosewell, J. (1986) Guild size in
Schwarz, G. (1978) Estimating the dimension of a model.                 drosophilids: a simulation model. Journal of Animal
  Annals of Statistics, 6, 461–464.                                     Ecology, 55, 527–541.
Schwieger, F. & Tebbe, C. C. (1998) A new approach to                Shurin, J. B. (2007) How is diversity related to species
  utilize PCR-single-strand-conformation polymorphism                   turnover through time? Oikos, 116, 957–965.
  for 16s rRNA gene-based microbial community analy-                 Siddall, M. E., Fontanella, F. M., Watson, S. C., Kvist,
  sis. Applied and Environmental Microbiology, 64,                      S., & Erséus, C. (2009) Barcoding bamboozled by bac-
  4870–4876.                                                            teria: convergence to metazoan mitochondrial primer
Schweiger, O., Klotz, S., Durka, W., & Kühn, I. (2008)                  targets by marine microbes. Systematic Biology, 58,
  A comparative test of phylogenetic diversity indices.                 445–451.
  Oecologia, 157, 485–495.                                           Signor, P. W., III & Lipps, J. H. (1982) Sampling bias,
Seeger, M. & Jerez, C. A. (1992) Phosphate limita-                      gradual extinction patterns and catastrophes in the fos-
  tion affects global gene-expression in Thiobacillus-                  sil record. Geological Society of America Special Paper,
  ferrooxidans. Geomicrobiology Journal, 10, 227–237.                   190, 291–296.
Seigel, A. F. & German, R. Z. (1982) Rarefaction and taxo-           Sileshi, G., Hailu, G., & Mafongoya, P. L. (2006)
  nomic diversity. Biometrics, 38, 235–2411.                            Occupancy-abundance models for predicting densities
Selmi, S. & Boulinier, T. (2004) Distribution-abundance                 of three leaf beetles damaging the multipurpose tree
  relationship for passerines breeding in Tunisian oases:               Sesbania sesban in eastern and southern Africa. Bulletin
  test of the sampling hypothesis. Oecologia, 139,                      of Entomological Research, 96, 61–69.
  440–445.                                                           Simberloff, D. S. (1972) Properties of the rarefaction
Sepkoski, J. J., Jr. (1975) Stratigraphic biases in the analysis        diversity measurement. The American Naturalist, 106,
  of taxonomic survivorship. Paleobiology, 1, 343–355.                  414–418.
Sepkoski, J. J., Jr. (1979) A kinetic model of Phanerozoic           Simberloff, D. (1978) Use of rarefaction and related meth-
  taxonomic diversity. II. Early Phanerozoic families and               ods in ecology. In: Biological Data in Water Pollu-
  multiple equilibria. Paleobiology, 5, 222–251.                        tion Assessment: Quantitative and Statistical Analyses,
Sepkoski, J. J., Jr. (1982) A compendium of fossil marine               Dickson, K. L., Cairns, J., Jr., & Livingston, R. J. (eds).
  families. Milwaukee Public Museum Contributions in                    American Society for Testing and Materials, Philadel-
  Biology and Geology, 51, 139.                                         phia, pp. 150–165.
Sepkoski, J. J. Jr. (1988) Alpha, beta, or gamma: where does         Simberloff, D. & Connor, E. F. (1979) Q-mode and R-mode
  all the diversity go? Paleobiology, 14, 221–234.                      analyses of biogeographic distributions: null hypothe-
Sepkoski, J. J., Jr. (2002) A compendium of fossil marine               ses based on random colonization. In: Contemporary
  animal genera. Bulletins of American Paleontology, 363,               Quantitative Ecology and Related Econometrics, Patil,
  1–563.                                                                G. P. & Rosenzweig, M. L. (eds), International Coopera-
Shaw, A. B. (1964) Time in Stratigraphy. McGraw-Hill,                   tive Publishing House, Fairland, pp. 123–128.
  New York.                                                          Simková, A., Kadlec, D., Gelnar, M., & Morand, S. (2002)
Shaw, J., Lickey, E. B., Schilling, E. E., & Small, R. L. (2007)        Abundance-prevalence relationship of gill congeneric
  Comparison of whole chloroplast genome sequences to                   ectoparasites: testing the core satellite hypothesis and
  choose noncoding regions for phylogenetic studies in                  ecological specialisation. Parasitology Research, 88,
  angiosperms: the tortoise and the hare III. American                  682–686.
  Journal of Botany, 94, 275–288.                                    Simpson, E. H. (1949) Measurement of diversity. Nature,
Shen, T., Chao, A., & Lin, C. (2003) Predicting the number              163, 688.
  of new species in further taxonomic sampling. Ecology,             Simpson, G. G. (1944) Tempo and Mode in Evolution.
  84, 798–804.                                                          Columbia University Press, New York.
Sherwin, W. B., Jabot, F., Rush, R., & Rossetto, M. (2006)           Simpson, G. G. (1953) The Major Features of Evolution.
  Measurement of biological information with applica-                   Columbia University Press, New York.
  tions from genes to landscapes. Molecular Ecology, 15,             Singh, J., Behal, A., Singla, N., Joshi, A., Birbian, N., Singh,
  2857–2869.                                                            S., Bali, V., & Batra, N. (2009) Metagenomica: concept,
OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
328 REFERENCES
   methodology, ecological inference and recent advances.         Soberón, J. (2007) Grinnellian and Eltonian niches and
   Biotechnology Journal, 4, 480–494.                               geographic distributions of species. Ecology Letters, 10,
Sitran, R., Bergamasco, A., Decembrini, F., & Guglielmo,            1115–1123.
   L. (2009) Microzooplankton (tintinnid ciliates) diver-         Soberón, J. & Llorente, J. (1993) The use of species accumu-
   sity: coastal community structure and driving mecha-             lation functions for the prediction of species richness.
   nisms in the southern Tyrrhenian Sea (Western Mediter-           Conservation Biology, 7, 480–488.
   ranean). Journal of Plankton Research, 31, 153–170.            Sogin, M. L., Morrison, H. G., Huber, JA., Welch, D. M.,
Šizling, A. L. & Storch, D. (2004) Power-law species –              Huse, S. M., Neal, P. R., Arrieta, J. M., & Herndl, G. J.,
   area relationships and self-similar species distributions        (2006) Microbial diversity in the deep sea and the under-
   within finite areas. Ecology Letters, 7, 60–68.                  explored “rare biosphere”. Proceedings of the National
Šizling, A. L. & Storch, D. (2007) Geometry of species              Academy of Sciences, 103, 12115–12120.
   distributions: random clustering and scale invariance.         Solow, A. R. (1993a) Inferring extinction from sighting
   In: Scaling Biodiversity, Storch, D., Marquet, P. A., &          data. Ecology, 74, 962–963.
