Wave Equation
Wave Equation
Let OA be a stretched string of length ‘l’ with fixed ends O and A. Let us take X-
axis along OA and Y-axis along OB perpendicular to OA, with O as origin. Let us
assume that the tension T in the string is constant and large when compared
with the weight of the string so that the effects of gravity are negligible. Let us
pluck the string in the BOA plane and allow it to vibrate.
Let ‘P’ be any point of the string at time‘t’. Let there be no external forces
acting on the string. Let each point of the string make small vibrations at right
angles to OA in the plane of BOA. Draw PP1 perpendicular to OA. Let OP1 =x
and PP1 =y. Then y is a function of x and t. Under the assumptions using
Newton’s second law of motion, it can be proved that y(x,t) is governed by the
equation
∂2 y 1 ∂ 2 y
= ................... (1)
∂ x 2 c 2 ∂ t2
∂2 y 2 ∂ 2 y
i.e., 2 =c 2
∂t ∂x
2 T
where c = m with T = tension in the string at any point and m is mass per unit
length of the string.
→ Since the points O and A are not disturbed from their original positions for
any time‘t’ we get
Further it is possible that, we describe the initial position of the string as well
as the initial velocity at any point of the string at time t= 0 through the
conditions
and ( ∂∂ yt ) at t =0
=g( x ), 0 ≤ x ≤ l ....................... (5)
Where f(x) and g(x) are functions such that f(0) = f(l) = 0 and g(0) = g(l) = 0.
To determine y(x,t)
∂2 y 1 ∂ 2 y
One dimensional wave equation is 2 = 2 2 ................... (1)
∂ x c ∂t
and ( ∂∂ yt ) at t =0
=g( x ), 0 ≤ x ≤ l ....................... (5) Initial conditions.
2
∂y 1 ∂ y
= X ( x ) T ( t ) , 2 = X ( x ) T 11 ( t )
∂t ∂t
Let us take λ to be real. Then three cases are possible λ >0, λ = 0 and λ <0
i.e., X 11 ( x ) −p 2 X ( x )=0
2 2
d X 2 d 2 d
i.e., 2 −p X =0 Let D= dx
,D = 2
dx dx
i.e., D 2 X− p2 X =0 ⇨ ( D2− p2 ) X =0
⇨m2= p2 ⇨m=± p
⸫ X ( x )= A1 e px + B1 e−px
11
1 T (t ) 2 11 2 2 11 2 2
and also 2 =p ⇨ T ( t )= p . c . T ( t ) ⇨ T ( t )− p .c .T ( t ) =0
c T (t )
d2 T 2 2
( ) d 2 d2
i.e., 2 − p . c .T t =0 Let D= dt , D = 2
dt dt
i.e., D 2 T −p 2 c 2 T =0 ⇨ ( D2−c 2 p 2 ) T =0
⇨m2=c 2 p 2 ⇨m=± c . p
⇨m=0,0
⸫ X ( x ) = A2 + B 2 x
11
1 T (t ) 11 2
and also =0 ⇨ T ( t ) =0 ⇨ D T =0
c T (t )
2
⇨m=0,0
⸫T ( t )=C 2+ D2 t
Case (iii): Let λ<0, then we can write λ=-p2 where p>0, then
11 11
X ( x ) 1 T (t ) 2
= 2 =−p
X ( x ) c T (t )
11
X (x) 2 11 2
=− p ⇨ X ( x )=− p X ( x )
X(x)
i.e., X 11 ( x ) + p2 X ( x )=0
2 2
d X 2 d 2 d
i.e., 2 + p X=0 Let D= dx , D = 2
dx dx
d2T 2 2
( ) d 2 d2
i.e., + p . c . T t =0 Let D=
dt
, D =
d t2 d t2
i.e., D 2 T + p2 c 2 T =0 ⇨ ( D 2+ c2 p2 ) T =0
⸫ y ( x , t )=[ A 3 cos px+ B3 sin px ] [ C3 cos cpt + D3 sin cpt ] .............. (S.3)
y ( x , t )=[ A 3 cos px+ B3 sin px ] [ C3 cos cpt + D3 sin cpt ] .............. (S.3)
We have to note that here A’s, B’s, C’s, D’s are arbitrary constants to be
determined.
