One Dimensional Heat Equation
One Dimensional Heat Equation
Let OA be a homogeneous bar of uniform cross – section. Let surface of the rod
be laterally insulated with a material impervious to heat. Let the stream lines
of heat flow be parallel to one another and perpendicular to the cross
sectional area. Let O be the origin and OA as the positive x- axis. Let ρ be the
density (gm/cm3), s be the specific heat (cal./gr.deg) and k the thermal
conductivity (cal./cm.deg.sec). Let u(x,t) be the temperature at a distance x
from O. It can be shown that u(x,t) is governed by
∂2 u 1 ∂u ∂ u 2 ∂2 u
= ∨ =c .................... (1)
∂ x 2 c 2 ∂ t ∂t ∂ x2
2 k
Where c = ρs , and c2 is called the diffusivity of the substance.
The equation (1) is called one dimensional heat flow equation or diffusion
equation.
2
∂ u 1 ∂u
Solution of =
∂ x2 c2 ∂ t
using method of Separation of Variables.
∂2 u 1 ∂u
The one dimensional heat equation is = 2 .................. (1)
∂x c ∂t
2
X 11 1 T 1
Hence X = 2 T
c
X 11 1 T 1 2
= 2 =p
X c T
11
X (x) 2 11 2
= p ⇨ X ( x )= p X ( x )
X(x)
i.e., X 11 ( x ) −p 2 X ( x )=0
2 2
d X 2 d 2 d
i.e., 2 −p X =0 Let D= dx
,D = 2
dx dx
i.e., D 2 X− p2 X =0 ⇨ ( D2− p2 ) X =0
⇨m2= p2 ⇨m=± p
⸫ X ( x )= A1¿ e px + B1¿ e− px
1 T1 2 1 2 2 1 2 2
and also 2 T =p ⇨ T = p c T ⇨ T − p c T =0
c
2 2
⇨T ( t )=C 1 e p c t
Thus u ( x , t )=( A 1¿ e px +B 1¿ e− px ) C 1 e p c t =( A 1 e px + B1 e− px ) e p c t
2 2 2 2
................. (S.1)
¿ ¿
Where constant C1 is absorbed in to A1 and B1 .
X 11 1 T 1
= =0
X c2 T
11
X (x) 11 2
i.e., =0 ⇨ X ( x ) =0 ⇨ D X=0
(
X x )
⸫ The auxiliary equation is f ( m )=m2 =0
⇨m=0,0
¿ ¿
⸫ X ( x ) = A2 + B2 x
1
1 T (t )
and also =0 ⇨ T 1 ( t )=0 ⇨ T =C 2
c 2
T ( t )
¿ ¿
⸫ u ( x ,t )=( A 2 + B2 x ) C 2⇨u ( x , t )= A2 + B2 x .................. (S.2)
¿ ¿
Where C2 is absorbed into A2 ∧B 2
i.e., X 11 ( x ) + p2 X ( x )=0
2 2
d X 2 d 2 d
i.e., 2 + p X=0 Let D= dx , D = 2
dx dx
1 T1 2 1 2 2 1 2 2
and also 2 T =− p ⇨T =− p c T ⇨T + p c T =0
c
2 2
⇨T ( t )=C 3 e−p c t
2 2 2 2
u ( x , t )= A2 + B2 x ............................ (S.2)
2 2
Problems
1. Find the temperature u(x,t) in a bar OA of length ‘l’ which is perfectly
insulated laterally and whose ends O and A are kept at 0 0C, given that
the initial temperature at any point P of the rod (where OP =x) is given
as u(x,0) = f(x) (0 ≤ x ≤ l¿.
⸫ A3 e− p c t =0 for all t
⸫A3 = 0
2 2
−p c t
u ( 0 , t ) =B 3 sin px e
⇨ B3 sin pl e− p c t=0
⇨sin pl=0 ⇨ pl=nπ where n is a positive integer
nπ
Thus p= l where n = 1,2,3,.......................