   Brown, J. H. (eds). Cambridge University Press, Cam-           Solow, A. R. (1993b) Inferring extinction in a declin-
   bridge, pp. 77–100.                                              ing population. Journal of Mathematical Biology, 32,
Šizling, A. L., Šizlingová, E., Storch, D., Reif, J., & Gaston,     79–82.
   K. J. (2009) Rarity, commonness and the contribution           Solow, A. R. (1996) Tests and confidence intervals for a
   of individual species to species richness patterns. The          common upper endpoint in fossil taxa. Paleobiology, 22,
   American Naturalist, 174, 82–93.                                 406–410.
Sloan, W. T., Quince, C., & Curtis, T. P. (2008) The Uncount-     Solow, A. R. & Smith, W. K. (1997) On fossil preservation
   ables. In: Accessing Uncultivated Microorganisms: from           and the stratigraphic ranges of taxa. Paleobiology, 23,
   the Environment to Organisms and Genomes and Back,               271–277.
   Zengler, K. (ed). ASM Press: Washington, DC, pp. 35–54.        Song, H., Buhay, J. E., Whiting, M. F., & Crandall,
Smith, M. D. & Knapp, A. K. (2003) Dominant species                 K. A. (2008) Many species in one: DNA barcoding
   maintain ecosystem function with non-random species              overestimates the number of species when nuclear,
   loss. Ecology Letters, 6, 509–517.                               mitochondrial pseudogenes are coamplified. Proceed-
Smith, W. & Grassle, F. (1977) Sampling properties of a             ings of the National Academy of Sciences, 105,
   family of diversity measures. Biometrics, 33, 283–292.           13486–13491.
Smith, B. & Wilson, J. B. (1996) A consumer’s guide to            Sørensen, T. (1948) A method of establishing groups of
   evenness indices. Oikos, 76, 70–82.                              equal amplitude in plant sociology based on similarity
Smith, E. P. & Zaret, T. M. (1982) Bias in estimating niche         of species content and its application to analyses of the
   overlap. Ecology, 63, 1248–1253.                                 vegetation on Danish commons. Biologiske Skrifter, 5,
Smith, K. W., Dee, C. W., Fearnside, J. D., Fletcher, E. W., &      1–34.
   Smith, R. N. (1993) The Breeding Birds of Hertfordshire.       Sorensen, L. L., Coddington, J. A., & Scharff, N. (2002)
   TheHertfordshireNaturalHistorySociety,Hertfordshire.             Inventorying and estimating subcanopy spider diver-
Smith, W., Solow, A. R., & Preston, P. E. (1996) An estima-         sity using semiquantitative sampling methods in an
   tor of species overlap using a modified beta-binomial            Afromontane forest. Environmental Entomology, 31,
   model. Biometrics, 52, 1472–1477.                                319–330.
Smith, A. B., Gale, A. S., & Monks, N. E. (2001) Sea-             Soule, M. E. (1986) Conservation Biology: The Science of
   level change and rock-record bias in the Cretaceous: a           Scarcity and Diversity. Sinauer Associates, Sunderland,
   problem for extinction and biodiversity studies. Paleo-          MA.
   biology, 27, 241–253.                                          Sousa, W. P. (1979) Disturbance in marine intertidal boul-
Smith, D. R., Brown, J. A., & Lo, N. C.H. (2004) Appli-             der fields: the nonequilibrium maintenance of species
   cations of adaptive sampling to biological populations.          diversity. Ecology, 60, 1225–1239.
   In: Sampling for Rare or Elusive Species: Concepts,            Sousa, W. P. (1984) The role of disturbance in natural com-
   Designs, and Techniques for Estimating Population                munities. Annual Review of Ecology and Systematics,
   Parameters, Thompson, W. L. (ed). Island Press, Wash-            15, 353–391.
   ington, pp. 77–122.                                            Southwood, T. R. E. (1977) Habitat: the templet for
Sobek S., Steffan-Dewenter I., Scherber C., & Tscharntke            ecological strategies. Journal of Animal Ecology, 46,
   T. (2009) Spatiotemporal changes of beetle communities           337–365.
   across a tree diversity gradient. Diversity & Distribu-        Southwood, T. R. E. (1978) Ecological Methods. Chapman
   tions, 15, 660–670.                                              & Hall, London.
                                                                  OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
REFERENCES 329
Southwood, T. R. E. (1996) The Croonian Lecture 1995.               Storfer, A., Eastman, J. M., & Spear, S. F. (2009) Modern
   Natural communities: structure and dynamics. Philo-                molecular methods for amphibian conservation. Bio-
   sophical Transactions of the Royal Society, London                 Science, 59, 559–571.
   Lond. B., 351, 1113–1129.                                        Strauss, D. & Sadler, P. M. (1989) Classical confidence
Southwood, R. & Henderson, P. A. (2000) Ecological Meth-              intervals and Bayesian probability estimates for ends of
   ods. 3rd edn. Blackwell Science, Oxford.                           local taxon ranges. Mathematical Geology, 21, 411–427.
Soykan, C., McGill, B., Magurran, A., Dornelas, M., Bahn,           Strong, D. R., Simberloff, D., Abele, L. G., & Thistle, A. B.
   V., Ugland, K., & Gray, J. S. (in prep.) An Assessment             (1984) Ecological Communities: Conceptual Issues and
   of Indicator Performance along Human Disturbance                   the Evidence. Princeton University Press, Princeton,
   Gradients.                                                         USA.
Spiegelhalter, D., Best, N., Calin, B., & van der Linde,            Sugihara, G. (1980) Minimal community structure: an
   A. (2002) Bayesian measures of model complexity and                explanation of species abundance patterns. The Amer-
   fit. Journal of the Royal Statistical Society, Series B, 64,       ican Naturalist, 116, 770–787.
   583–639.                                                         Sugihara, G., Bersier, L. F., Southwood, T. R. E., Pimm,
Staley, J. T. & Konopka, A. (1985) Measurement of in-                 S. L., & May, R. M. (2003) Predicted correspondence
   situ activities of nonphotosynthetic microorganisms                between species abundances and dendrograms of niche
   in aquatic and terrestrial habitats. Annual Review of              similarities. Proceedings of the National Academy of
   Microbiology, 39, 321–346.                                         Sciences of the United States of America, 100, 5246–5251.