The constant p is also to be determined. The A’s, B’s, C’s, D’s depend on f(x)
and g(x). The constant p will be determined using conditions (2) and (3).
Consider S.1
⸫ A1 + B 1 = 0
⸫ A1 e p .l +B 1 e− p . l=0
We get A1=0=B1
Thus y(x,t) = 0
This implies that there is no displacement for any x and y. This is impossible.
Consider S.2
y ( x , t )=[ A 2 + B2 x ] [ C 2 + D 2 t ]
Consider S.3
y ( x , t )=[ A 3 cos px+ B3 sin px ] [ C3 cos cpt + D3 sin cpt ]
⸫A3 = 0
y ( l, t )=0=[ A 3 cos p .l+ B3 sin p . l ][ C 3 cos cpt+ D 3 sin cpt ]
Thus a typical solution of equation (1) satisfying conditions (2) and (3) is
y ( x , t )=sin
nπx
l [
C n cos
nπct
l
+ Dn sin
nπct
l ]
for n = 1,2,3,...............
( Here we have write Cn, Dn in place of C3, D3)
Thus the most general solution of equation (1) satisfying (2) and (3) is
( )
∞
nπct nπct nπx
y ( x , t )=∑ Cn cos + Dn sin sin .......... (6)
n=1 l l l
By condition (4)
y(x,0) =f(x), 0 ≤ x ≤ l
( )
∞
nπc .0 nπc .0 nπx
y ( x , 0 ) =f ( x )=∑ C n cos + D n sin sin
n=1 l l l
∞
∑ C n sin nπx
l
=f ( x ) , 0 ≤ x ≤l
n =1
By condition (5)
( ∂∂ yt )
at t =0
=g(x ), 0 ≤ x ≤ l
[ ( ) ( )]
∞
∂y nπct nπc nπct nπc nπx
Now ∂ t =∑ −C n sin l l
+ Dn cos
l l
sin
l
n=1
( ∂∂ yt )
at t =0
=g( x ) gives
( ) [ ( ) ( )]
∞
∂y nπc .0 nπc nπc .0 nπc nπx
=g ( x )=∑ −C n sin + Dn cos sin
∂t at t =0 n=1 l l l l l
∑ D n( nπc )
∞
nπx
sin =g ( x ) , 0≤ x ≤ l
n =1 l l
l
Hence Dn
nπc 2
l l 0( )
= ∫ g ( x ) sin
nπx
l
dx
l
2 nπx
Thus D n= ∫
nπc 0
g ( x ) sin
l
dx for n = 1,2,3,.......... .................. (8)
Hence the displacement y(x,t) at any point x and at any subsequent time t is
given by
( )
∞
nπct nπct nπx
y ( x , t )=∑ Cn cos + Dn sin sin
n=1 l l l
l
2 nπx
Where C n= ∫ f ( x ) sin dx and
l 0 l
l
2 nπx
D n= ∫
nπc 0
g ( x ) sin
l
dx
Problems
1. A tightly stretched string with fixed end points x = 0 and x = l is
3 πx
initially in a position given by y= y 0 sin l . If it is released from rest
from this position, find the displacement y(x,t).