Thus a typical solution of equation (1) satisfying conditions (2) and (3)
is given by
2 2 2
n π c
t
nπx l
2
for n = 1,2,3,..............
u ( x , t )=Bn sin e
l
∑ u n ( x ,t )
n =1
n=1 l
Where Bn’s are arbitrary constants to be determined using condition (4)
Using condition (4) i.e., u(x,0) =f(x). Putting t = 0 in equation (5), we
get
2 2 2
∞ n π c
.0
nπx
u ( x , 0 ) =∑ Bn sin
2
l
e =f (x)
n=1 l
∞
nπx
⇨ ∑ Bn sin =f ( x ) , 0 ≤ x ≤≤ l
n=1 l
l
2 nπx
⸫ Bn = ∫
l 0
f ( x ) sin
l
dx , n = 1,2,3,........ ................... (6)
X 11 ( x )
= p2 ⇨ X 11 ( x )= p2 X ( x )
X(x)
i.e., X 11 ( x ) −p 2 X ( x )=0
2 2
d X 2 d 2 d
i.e., 2
−p X =0 Let D= dx , D =
dx d x2
i.e., D 2 X− p2 X =0 ⇨ ( D2− p2 ) X =0
⇨m2= p2 ⇨m=± p
⸫ X ( x )= A1¿ e px + B1¿ e− px
1 T1 2 1 2 2 1 2 2
and also 2 T =p ⇨ T = p c T ⇨ T − p c T =0
c
2 2
⇨T ( t )=C 1 e p c t
Thus u ( x , t )=( A 1¿ e px +B 1¿ e− px ) C 1 e p c t =( A 1 e px + B1 e− px ) e p c t
2 2 2 2
................. (2)
¿ ¿
Where constant C1 is absorbed in to A1 and B1 .
⇨m=0,0
¿ ¿
⸫ X ( x ) = A2 + B2 x
1
1 T (t ) 1
and also =0 ⇨ T ( t )=0 ⇨ T =C 2
c
2
T ( t )
¿ ¿
⸫ u ( x ,t )=( A 2 + B2 x ) C 2⇨u ( x , t )= A2 + B2 x .................. (3)
¿ ¿
Where C2 is absorbed into A2 ∧B 2
i.e., X 11 ( x ) + p2 X ( x )=0
d2 X d d2
i.e., 2
+ p2 X=0 Let D= dx , D =
2
2
dx dx
1 T1 2 1 2 2 1 2 2
and also 2 T =− p ⇨T =− p c T ⇨T + p c T =0
c
2 2
⇨T ( t )=C 3 e−p c t
2 2 2 2
Since u(x,t) decreases as time increases, we find that solution (4) only is
consistent with the physical nature of the problem. Hence equation (4) is the
required solution.
2 2
⇨ A . e− p c t =0 ⇨ A=0
2 2
Since this is the solution for n = 1,2,3,.........., the sum of these solutions is also a
solution.
2 2 2
n π c
( )
∞
Hence u ( x , t )=∑ Bn sin nπx e
2
t
L
n=1 L
( πx )
Since u(x,0) = 3 sin L , we get
2 2 2
n π c
( ) ( )
∞
πx nπx .0
=¿ ∑ Bn sin
2
L
3 sin e ¿
L n=1 L
( ) ( )
∞
πx nπx
⇨3 sin =¿ ∑ Bn sin ¿
L n=1 L
B1 = 3, B2 = B3 = B4 = ............... =0
2 2
−π c t
( )
Hence u ( x , t )=3 sin πx e , which is the required solution.
2
L
L
∂2 u d2 u
=0 i .e . , =0 ................. (2) ⸪ D2=0
∂ x2 d x2
Also the boundary conditions for the subsequent unsteady flow are
⇨A=0
2 2
If B = 0, equation (8) will give a trivial solution u(x,t) = 0 and hence we must
have sin pL=0
Since equation (1) is linear, its most general solution is got by a linear
combination of solutions of the form (9).