Steffan-Dewenter, I., Muenzenberg, U., Buerger, C., Thies,          Sutherland, W. J., Bailey, M. J., Bainbridge, I. P., et al.
   C., & Tscharntke, T. (2002) Scale-dependent effects of             (2008) Future novel threats and opportunities facing UK
   landscape context on three pollinator guilds. Ecology,             biodiversity identified by horizon scanning. Journal of
   83, 1421–1432.                                                     Applied Ecology, 45, 821–833.
Stein, B. A., Scott, C., & Benton, N. (2008) Federal lands          Swenson, N. G. & Enquist, B. J. (2007) Ecological and evo-
   and endangered species: the role of military and other             lutionary determinants of a key plant functional trait:
   federal lands in sustaining biodiversity. Bioscience, 58,          wood density and its community-wide variation across
   339–347.                                                           latitude and elevation. American Journal of Botany, 94,
Steinke, D., Vences, M., Salzburger, W., & Meyer, A. (2005)           451–459.
   TaxI: a software tool for DNA barcoding using distance           Swingle, H. S. (1950) Relationships and Dynamics of Bal-
   methods. Philosophical Transactions of the Royal Soci-             anced and Unbalanced Fish Populations. Agricultural
   ety, London B, 360, 1075–1980.                                     Experiment Station of the Alabama Polytechnic Insti-
Stewart, J. G., Schieble, C. S., Cashner, R. C., & Barko V. A.        tute, Auburn, AL.
   (2005) Long-term Trends in the Bogue Chitto River Fish           Swingle, H. S. (1952) Farm pond investigations in
   Assemblage: a 27 Year Perspective. Southeastern Natu-              Alabama. Journal of Wildlife Management, 16, 243–249.
   ralist, 4, 261–272.                                              Taberlet, P. & Fumagalli, L. (1996) Owl pellets as a source
Stirling, G. & Wilsey, B. (2001) Empirical relation-                  of DNA for genetic studies of small mammals. Molecu-
   ships between species richness, evenness, and pro-                 lar Ecology, 5, 301–305.
   portional diversity. The American Naturalist, 158,               Taper, M. L. & Lele, S. R. (2004) The Nature of Scientific
   286–299.                                                           Evidence: Statistical, Philosophical, and Empirical Con-
Stohlgren, T. J. (2007) Measuring Plant Diversity: Lessons            siderations.. University of Chicago Press, Chicago.
   from the Field. Oxford University Press, Oxford, New             Tavares, E. S. & Baker. A. J. (2008) Single mitochondrial
   York.                                                              gene barcodes reliably identify sister-species in diverse
Stohlgren, T. J., Jarnevich, C., Chong, G. W., & Evangelista,         clades of birds. BMC Evolutionary Biology, 8, 81.
   P. H. (2006) Scale and plant invasions: a theory of biotic       Taylor, L. R. (1961) Aggregation, variance and the mean.
   acceptance. Preslia, 78, 405–426.                                  Nature, 189, 732–735.
Storch, D. & Šizling, A. L. (2002) Patterns in commoness            Taylor, L. R. (ed.) (1978) Bates, Williams, Hutchinson – A
   and rarity in Central European birds: reliability of the           Variety of Diversities. Blackwell Publishing, Oxford.
   core-satellite hypothesis. Ecography, 25, 405–416.               Taylor, L. R. (1984) Assessing and interpreting the spatial
Storch, D., Šizling, A., Reif, J., Polechová, J., Šizlingová,         distributions of insect populations. Annual Review of
   E., & Gaston, K. J. (2008) The quest for a null model              Entomology, 29, 321–357.
   for macroecological patterns: geometry of species dis-           Taylor, L. R., Kempton, R. A., & Woiwod, I. P. (1976)
   tributions at multiple spatial scales. Ecology Letters, 11,        Diversity statistics and the log series model. Journal of
   771–784.                                                           Animal Ecology, 45, 255–271.
OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
330 REFERENCES
Taylor, L. R., Woiwod, I. P., & Perry, J. N. (1978) The               Tiedje, J. M., Asuming-Brempong, S., Nusslein, K., Marsh,
  density-dependence of spatial behaviour and the rarity                 T. L., & Flynn, S. J. (1999) Opening the black box of soil
  of randomness. Journal of Animal Ecology, 47, 383–406.                 microbial diversity. Applied Soil Ecology, 13, 109–122.
Taylor, L. R., Woiwod, I. P., & Perry, J. N. (1979) The               Tilman, D. (2001) Functional diversity. In: Encyclopaedia
  negative binomial as a dynamic ecological model for                    of Biodiversity, Levin, S. A. (ed). Academic Press, San
  aggregation and the density dependence of k. Journal                   Diego, CA, pp. 109–120.
  of Animal Ecology, 48, 289–304.                                     Tilman, D., Lehman, C. L., & Kareiva, P. (1997a) Popula-
Taylor, C. M., Millican, D. S., Roberts, M. E., & Slack, W. T.           tion dynamics in spatial habitats. In: Spatial Ecology,
  (2008) Long-term change to fish assemblages and the                    Tilman, D. & Kareiva, P. (eds). Princeton University
  flow regime in a southerneastern U. S. river system after              Press, New Jersey, pp. 3–20.
  extensive aquatic ecosystem fragmentation. Ecography,               Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., &
  31, 787–797.                                                           Siemann, E. (1997b) The influence of functional diver-
Teplitsky, C., Mills, J. A., Alho, J. S., Yarrall, J. W., & Merilä,      sity and composition on ecosystem processes. Science,
  J. (2008) Bergmann’s rule and climate change revisited:                277, 1300.
  disentangling environmental and genetic responses in                Tipper, J. C. (1979) Rarefaction and rarefiction—the use
  a wild bird population. Proceedings of the National                    and abuse of a method in paleoecology. Paleobiology,
  Academy of Sciences. USA, 105, 13492–13496.                            5, 423–434.
Terborgh, J. T. (1983) Five New World Primates: a Study               Tobler, W. R. (1970) A computer movie simulating urban
  in Comparative Ecology. Princeton University Press,                    growth in the Detroit region. Economic Geography, 46,
  Princeton, NJ.                                                         234–240.