∂2 y 1 ∂ 2 y
= ................... (1)
∂ x 2 c 2 ∂ t2
Subject to y(0,t) = 0 for all t ........... (2)
y(l,t) = 0 for all t ............ (3)
3 πx
y(x,0) = y 0 sin l , 0 ≤ x ≤ l ............... (4)
and ( )
∂y
∂t at t =0
=0 , 0 ≤ x ≤l ....................... (5)
( The condition (5) is implied by the phrase “if it is released from rest
from this position”)
The most general solution of equation (1) satisfying equations (2)
and (3) is given by
Let us seek solution of equation (1) in the form u(x,t) = X(x)T(t)
The three solutions of equation (1) are
y ( x , t )=( A 1 e + B1 e )( C 1 e + D1 e ) .............. (S.1)
px − px pct − pct
[ ]
∞
nπct nπct nπx
y ( x , t )=∑ C n cos + Dn sin sin ............. (6)
n=1 l l l
2 2
∂ y 1 ∂ y
2
= 2 2 ................... (1)
∂ x c ∂t
Subject to y(0,t) = 0 for all t ........... (2)
y(l,t) = 0 for all t ............ (3)
y(x,0)=0 for 0 ≤ x ≤ l ................ (4)
and ( ∂∂ yt )
at t =0
=λx (l−x ) , 0 ≤ x ≤ l ....................... (5)
[ ]
∞
nπct nπct nπx
y ( x , t )=∑ C n cos + Dn sin sin ............. (6)
n=1 l l l
[ ]
l
nπx nπx nπx
−cos −sin cos
2λ l l l
D n= x ( l−x ) − (l−2 x ) + (−2 ) 3 3
nπc nπ nπ n π
l l l
3
0
[ ] [
nπl nπl nπl nπ .0
−cos −sin cos −cos −sin
2λ l l l 2λ l
D n= l ( l−l ) −( l−2 l ) + (−2 ) 3 3 − 0. (l−0 ) −( l−2.0 )
nπc nπ nπ n π nπc nπ nπ
l l l
3 l l
[ ]
3 3 3
2 λ −2 l 2l 2 λ 2l
D n= cos nπ + 3 3 ⇨ D n= [ 1−cos nπ ]
nπc n π
3 3
n π nπc n3 π 3
⸪cos nπ=(−1 )n
3
4 λl
D n= [ 1−cos nπ ]
n4 π 4 c
If n is even, Dn = 0
If n is odd, Dn =2m + 1
3 3
4 λl 8 λl
D2 m+1 = 4 4
.2=
( 2 m+1 ) π c ( 2 m+1 )4 π 4 c
[ ]
( 2 m+1 ) πct ( 2 m+1 ) πx
3 ∞ sin sin
Hence y ( x , t )= 8 λ l ∑
l l
4 2
π c m=0 ( 2 m+1 )
∂2 y 1 ∂ 2 y
= ................... (1)
∂ x 2 c 2 ∂ t2
Subject to y(0,t) = 0 for all t ........... (2)
y(l,t) = 0 for all t ............ (3)
y(x,0)=0 for 0 ≤ x ≤ l ................ (4)
and ( ∂∂ yt )
at t =0
=V 0 sin
3 πx
l
, 0 ≤ x ≤l ....................... (5)
[ ]
∞
nπct nπct nπx
y ( x , t )=∑ C n cos + Dn sin sin ............. (6)
n=1 l l l
Using equation (4), we get
nπx
∑ C n sin l
=0,0 ≤ x ≤ l
∑ Dn
nπc
l
sin
npx
l
=V 0 sin
3 πx
l
⇨ ∑ Dn
nπc
l
sin
npx
l
3 πx 1
=V 0 sin − sin
4 l 4 [
3 πx
l ]
We have sin 3 θ=3 sin θ−4 sin3 θ
3 3 1
i.e., sin θ= 4 sinθ− 4 sin 3 θ
πc 3 3l
⇨ D 1 l = 4 V 0 ⇨ D 1= 4 πc V 0
3 πc −V 0 −l V 0
And D3 = ⇨ D 3=
l 4 12 πc
3l πct πx lV0 3 πct 3 πx
Hence y ( x , t )= V 0 sin sin −¿ sin sin ¿
4 πc l l 12 πc l l
and ( ∂∂ yt )
at t =0
=b sin
3
( πxl ) ,0 ≤ x ≤ l ....................... (5)
The most general solution of equation (1) satisfying equations (2)
and (3) is given by
Let us seek solution of equation (1) in the form u(x,t) = X(x)T(t)
The three solutions of equation (1) are
y ( x , t )=( A 1 e px + B1 e− px )( C 1 e pct + D1 e− pct ) .............. (S.1)