Hence in order that the condition (4) may be satisfied, we must have
∞
∑ Bn sin nπx
L
=
100 x
L
................... (11)
n =1
100 x
We now expand L
in a half – range Fourier sine series in (0,L).
∞
100 x nπx
=∑ an sin ............... (12)
L n=1 L
L
2 100 x nπx
Where a n= ∫
L 0 L
sin
L
dx
[ ( ) ( )]
L
nπx nπx
−cos −sin
200 L L
a n= 2 x −1.
L nπ 2 2
n π
L L
2
0
200
L [
a n= 2 − L .
L
nπ
cos
nπL L2
+
L n2 π 2
sin
nπL 200
L
L2
− 2 0+ 2 2 sin 0
L n π ] [ ]
a n=
[
200 −L2
L2 nπ
cos nπ +
L2
n2 π 2
sin nπ ⇨ an = 2
L]
200 −L2
nπ
cos nπ [ ]
a n=
L
2 [
200 −L2
nπ
n
]
. (−1 ) ⇨ a n=
200
nπ
(−1 )n+1
200 n +1
Hence Bn= nπ (−1 )
Solution: For convenience, we shall take l to be the length of the rod and
put l = 20 wherever necessary.
∂u 2 ∂2 u
The equation for the conduction of heat is ∂ t =c 2 ............... (1)
∂x
In order to find the initial temperature distribution in the bar, make use of the
steady- state condition. (Steady- state condition means that the temperature
at any particular point, no longer varies with time) When u depends only on x
and not on t,then equation (1) reduces to
2 2
∂ u d u
2
=0 i .e . , 2 =0 ................. (2) ⸪ D2=0
∂x dx
u(0,t) = 30
30 = a.0 + b ⇨ b = 30
When the steady – state condition is reached, the temperatures at the ends A
and B have been changed to 400C and 600C respectively. So the boundary
conditions are
u(0,t) = 40 for all values of t ............ (5)
d2u
To get u s ( x ), we have to solve the equation =0
d x2
b = 40 and a = 20 / l
20
Hence u s ( x )= l x +40 .................. (9)
ut ( x , 0 ) =
50
l
x +30−
20 x
l (+40 ) ⸪ From equations (4) and (9)
50 20 x 30 x
ut ( x , 0 )= x +30− −40= −10
l l l
ut ( l , t ) =0 ................ (11)
30 x
and ut ( x , 0 )= l −10 ................. (12)
Since the boundary values are now zero, we use the same procedure to get
ut ( x ,t ) .
2 2
.................. (13)
⇨ A e− p c t=0 ⇨ A=0
2 2
nπx − p c t 2 2
nπ
Hence equation (14) reduces to ut ( x ,t )=B sin l e where ¿ l ..(15)
The sum of a finite number of terms of the form (15) will also satisfy the p.d.e.
and the boundary conditions (10) and (11) but it will not satisfy the other condition
given by (12).
e
n=1 l n=1 l
Hence in order that the boundary condition (12) may be satisfied, we must
have
∞
∑ Bn sin nπx
l
=u t ( x , 0 )=
30 x
l
−10 ................ (17)
n =1
30 x
We now express l −10 in a half – range Fourier sine series in (0,l).
∞
30 x nπx
We know that −10=∑ A n sin ................. (18)
l n=1 l
l
2
Where An = ∫
l 0
30 x
l
−10 sin
nπx
l
dx( )
Comparing equations (17) and (18), we have Bn = An.