Terborgh, J., Foster, R. B., & Núñez, V. P. (1996) Tropical           Todd, S. W. (2006) Gradients in vegetation cover, structure
  tree communities: a test of the nonequilibrium hypoth-                 and species richness of Nama-Karoo shrublands in rela-
  esis. Ecology, 77, 561–567.                                            tion to distance from livestock watering points. Journal
The H. John Heinz III Center for Science, Economics,                     of Applied Ecology, 43, 293–304.
  and the Environment (2008) The Nation’s Ecosystems:                 Tokeshi, M. (1990) Niche apportionment or random
  core Indicators, Pn: The State of the Nation’s Ecosys-                 assortment: species abundance patterns revisited. Jour-
  tems 2008; Measuring the Land, Waters, and Living                      nal of Animal Ecology, 59, 1129–1146.
  Resources of The United States. Island Press, Washing-              Tokeshi, M. (1993) Species abundance patterns and com-
  ton, DC., 13–62.                                                       munity structure. Advances in Ecological Research, 24,
Thibault, K., White, E., & Ernest, S. K.M. (2004) Temporal               112–186.
  dynamics in the structure and composition of a desert               Tokeshi, M. (1996) Power fraction: a new explanation
  rodent community. Ecology, 85, 2649–2655.                              of relative abundance patterns in species-rich assem-
Thomas, C. D. & Mallorie, H. C. (1985) Rarity, species rich-             blages. Oikos, 75, 543–550.
  ness and conservation: butterflies of the Atlas Moun-               Tokeshi, M. (1999) Species Coexistience. Blackwell Sci-
  tains of Morocco. Biological Conservation, 33, 95–117.                 ences Ltd, Oxford.
Thomas, L., Buckland, S. T., Rexstad, E. R., Laake, J. L.,            Tomašových, A. & Kidwell, S. M. (2009) Fidelity of vari-
  Strindberg, S., Hedley, S. L., Bishop, J. R. B., Marques,              ation in species composition and diversity partition-
  T. A., & Burnham, K. P. (2010) Distance software: design               ing by death assemblages: time-averaging transfers
  and analysis of distance sampling surveys for estimating               diversity from beta to alpha levels. Paleobiology, 35,
  population size. Journal of Applied Ecology, 47, 5–14.                 94–118.
Thomaz, D., Guiller, A., & Clarke, B. (1996) Extreme diver-           Torsvik, V., Goksoyr, J., & Daae, F. L. (1990a) High diver-
  gence of mitochondrial DNA within species of pul-                      sity in DNA of soil bacteria. Applied and Environmen-
  monate land snails. Proceedings of the Royal Society                   tal Microbiology, 56, 782–787.
  London, B, 263, 363–368.                                            Torsvik, V., Salte, K., Sorheim, R., & Goksoyr, J.
Thompson, W. L. (2004) Sampling Rare or Elusive Species:                 (1990b) Comparison of phenotypic diversity and
  Concepts, Designs, and Techniques for Estimating Pop-                  DNA heterogeneity in a population of soil bacte-
  ulation Parameters. Island Press, Washington.                          ria. Applied and Environmental Microbiology, 56,
Thrush, S. F., Hewitt, J. E., Dayton, P. K., Coco, G., Lohrer,           776–781.
  A. M., Norkko, A., Norkko, J., & Chiantore, M. (2009)               Torsvik, V., Daae, F. L., Sandaa, R. A., & Ovreas, L.
  Forecasting the limits of resilience: integrating empirical            (1998) Novel techniques for analysing microbial diver-
  research with theory. Proceedings of the Royal Society                 sity in natural and perturbed environments. Journal of
  London, 276, 3209–3217.                                                Biotechnology, 64, 53–62.
                                                                 OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
REFERENCES 331
Torsvik, V., Ovreas, L., & Thingstad, T. F. (2002) Prokary-        Ugland, K. I. & Gray, J. S. (1982) Lognormal distributions
  otic diversity – magnitude, dynamics, and controlling              and the concept of community equilibrium. Oikos, 39,
  factors. Science, 296, 1064–1066.                                  171–178.
Tosh, C. A., Reyers, B., & van Jaarsveld, A. S. (2004)             Ugland, K. I., Gray, J. S., & Ellingsen, K. E. (2003) The
  Estimating the abundances of large herbivores in the               species – accumulation curve and estimation of species
  Kruger National Park using presence-absence data. Ani-             richness. Journal of Animal Ecology, 72, 888–897.
  mal Conservation, 7, 55–61.                                      Ugland, K. I., Lambshead, F. J. D., McGill, B., Gray, J. S.,
Toth, M. 2008. A new noninvasive method for detecting                O’Dea, N., Ladle, R. J., & Whittaker, R. J. (2007) Mod-
  mammals from birds’ nests. Journal of Wildlife Manage-             elling dimensionality in species abundance distribu-
  ment, 72, 1237–1240.                                               tions: description and evaluation of the Gambin model.
Tratalos, J., Fuller, R. A., Evans, K. L., Davies, R. G., New-       Evolutionary Ecology Research, 9, 313–324.
  son, S. E., Greenwood, J. J.D., & Gaston, K. J. (2007)           Ulrich, W. & Buszko, J. (2003) Self-similarity and the
  Bird densities are associated with household densities.            species-area relation of Polish butterflies. Basic and
  Global Change Biology, 13, 1685–1695.                              Applied Ecology, 4, 263–270.
Travis, J. & Ricklefs, R. E. (1983) A morphological compar-        Ulrich, W. & Ollik, M. (2004) Frequent and occasional
  ison of island and mainland assemblages of Neotropical             species and the shape of relative-abundance distribu-
  birds. Oikos, 41, 434–441.                                         tions. Diversity & Distributions, 10, 263–269.
Tringe, S. G., von Mering, C., Kobayashi, A., Salamov,             Ulrich, W. & Zalewski, M. (2006) Abundance and co-
  A. A., Chen, K., Chang, H. W., Podar, M., Short, J. M.,            occurrence patterns of core and satellite species of
  Mathur, E. J., Detter, J. C., Bork, P., Hugenholtz, P.,            ground beetles on small lake islands. Oikos, 114,
  & Rubin, E. M. (2005) Comparative metagenomics of                  338–348.
  microbial communities. Science, 308, 554–557.                    Umina, P. A., Weeks, A. R., Kearney, M. R., McKechnie,
Tscharntke, T., Gathmann, A., & Steffan-Dewenter, I.                 S. W., & Hoffmann, A. A. (2005) A rapid shift in a classic
  (1998) Bioindication using trap-nesting bees and wasps             clinal pattern in Drosophila reflecting climate change.
  and their natural enemies: community structure and                 Science, 308, 691–693.
  interactions. Journal of Applied Ecology, 35, 708–719.           Urich, T., Lanzen, A., Qi, J., Huson, D. H., Schleper, C., &
Tscharntke, T., Klein, A., Kruess, A., Steffan-Dewenter, I.,         Schuster, S. C. (2008) Simultaneous assessment of soil
  & Thies, C. (2005) Landscape perspectives on agricul-              microbial community structure and function through
  tural intensification and biodiversity – ecosystem ser-            analysis of the Meta-Transcriptome. PLoS ONE, 3,
  vice management. Ecology Letters, 8, 857–874.                      e2527.