y ( x , t )=( A2 + B2 x ) ( C 2+ D 2 t ) ...................... (S.2)
y ( x , t )=( A3 cos px+ B3 sin px ) ( C 3 cos cpt+ D3 sin cpt ) ............ (S.3)
[ ]
∞
nπct nπct nπx
y ( x , t )=∑ C n cos + Dn sin sin ............. (6)
n=1 l l l
Using equation (4), we get
nπx
∑ C n sin l
=0,0 ≤ x ≤ l
( ) ( )
∞
∂y πx nπc nπc .0 nπx
=∑
3
=b sin Dn cos sin
∂t at t =0 l n=1 l l l
∂ 2 u 2 ∂2 u
i.e. , 2
=a 2 ................... (1)
∂t ∂x
The boundary conditions are
(i) u(0,t)=0 for all t
(ii) u(l,t) = 0 for all t
(iii) u(x,0) = 0 for 0<x<l
(iv) ut ( x , 0 )=u 0 x ( 1−x )
The required solution of equation (1) is of the form
u ( x , t )=( c 1 cos px+ c2 sin px ) ( c3 cos pat + c 4 sin pat ) ............ (2)
[
⇨ c 3=0 ⸪ c 2 ≠ 0∧sin
nπx
l
≠0
]
Putting c3 = 0 in equation (3), we have
u ( x , t )=c 2 sin
nπx
l
0. cos (nπat
l
+c 4 sin
nπat
l )
nπx nπat
⇨ u ( x ,t )=c2 c 4 sin sin
l l
nπx nπat
u ( x , t )=c n sin sin since cn =c2 c4
l l
⸫ The most general solution of equation (1) is
∞
nπx nπat
u ( x , t )=∑ c n sin sin ................... (4)
n=1 l l
( )
∞
∂u nπa nπx nπa.0
=∑ c n sin cos
∂t t =0 n=1 l l l
( )
∞
∂u nπa nπx
=∑ c n sin
∂t t =0 n=1 l l
∑ c n nπa
l
sin
nπx
l
=∑ bn sin
nπx
l
n =1 n=1
nπa lb
cn =bn ⇨c n= n .................. (7)
l nπa
l
2
But b n= ∫ f ( x ) sin nπx
l 0 l
dx
2u0 l
b n= ∫ ( lx−x 2 ) sin nπx dx
l 0 l
[ ( ) ( ) ( )]
l
nπx nπx nπx
−cos −sin cos
2u0 l l l
b n= ( lx− x2 ) −( l−2 x ) 2 2
+ (−2 ) 3 3
l nπ n π n π
l l 2
l3 0
[ ( ) ( ) ( )]
nπl nπl nπl
−cos −sin cos
2u0 l l l
b n= ( l .l−l2 ) − (l −2l ) −2
l nπ 2 2
n π 3 3
n π
l l
2
l
3
[ ( ) ( ) ( )]
nπ .0 nπ .0 nπ .0
−cos −sin cos
−2u 0 l l l
( l .0−0 2 ) −( l−2.0 ) 2 2
+ (−2 ) 3 3
l nπ n π n π
l l 2
l3
[ ] [ ]
2u0 cos nπ 2 u0 1
b n= 0+l .0−2 3 3 − 0−l .0−2. 3 3
l n π l n π
3 3
l l
[ ]
2u0 cos nπ 2 2
b n= −2 3 3 + 3 3 4 u0 l
l n π ⇨b n= 3 3 [ 1−(−1 ) ]
n
n π
3 3 n π
l l
{
0 ,if n is even
⸫ bn= 8u 0 l 2
3 3
,if n is odd
n π
8 u0 l 3
c n= , n = 1,2,3,..........
n4 π 4 a
[
⇨ c 3=0 ⸪ c 2 ≠ 0∧sin
nπx
l
≠0 ]
Putting c3 = 0 in equation (3), we have
u ( x , t )=c 2 sin
nπx
l
0. cos (nπat
l
+c 4 sin
nπat
l )
nπx nπat
⇨ u ( x ,t )=c2 c 4 sin sin
l l
nπx nπat
u ( x , t )=c n sin sin since cn =c2 c4
l l
⸫ The most general solution of equation (1) is
∞
nπx nπat
u ( x , t )=∑ c n sin sin ................... (4)
n=1 l l
Equation (4) partially differentiating with respect to ‘t’ , we get
∞
∂u nπa nπx nπat
=∑ c sin cos
∂ t n=1 n l l l
( )
∞
∂u nπa nπx nπa.0
=∑ c n sin cos
∂t t =0 n=1 l l l
( )
∞
∂u nπa nπx
=∑ c n sin
∂t t =0 n=1 l l
( ) ( )
∞
πx nπa nπx 3 πx
=∑ cn ......... (5) ⸪ut ( x , 0 )=sin
3
sin sin
l n=1 l l l
∞
3 πx 1 3 πx nπa nπx
i .e . , sin − sin =¿ ∑ c n sin ¿
4 l 4 l n=1 l l
πa 3 3l 3 πa −1 −l
c1 = ⇨c 1=
l 4
, c =0 , c 3 l = 4 ⇨ c 3= 12 πa , c 4 =0
4 πa 2
c 5=0 ...................