l
Bn=
2
l 0 (
∫ 30l x −10 sin nπx
l
dx )
[ ( ) ( )]
l
nπx nπx
−cos −sin
Bn=
2
l ( 30 x
l
−10
nπ )l
−
30
l 2 2
n π
l
l l2 0
[( ) ] [( ) ]
2 2
−2 30 .l l nπ .l 30 l nπ . l 2 30.0 l nπ .0 30 l nπ .0
Bn= −10 cos − sin + −10 cos − sin
l l nπ l l n π
2 2
l l l nπ l l n π
2 2
l
Bn=
−2 20 l
l nπ [ 30 l
. cos nπ − 2 2 sin nπ +
n π
2 −10 l
l nπ
cos 0−0
] [ ]
Bn=
−2 20 l
l nπ [
cos nπ +
2 −10l
l nπ ] [
cos 0 ⇨ Bn=
−40
nπ
20
(−1 )n− .1
nπ ]
−20
Bn=
nπ
[ 2 (−1 )n +1 ]
5. A bar 100 cm long, with insulated sides, has its ends kept at 0 0C and
1000C until steady – state conditions prevail. The two ends are then
suddenly insulated and kept so. Find the temperature distribution.
Solution: For convenience, we shall take l to be the length of the bar and put
∂u ∂2 u
=c 2 2 ............... (1)
∂t ∂x
Since the ends x = 0 and x = l of the bar are insulated so that no heat can flow
through the ends, therefore the boundary conditions are
( ∂∂ ux )
x=0
=0 for all t
( ∂∂ ux )
x=l
=0 for all t .................. (2)
d2u
The heat equation is steady – state is 2 =0 ⸪ D 2=0
dx
x =0, u = 0 ⇨ b = 0
Now we have to find u(x,t) by solving the unsteady heat equation given by
equation (1) subject to the conditions (2) and (4).
( ∂∂ ux )
2 2
2 2
⇨ Bp e−p c t =0 ⇨ B=0
( ∂∂ ux )
x=l
=0=(− A p sin p . l+Bp cos p . l ) e
−p2 c 2 t
2 2
⸫ The most general solution of equation (1) satisfying the boundary conditions (2)
is
2 2 2
∞ −c n π t
nπx
u ( x , t )=∑ A n cos
2
l
e
n=0 l
2 2 2
∞ −c n π t
nπx
u ( x , t )= A0 + ∑ A n cos .............. (7)
2
l
e
n =1 l
( ) = 1l l =l
l 2 l
2 2 x
We know that a 0= ∫ x dx=
2
l 0 l 2 0
l
2 nπx
and a n= ∫ x cos dx
l 0 l
[ ( )]
l
nπx nπx
sin −cos
2 l l
a n= x . −1. 2 2
l nπ n π
l l2 0
[ ] [ ]
2 2
2 l nπl l nπl 2 l nπ .0
a n= l. sin + 2 2 cos − 0+ 2 2 cos
l nπ l n π l l n π l
a n=
[
2 1
l nπ
l2
]
2 l2
sin nπ + 2 2 cos nπ − 2 2
n π l n π
2l 2l
a n= 2 2
[ cos nπ−1 ] ⇨a n= 2 2 [ (−1 )n −1 ]
n π n π
l a
Hence A0 = 0 =
2 2
2l
and An =an = 2 2 [ (−1 ) −1 ]
n
n π
{
0 , for n is even
A
⸫ n = −4 l
2 2
, for n is odd
n π
Which gives the temperature at a point distant x from the left end A.
We are also given the initial temperature distribution i.e., the value of u(x,t)
when t = 0
i.e.,
u ( x , 0)= {100−xx ,0,50≤ x≤≤ x50≤ 100 ................ (4)
⇨A=0
2 2
If B = 0, equation (6) will give a trivial solution u(x,t) = 0 and hence we must
have sin p 100=0
n=1 100
∞
nπx
⇨u ( x , 0 ) =∑ Bn sin ........... (9)
n=1 100
In order that the boundary condition (4) may be satisfied, we must have
=u ( x , 0 )={
∞
nπx x , 0 ≤ x ≤50
∑ Bn sin 100 100−x , 50≤ x ≤ 100
.............. (10)
n =1
We now expand u(x,0) given by equation (4) in a half – range sine series in
(0,100).