Tscharntke, T., Sekercioglu, C. H., Dietsch, T. V., Sodhi,         Urquhart, N. S. & Kincaid, T. M. (1999) Designs for detect-
  N. S., Hoehn, P., & Tylianakis, J. M. (2008) Landscape             ing trend from repeated surveys of ecological resources.
  constraints on functional diversity of birds and insects           Journal of Agricultural, Biological, and Environmental
  in tropical agroecosystems. Ecology, 89, 944–951.                  Statistics, 4, 404–414.
Tuomisto, H. (2010) A diversity of beta diversities:               Urquhart, N. S., Paulsen, S. G., & Larsen, D. P. (1998) Mon-
  straightening up a concept gone awry. Part 1. Defining             itoring for policy-relevant regional trends over time.
  beta diversity as a function of alpha and gamma diver-             Ecological Applications, 8, 246–257.
  sity. Ecography, 33, 2–22.                                       Valentini, A., Miquel, C., Nawaz, M. A., Bellemain,
Tuomisto, H., Ruokolainen, K., Kalliola, R., Linna, A.,              E., Coissac, E., Pompanon, F., Gielly, L., Cruaud, C.,
  Danjoy, W., & Rodriguez, Z. (1995) Dissecting Ama-                 Nascetti, G., Wincker, P., Swenson, J. E., & Taber-
  zonian biodiversity. Science, 269, 63–66.                          let, P. (2009) New perspectives in diet analysis based
Turner, W., Leitner, W. A., & Rosenzweig, M. L. (2000)               on DNA barcoding and parallel pyrosequencing:
  Ws2m.exe. http://eebweb.arizona.edu/diversity.                     the trnL approach. Molecular Ecology Research, 9,
Tylianakis, J. M., Klein, A. -M., & Tscharntke, T. (2005) Spa-       51–60.
  tiotemporal variation in the diversity of hymenopters            Vamosi, S. M., Heard, S. B., Vamosi, J. C., & Webb, C. O.
  across a tropical habita gradient. Ecology, 86, 3296–3302.         (2009) Emerging patterns in the comparative analysis of
Tyson, G. W., Chapman, J., Hugenholtz, P., Allen, E. E.,             phylogenetic community structure. Molecular Ecology,
  Ram, R. J., Richardson, P. M., Solovyev, V. V., Rubin,             18, 572–592.
  E. M., Rokhsar, D. S., & Banfield, J. F. (2004) Commu-           van der Gast, C. J., Ager, D., & Lilley, A. K. (2008) Temporal
  nity structure and metabolism through reconstruction               scaling of bacterial taxa is influences by both stochas-
  of microbial genomes from the environment. Nature,                 tic and deterministic ecological factors. Environmental
  428, 37–43.                                                        Microbiology, 10, 1411–1418.
OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
332 REFERENCES
Vandermeer, J., Granzow de la Cerda, I., Perfecto, I.,         Venter, J. C., Remington, K., Heidelberg, J. F., Halpern,
  Boucher, D., Ruiz, J. & Kaufmann, A. (2004) Multi-             A. L., Rusch, D., Eisen, J. A., Wu, D. Y., Paulsen, I.,
  ple basins of attraction in a tropical forest: evidence        Nelson, K. E., Nelson, W., Fouts, D. E., Levy, S., Knap,
  for a nonequilibrium community structure. Ecology, 85,         A. H., Lomas, M. W., Nealson, K., White, O., Peterson, J.,
  575–579.                                                       Hoffman, J., Parsons, R., Baden-Tillson, H., Pfannkoch,
van Rensburg, B. J., McGeoch, M. A., Matthews, W.,               C., Rogers, Y. H., & Smith, H. O. (2004) Environmental
  Chown, S. L., & van Jaarsveld, A. S. (2000) Testing gen-       genome shotgun sequencing of the Sargasso Sea. Sci-
  eralities in the shape of patch occupancy frequency dis-       ence, 304, 66–74.
  tributions. Ecology, 81, 3163–3177.                          Vera, M., Guiliani, N., & Jerez, C. A. (2003) Proteomic and
van Rensburg, B. J., Chown, S. L., & Gaston, K. J. (2002)        genomic analysis of the phosphate starvation response
  Species richness, environmental correlates, and spatial        of Acidithiobacillus ferrooxidans. Hydrometallurgy, 71,
  scale: a test using South African birds. The American          125–132.
  Naturalist, 159, 566–577.                                    Vera, J. C., Wheat, C. W., Fescemyer, H. W., Frilander, M. J.,
van Straalen, N. M. (1998) Evaluation of bioindicator            Crawford, D. L., Hanski, I., & Marden, J. H. (2008) Rapid
  systems derived from soil arthropod communities.               transcriptome characterization for a nonmodel organ-
  Applied Soil Ecology, 9, 429–437.                              ism using 454 pyrosequencing. Molecular Ecology, 17,
van Straalen, N. M. & Verhoef, H. A. (1997) The devel-           1636–1647.
  opment of a bioindicator system for soil acidity based       Vile, D., Shipley, B., & Garnier, E. (2006) Ecosystem
  on arthropod pH preferences. The Journal of Applied            productivity can be predicted from potential relative
  Ecology, 34, 217–232.                                          growth rate and species abundance. Ecology Letters, 9,
Van Valen, L. (1973) A new evolutionary law. Evolutionary        1061–1067.
  Theory, 1, 1–30.                                             Villéger, S., Mason, N. W.H., & Mouillot, D. (2008) New
Van Valen, L. (1979) Taxonomic survivorship curves. Evo-         multidimensional functional diversity indices for a mul-
  lutionary Theory, 4, 129–142.                                  tifaceted framework in functional ecology. Ecology, 89,
Vane-Wright, R. I., Humphries, C. J., & Williams, P. H.          2290–2301.
  (1991) What to protect? – Systematics and the agony of       Violle, C. & Jiang, L. (2009) Towards a trait-based quan-
  choice. Biological Conservation, 55, 235–254.                  tification of species niche. Journal of Plant Ecology, 2,
Veech, J. A., Summerville, K. S., Crist, T. O., & Gering,        87–93.
  J. C. (2002) The additive partitioning of species diver-     Virginia Natural Heritage Program. (2006) DCR-DNH
  sity: recent revival of an old idea. Oikos, 99, 3–9.           vegetation plots database, ver. 3.0. Virginia Department
Veldtman, R. & McGeoch, M. A. (2004) Spatially explicit          of Conservation and Recreation, Division of Natural
  analyses unveil density dependence. Proceedings of the         Heritage, Richmond.
  Royal Society London, B, 271, 2439–2444.                     Vitousek, P. M., Ehrlich, P. R., Ehlrich, A. H., & Matson,
Vellend, M. (2001) Do commonly used indices of β-                P. A. (1986) Human appropriation of the products of
  diversity measure species turnover? Journal of Vegeta-         photosynthesis. BioScience, 36, 368–373.
  tion Science, 12, 545–552.                                   Vitousek, P. M., Mooney, H. A., Lubchenco, J., & Melillo,
Vellend, M., Harmon, L. J., Lockwood, J. L., Mayfield,           J. M. (1997) Human domination of Earth’s ecosystems.
  M. M., Hughes, A. R., Wares, J. P., & Sax, D. F. (2007)        Science, 277, 494–499.
  Effects of exotic species on evolutionary diversification.   Volkov, I., Banavar, J. R., Hubbell, S. P., & Maritan, A.
  Trends in Ecology and Evolution, 22, 481–488.                  (2003) Neutral theory and relative species abundance in
Vences, M., Thomas, M., Bonett, R. M., & Vieites,                ecology. Nature, 424, 1035–1037.
  D. R. (2005a) Deciphering amphibian diversity through        Volkov, I., Banavar, J. R., Hubbell, S. P., & Maritan, A.
  DNA barcoding: chances and challenges. Philosophi-             (2007) Patterns of relative species abundance in rain-
  cal Transactions of the Royal Society, London B 360:           forests and coral reefs. Nature, 450, 45–49.
  1859–1868.                                                   Vrba, E. S. (1985) Environment and evolution: alter-
Vences, M., Thomas, M., van der Meijden, A., Chiari, Y.,         native causes of the temporal distribution of evolu-
  & Vieites, D. R. (2005b) Comparative performance of            tionary events. South African Journal of Science, 81,
  the 16S rRNA gene in DNA barcoding of amphibians.              229–236.
  Frontiers in Zoology, 2, 5.                                  Wagner, P. J. (2000) Likelihood tests of hypothesized dura-
Venier, L. A. & Fahrig, L. (1998) Intraspecific abundance-       tions: determining and accommodating biasing factors.
  distribution relationships. Oikos, 82, 438–490.                Paleobiology, 26, 431–449.
                                                               OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
REFERENCES 333
Walker, B., Kinzig, A., & Langridge, J. (1999) Plant              nity structure. Journal of the Marine Biological Associa-
 attribute diversity, resilience, and ecosystem function:         tion of the United Kingdom, 71, 225–244.
 the nature and significance of dominant and minor               Warwick, R. M. & Clarke, K. R. (1993) Comparing the
 species. Ecosystems, 2, 95–113.                                  severity of disturbance: a meta-analysis of marine mac-
Walker, S. C., Poos, M. S., & Jackson, D. A. (2008) Func-         robenthic community data. Marine Ecology Progress
 tional rarefaction: estimating functional diversity from         Series, 92, 221–231.
 field data. Oikos, 117, 286–296.                                Warwick, R. M. & Clarke, K. R. (1994) Relearning the
Walther, B. A. & Moore, J. L. (2005) The concepts of bias,        ABC – taxonomic changes and abundance biomass rela-
 precision and accuracy, and their use in testing the per-        tionships in disturbed benthic communities. Marine
 formance of species richness estimators, with a litera-          Biology, 118, 739–744.
 ture review of estimator performance. Ecography, 28,            Warwick, R. M. & Clarke, K. R. (1995) New ‘biodiversity’
 815–829.                                                         measures reveal a decrease in taxonomic distinctness
Walther, B. A. & Morand, S. (1998) Comparative perfor-            with increasing stress. Marine Ecology Progress Series,
 mance of species richness estimation method. Parasitol-          129, 301–305.
 ogy, 116, 395–405.                                              Warwick, R. M. & Clarke, K. R. (1998) Taxonomic distinct-
Wang, S. C. (2003) On the continuity of background and            ness and environmental assessment. Journal of Applied
 mass extinction. Paleobiology, 29, 455–467.                      Ecology, 35, 532–543.
Wang, S. C. & Everson, P. J. (2007) Confidence intervals         Watling, L. & Norse, E. A. (1998) Disturbance of the seabed
 for pulsed mass extinction events. Paleobiology, 33,             by mobile fishing gear: a comparison to forest clearcut-
 324–336.                                                         ting. Conservation Biology, 12, 1180–1197.
Ward, R. D. (2009) DNA barcoding divergence among                Webb, C. O. (2000) Exploring the phylogenetic structure of
 species and genera of birds and fishes. Molecular Ecol-          ecological communities: an example for rain forest trees.
 ogy Research, 9, 1077–1085.                                      The American Naturalist, 156, 145–155.
Ward, S. A., Sunderland, K. D., Chambers, R. J. & Dixon          Webb, C. O., Ackerly, D. D., McPeek, M. A., &
 A. F. G. (1986) The use of incidence counts for estimation       Donoghue, M. J. (2002) Phylogenies and community
 of cereal aphid populations. 3. Population development           ecology. Annual Review of Ecology and Systematics, 33,
 and the incidence-density relation. Netherlands Journal          475–505.
 of Plant Pathology, 92, 175–183.                                Webb, T. J., Noble, D., & Freckleton, R. P. (2007)
Ware, D. M. & Thomson, R. E. (2005) Bottom-up ecosys-             Abundance-occupancy dynamics in a human-
 tem trophic dynamics determine fish production in the            dominated environment: linking interspecific and
 northeast Pacific. Science, 308, 1280–1284.                      intraspecific trends in British farmland and woodland
Ware, S. J., Rees, H. L., Boyd, S. E., & Birchenhough, S. N.      birds. Journal of Animal Ecology, 76, 123–134.
 (2008) Performance of selected indicators in evaluating         Webb, C. O., Ackerly, D. D., & Kembel, S. W. (2008) Phy-
 the consequences of dredged material relocation and              locom: software for the analysis of phylogenetic com-
 marine aggregate extraction. Ecological Indicators, 9,           munity structure and trait evolution. Bioinformatics, 24,
 704–718.                                                         2098–2100.