∞
nπx
We know that ( x ,0 )=∑ An sin ................ (11)
n=1 100
100
2
Where An = ∫ u ( x ,0 ) sin nπx
100 0 100
dx
[ ]
50 100
2 nπx nπx
Now Bn= 100
∫ x sin 100
dx+ ∫ ( 100−x ) sin
100
dx
0 50
[{ ( ) ( )} { ( ) ( )} ]
50 100
nπx nπx nπx nπx
−cos −sin −cos −sin
2 100 100 100 100
Bn= x −(−1 ) + ( 100−x ) −(−1 )
100 nπ 2 2
n π nπ 2 2
n π
100 100
2 100 100
2
0 50
B n=
2
100
−50.
nπ[
100
cos
nπ .50 10000
100
− 2 2 sin
n π
nπ .50
100
−
2
100
10000
0− 2 2 sin 0
n π ] [ ]
+2
100 [
−( 100−100 )
100
nπ
cos
nπ .100 10000
100
− 2 2 sin
n π
nπ .100
100
−
2
100
− (100−50 )
100
nπ
cos
100 ] [
nπ .50 10000
− 2 2 sin
n π
nπ .50
100 ]
Bn=
2
100 [
−50.
100
nπ
nπ 10000
cos − 2 2 sin
2 n π
nπ
2
−0+
2
100
10000
0− 2 2 sin nπ −
n π
2
] [
100
−50.
100
nπ
nπ 10000
cos − 2 2 sin
2 n π
nπ
2 ] [ ]
Bn=
2
100 [
−50.
100
nπ
nπ 10000
cos − 2 2 sin
2 n π
nπ
2
−
2
100
−50.
100
nπ
nπ 10000
] [
cos − 2 2 sin
2 n π
nπ
2 ]
2
Bn= ¿
100
Bn=
2
100 [ 10000
2. 2 2 sin
n π
nπ
2
⇨
400
Bn= 2 2 sin
n π
nπ
2]
{
0 , when n is even
B
Hence n = 400 n
2 2
(−1 ) , when nis odd
n π
π n=1,3,5 …. n
2
100
2 2 2
∞ −(2 n−1) c π
400 (−1 )n (2 n−1) πx t
u ( x , t )= 2 ∑ sin .e 10000
π n=1 (2 n−1) 2
100
7. Find the temperature in a thin metal rod of length L, with both ends
πx
insulated and with initial temperature in the rod is sin L
If the ends x = 0 and x = L of the rod are insulated so that no heat can flow
through the ends, the boundary conditions are
∂u (0 , t) ∂u( L, t)
=0 , =0 for all t ............... (2)
∂x ∂x
πx
( )
Further, we have ( x ,0 )=sin L for 0 ≤ x ≤ L ............... (3)
................ (4)
2 2
−p c t
u ( x , t )=( A cos px+ B sin px ) e
2 2
⇨ Bp e−p c t =0 ⇨ B=0
( )
∂u 2 2
2 2
Since equation (1) is linear, its most general solution is got by a linear combination
of solutions of the form (5). Hence, consider the infinite series
2 2 2
∞ −c n π t
nπx
u ( x , t )=∑ A n cos
2
L
e
n=0 L
2 2 2
−c n π t
A0 ∞ nπx
u ( x , t )= + ∑ A n cos .............. (7)
2
L
e
2 n=1 L
A0
(Here is written in place of A0)
2
( )
πx A 0
∞
nπx
= + ∑ A n cos
2
L
u ( x , 0 ) =sin e
L 2 n=1 L
( )
πx A0 ∞ nπx
⇨u ( x , 0 ) =sin = + ∑ A n cos ................ (8) by equation (3)
L 2 n=1 L
( πx )
We now expand sin L into a half – range Fourier cosine series in (0,L). We
know that
( )
∞
πx nπx
sin =∑ Bn cos .................. (9)
L n=0 l
[ ]
L
πx
L −cos
2 πx 2
Where B0= L ∫ sin L dx ⇨ B0= L
0
π ( )
L
L 0
B0=
−2 L
L π
cos
πL
L [
−cos
π .0 −2
L
=
π ]
[ cos π −cos 0 ]
−2 4
B0= [ −1−1 ] =
π π
L
and Bn=
2
L0
∫ sin πx
L ( )
cos
nπx
L
dx
[ ]
L
1 πx πx
Bn= ∫ sin ( 1+n ) + sin ( 1−n ) dx
L0 L L
[ ]
L
πx πx
−cos ( 1+n ) cos ( 1−n )
1 L L
Bn= −
L π π
(1+ n) (1−n)
L L 0
1
Bn= ¿
L
Bn=
1
[L
L (1+n) π
cos ( 1+n ) π−
L
(1−n) π
1
cos ( 1−n ) π − ¿
L ]
Bn=
π [
1 cos ( 1+n ) π cos ( 1−n ) π
1+n
−
1−n
−
1
−
1
1+n 1−n ( )]
2
Bn= [ (−1 )n+1−1 ] ( n≠ 1)
π ( n −1 )
2
Also An =0 if n is odd.