Warming, E. 1909. Oecology of Plants. Clarendon Press,           Weiher, E. (2004) Why should we constrain stress
 Oxford.                                                          and limitation? – Why conceptual terms deserve
Warren, P. H. & Gaston, K. J. (1997) Interspecific                broad definitions. Journal of Vegetation Science, 15,
 abundance-occupancy relationships: a test of mecha-              569–571.
 nisms using microcosms. Journal of Animal Ecology, 66,          Weiher, E. & Keddy, P. A. (1995) Assembly rules, null
 730–742.                                                         models, and trait dispersion, new questions from old
Wartenberg, D., Ferson, S., & Rohlf, F. J. (1987)                 patterns. Oikos, 74, 159–164.
 Putting things in order: a critiqye of detrended cor-           Weiher, E., Clarke, G. D.P., & Keddy, P. A. (1998) Commu-
 respondence analysis. The American Naturalist, 129,              nity assembly rules, morphological dispersion, and the
 434–448.                                                         coexistence of plant species. Oikos, 81, 309–322.
Warwick, R. M. (1986) A new method for detecting pol-            Weiher, E., van der Werf, A., Thompson, K., Roderick,
 lution effects on marine macrobenthic communities.               M., Garnier, E., & Eriksson, O. (1999) Challenging
 Marine Biology, 92, 557–562.                                     Theophrastus: a common core list of plant traits for
Warwick, R. M. & Clarke, K. R. (1991) A comparison of             functional ecology. Journal of Vegetation Science, 10,
 some methods for analysing changes in benthic commu-             609–620.
OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
334 REFERENCES
Weiss, R. E. & Marshall, C. R. (1999) The uncertainty in the      Wiegand, T. & Moloney, K. A. (2004) Rings, circles, and
 true end point of a fossil’s stratigraphic ranges when            null-models for point pattern analysis in ecology. Oikos,
 stratigraphic sections are sampled discretely. Mathe-             104, 209.
 matical Geology, 31, 435–453.                                    Wilcox, B. A. (1978) Supersaturated island faunas: a
Weitzman, M. L. (1992) On diversity. Quarternary Journal           species-age relationship for lizards on post-pleistocene
 of Economics, 107, 363–405.                                       land-bridge islands. Science, 199, 996–998.
Wellington, E. M. H., Berry, A., & Krsek, M. (2003) Resolv-       Williams, C. B. (1964) Patterns in the Balance of Nature
 ing functional diversity in relation to microbial commu-          and Related Problems in Quantitative Ecology. Acad-
 nity structure in soil: exploiting genomics and stable            emic Press, London.
 isotope probing. Current Opinion in Microbiology, 6,             Williams, B. K., Nichols, J. D., & Conroy, M. J. (2002)
 295–301.                                                          Analysis and Management of Animal Populations. Aca-
Westoby, M. (1999) A leaf-height-seed (LHS) plant ecology          demic Press, San Diego.
 strategy scheme. Plant and Soil, 199, 213–227.                   Williamson, M. & Gaston, K. J. (2005) The lognormal dis-
White, E. P. (2007) Spatiotemporal scaling of species rich-        tribution is not an appropriate null hypothesis for the
 ness: patters, processes, and implications. In: Scaling           species-abundance distribution. Journal of Animal Ecol-
 Biodiversity, Storch, D., Marquet, P. A., & Brown, J. H.          ogy, 74, 409–422.
 (eds). Cambridge University Press, Cambridge, pp. 325–           Willis, J. C. (1922) Age and Area: A Study in Geographical
 346.                                                              Distribution and Origin of Species. Cambridge Univer-
White, G. C., Burnham, K. P., & Anderson, D. R. (2001)             sity Press, Cambridge.
 Advanced features of Program MARK. In: Wildlife,                 Willis, D. W. & Murphy, B. R. (1996) Planning for sam-
 Land, and People: Priorities for the 21st Century, Field,         pling. In: Fisheries Techniques, Murphy, B. R. & Willis,
 R., Warren, R. J., Okarma, H., & Sievert, P. R. (eds). The        D. W. (eds). American Fisheries Society, Bethesda, MD,
 Wildlife Society, Bethesda, MD, pp. 368–377.                      USA, pp. 1–15.
White, E. P., Ernest, S. K. M., & Thibault, K. M. (2004)          Wilsey, B. J., Chalcraft, D. R., Bowles, C. M., & Willig,
 Trade-offs in community properties through time in                M. R. (2005) Relationships among indices suggest that
 a desert rodent community. The American Naturalist,               richness is an incomplete surrogate for grassland biodi-
 164, 670–676.                                                     versity. Ecology, 86, 1178–1184.
White, E. P., Adler, P. B., Lauenroth, W. K., Gill, R. A.,        Wilson, J. B. (1991) Methods for fitting domi-
 Greenberg, D., Kaufman, D. M., Rassweiler, A., Rusak,             nance/diversity curves. Journal of Vegetation Science,
 J. A., Smith, M. D., Steinbeck, J. R., Waide, R. B., & Yao,       2, 35–46.
 J. (2006) A comparison of the species-time relationship          Wilson, J. B. (1993) Would we recognise a broken-
 across ecosystems and taxonomic groups. Oikos, 112,               stick community if we found one? Oikos, 67, 181–
 185–195.                                                          183.
White, E. P., Enquist, B. J., & Green, J. L. (2008) On estimat-   Wilson, L. T. & Room, P. M. (1983) Clumping patterns
 ing the exponent of power-law frequency distributions.            of fruit and arthropods in cotton, with implications
 Ecology, 89, 905–912.                                             for binomial sampling. Environmental Entomology, 12,
Whitman, W. B., Coleman, D. C., & Wiebe, W. J. (1998)              296–302.
 Prokaryotes: the unseen majority. Proceedings of the             Wilson, J. B., Wells, T. C. E., Trueman, I. C., Jones, G.,
 National Academy of Sciences of the United States of              Atkinson, M. D., Crawley, M. J., Dodd, M. E., & Sil-
 America, 95, 6578–6583.                                           vertown, J. (1996a) Are there assembly rules for plant
Whittaker, R. H. (1952) A study of summer foliage insect           species abundance? An investigation in relation to soil
 communities in the Great Smoky Mountains. Ecological              resources and successional trends? Journal of Ecology,
 Monographs, 22, 1–44.                                             84, 527–538.
Whittaker, R. H. (1960) Vegetation of the Siskiyou moun-          Wilson, D. E., Nichols, J. D., Rudran, R., & Southwell,
 tains, Oregon and California. Ecological Monographs,              C. (1996b) Introduction. In: Measuring and Monitoring
 30, 279–338.                                                      Biological Diversity, Standard Methods for Mammals,
Whittaker, R. H. (1965) Dominance and diversity in land            Wilson, D. E., Cole, R. F., Nichols, J. D., Rudran, R., &
 plant communities. Science, 147, 250–260.                         Foster, M. S. (eds). Smithsonian Institution Press, Wash-
Whittaker, R. H. (1972) Evolution and measurement of               ington, DC, pp. 1–7.
 species diversity. Taxon, 12, 213–251.                           Wilting, A., Buckley-Beason, V. A., Feldhaar, H., Gadau, J.,
Whittaker, R. H. (1975) Communities and Ecosystems. 2nd            O’Brien, S. J., & Linsenmair, K. E. (2007) Clouded leop-
 edn. MacMillan Publishers, New York.                              ard phylogeny revisited: support for species recognition
                                                                 OUP CORRECTED PROOF – FINAL, 18/10/2010, SPi
REFERENCES 335
 and population division between Borneo and Sumatra.                 Tjoelker, M. G., Veneklaas, E. J., & Villar, R. (2004)
 Frontiers in Zoology, 4, 15.                                        The worldwide leaf economics spectrum. Nature, 428,
Wimberly, M. C., Yabsley, M. J., Baer, A. D., Dugan, V. G.,          821–827.
 & Davidson, W. R. (2008) Spatial heterogeneity of cli-            Wright, J. F. (2000) An introduction to RIVPACS. In:
 mate and land-cover constraints on distributions of tick-           Assessing the Biological Quality of Fresh Waters: RIV-
 borne pathogens. Global Ecology and Biogeography, 17,               PACS and Other Techniques, Wright, J. F., Sutcliffe,
 189–202.                                                            D. W., & Furse, M. T. (eds). Freshwater Biological Asso-
Winemiller, K. O. (1990) Spatial and temporal variation in           ciation, Ambleside, Cumbria, pp. 1–24.
 tropical fish trophic networks. Ecological Monographs,            Yang, L. H. (2004) Periodical cicadas as resource pulses in
 60, 331–367.                                                        North American forests. Science, 306, 1565–1567.
Winker, K. (2009) Reuniting phenotype and genotype in              Yin, Z. Y., Ren, H., Zhang, Q. M., Peng, S. L., Guo, Q. F.,
 biodiversity research. BioScience, 59, 657–665.                     & Zhou, G. Y. (2005) Species abundance in a forest
Woese, C. R. (1987) Bacterial evolution. Microbiological             community in south China: a case of Poisson lognormal
 Reviews, 51, 221–271.                                               distribution. Journal of Integrative Plant Biology, 47,
Wolda, H. (1981) Similarity indices, sample size and diver-          801–810.
 sity. Oecologia, 50, 296–302.                                     Yoccoz, N. G., Nichols, J. D., & Boulinier, T. (2001) Moni-
Wolda, H. (1983) Diversity, diversity indices and tropical           toring of biological diversity in space and time. Trends
 cockroaches. Oecologia, 58, 290–298.                                in Ecology and Evolution, 16, 446–453.
Wolf, J. H. D. (2005) The response of epiphytes to anthro-         Zahariev, M., Dahl, V., Chen, W., & Lévesque, C. A. (2009)
 pogenic disturbance of pine-oak forests in the highlands            Efficient algorithms for the discovery of DNA oligonu-
 of Chiapas, Mexico. Forest Ecology and Management,                  cleotide barcodes from sequence databases. Molecular
 212, 376–393.                                                       Ecology Research, 9(Suppl. 1), 58–64.
Woodcock, S., van der Gast, C. J., Bell, T., Lunn,                 Zamora, J., Verdú, J. R., & Galante, E. (2007) Species rich-
 M., Curtis, T. P., Head, I. M., & Sloan, W. T.                      ness in Mediterranean agroecosystems: spatial and tem-
 (2006) Neutral assembly of bacterial communities. In:               poral analysis for biodiversity conservation. Biological
 Joint Symposium of the Environmental-Microbiology-                  Conservation, 134, 113–121.
 Group/British-Ecological-Society/Society-for- General-            Zapiola, M. L., Campbell, C. K., Butler, M. D., & Mallory-
 Microbiology, York, pp. 171–180.                                    Smith, C. A. (2008) Escape and establishment of trans-
Woodcock, S., van der Gast, C. J., Bell, T., Lunn, M., Curtis,       genic glyphosate-resistant creeping bentgrass Agrostis
 T. P., Head, I. M., & Sloan, W. T. (2007) Neutral assembly          stolonifera in Oregon, USA: a 4-year study. Journal of
 of bacterial communities. FEMS Microbiology Ecology,                Applied Ecology, 45, 486–494.
 62, 171–180.                                                      Zar, J. H. (1996) Biostatistical Analysis, 3rd edn. Prentice-
Wootton, J. T. (2005) Field parameterization and experi-             Hall, Upper Saddle River, New Jersey, USA
 mental test of the neutral theory of biodiversity. Nature,        Zhang, D. A., Brecke, P., Lee, H. F., He, Y.-Q., & Zhang,
 433, 309–312.                                                       J. (2007) Global climate change, war, and population
Wright, S. (1951) The genetic structure of populations.              decline in recent history. Proceedings of the National
 Annals of Eugenics, 15, 323–354.                                    Academy of Sciences. USA, 104, 19214–19219.
Wright, D. H. (1991) Correlations between incidence and            Zillio, T. & Condit, R. (2007) The impact of neutrality,
 abundance are expected by chance. Journal of Biogeog-               niche differentiation and species input on diversity and
 raphy, 18, 463–466.                                                 abundance distributions. Oikos, 116, 931–940.
Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D.,          Zuckerberg, B., Porter, W. F., & Corwin, K. (2009) The
 Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T.,            consistency and stability of abundance-occupancy rela-
 Cornelissen, J. H., Diemer, M., Flexas, J., Garnier, E.,            tionships in large-scale population dynamics. Journal of
 Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B.,              Animal Ecology, 78, 172–181.
 Lee, T., Lee, W., Lusk, C., Midgley, J. J., Navas, M. L.,         Zuckerka, E. & Pauling, L. (1965) Molecules as documents
 Niinemets, U., Oleksyn, J., Osada, N., Poorter, H., Poot,           of evolutionary history. Journal of Theoretical Biology,
 P., Prior, L., Pyankov, V. I., Roumet, C., Thomas, S. C.,           8, 357.