From equation (7), we have
2 2 2
∞ −c n π t
2 2
u ( x , t )= + ∑ [ (−1 )n+1−1 ] cos nπx
2
L
e
π n=2,4,6 … π ( n2−1 ) L
2 2 2
∞ −c n π t
2 4 1 nπx
∑
2
L
u ( x , t )= − cos e
π π n=2,4,6 … ( n −1 )
2
L
8. Derive the complete solution for the one dimensional heat equation
with zero boundary conditions problem with initial temperature
u(x,0)=x(L-x) in the interval (0,L).
By u(0,t) = 0, we have
2 2
By u(L,t)=0, we have
2 2
−p c t
u ( L ,t )=0=( A cos p . L+ B sin p . L ) e
Since equation (i) is linear, its most general solution is got by a linear combination
of solutions of the form (2). Hence, consider the infinite series
2 2 2
∞ −c n π t
nπx
u ( x , t )=∑ Bn sin ............... (3)
2
L
e
n=1 L
2 2 2
∞ −c n π .0
n=1 L
∞
nπx
u ( x , 0 ) =∑ Bn sin .............. (4)
n=1 L
In order that the initial condition (iii) may be satisfied, (iii) and (4) must be same.
This requires the expansion of x(L-x) as a half – range Fourier sine series in
(0,L). Thus
∞ L
nπx 2 nπx
x ( L−x )=∑ b n sin where b n= ∫ ( Lx−x 2) sin dx
n=1 L L 0 L
[ ]
L
nπx nπx nπx
−cos −sin cos
2 L L L
b n= ( Lx−x 2 ) . −( L−2 x ) + (−2 ) 3 3
L nπ 2 2
n π n π
L L 2
L3 0
[ ] [
2
2 L3
b n= ( L . L−L2) . −L cos nπL −( L−2 L ) −L sin
nπL
−2 cos
nπL 2
− ( L .0−02 )
−L
cos
nπ .0 −L
−( L−2.0 ) 2
L nπ L 2 2
n π L 3 3
n π L L nπ L n
b n=
2
L [ −L2
n π
L3
n π
2 −L2 L3
] [
0−(−L ) 2 2 sin nπ−2 3 3 cos nπ − 0−L . 2 2 sin 0−2 3 3 cos 0
L n π n π ]
[ ] [ ]
3 3
2 L 2 L
b n= −2 3 3 cos n π + 2 3 3 .1
L n π L n π
3 2
2 2L
b n= [ −cos nπ + 1 ] ⇨b n= 43L 3 [−(−1 )n +1 ]
L n3 π3 n π
{
0 ,if nis even
⸫ x ( L−x ) = 8L
2
3 3
, if n is odd
n π
( )
2 ∞
8L
∑ n13 sin nπx
2
L
u ( x , t )= 3 e
π n=1,3,5… L
2 2 2
−c (2 n−1) π t
( )
2 ∞
8L 1 (2n−1)πx
∑ (2 n−1)
2
L
u ( x , t )= 3 sin e
π n=1
3
L