3l πx πat l 3 πx 3 πat
u ( x , t )= sin sin −¿ sin sin ¿
4 πa l l 12 πa l l
Equation of AB is
y−h=
0−h
l−
l
x−( )
l
2
2
2
( )
l
⇨ y−h=(−h ) l x− 2
⇨ y=h− l ( x− 2 )⇨ y =h [ 1− l ( x− 2 )]
2h l 2 l
⇨ y=h [ 1− l x+ 1 ]⇨ y=h ( 2− l x )
2 2
⇨ y=2h ( 1− l )⇨ y = l ( l−x )
x 2h
∂2 y 2
2∂ y
=a ................... (1)
∂ t2 ∂ x2
{
2h l
x if 0 ≤ x ≤
y ( x , 0 ) =f ( x )=
2h (
l
l
2
l −x ) if ≤ x ≤ l
and
∂y
∂t ( ) t =0
=0
l 2
The solution of equation (1) satisfying the above boundary
conditions and initial conditions is given by
[ ]
l
2 l
An =
2
l 0
2h nπx
l
2h
( ) nπx
∫ l x sin l dx +∫ l (l−x ) sin l dx ( )
2
[{ ( ) }{ ( ) ( )} ]
l l
2 2h
An = . x
−cos
nπx
l
−1.
−sin
nπx
l ( ) 2
+ ( l−x )
−cos
nπx
l
− (−1 )
sin
nπx
l
l l nπ 2 2
n π nπ 2 2
n π
l l
2 l l
2 l
0 2
[{ ( )} { ( )} ]
l l
An =
4 h −l
l 2
nπ
x cos
nπx
l
+
l2
2 2
n π ( )
sin
nπx
l 0
2
+
−l
nπ ( )
( l−x ) cos
nπx
l
l2
− 2 2 sin
n π
nπx
l l
2
An =
4h
l2 [{ −l 2
2 nπ
nπ l2
cos + 2 2 sin
2 n π
nπ
2 }{
+ ( 0+0 )+
l2
2 nπ
nπ l2
cos + 2 2 sin
2 n π
nπ
2 }]
[ ( )] ( )
2
4h 2l nπ 8h nπ
An = 2 2 2
sin = 2 2 sin
l n π 2 n π 2
8h nπ
Thus An = 2 2 sin 2
n π ( )
Substituting the values of An in equation (2) we get
( ) ( ) ( )
∞
8h nπ nπx nπat
y ( x , t )=∑ sin sin cos
n=1
2 2
n π 2 l l
y ( x , t )=
8h 1
2
π 1 2[ ( ) ( )
sin
πx
l
cos
πat
l
1
− 2 sin
3
3 πx
l
cos ( ) (
3 πat
l
+…………. ) ]
8. The points of trisection of a tightly stretched string of length ‘l’ with
fixed ends are pulled aside through a distance ‘d’ on opposite sides of
the position of equilibrium, and the string is released from rest.
Obtain an expression for the displacement of the string at any
subsequent time and show that the midpoint of the string is always
at rest.
Solution: Let the points of trisection of the string OA be B and C,
where O and A are the fixed ends of the string. Let the two points of
trisection are displaced by ‘h’. The initial position of the string is as
shown in diagram.
y− y1 x−x 1
Equation of OP is y − y = x −x
2 1 2 1
y−0 x−0
= y 3x 3 hx l
i.e., h−0 l −0 ⇨ h = l ⇨ y = l , 0 ≤ x ≤ 3
3
l
x−
y−h 3
Equation of PQ is −h−h = 2 l l
−
3 3
l
x−
⇨
y−h
−2 h
=
l
3
⇨ y−h=
−6 h
l ( )
l
x− ⇨ y =h−
3
6h
l( )
x−
l
3
3
[ ( )]
⇨ y =h 1−
6
l
x−
l
3
⇨ y =h 1−
l [ ( )]
6 3 x−l
3
[ 2
]
⇨ y =h 1− ( 3 x−l ) ⇨ y=h
l [ ]
l−6 x +2 l
l [
⇨ y =h
3l−6 x
l ]
3h l 2l
⇨ y= ( l−2 x ) , ≤ x ≤
l 3 3
3h 2l
Similarly, equation of QA is y= l ( x−l ) , 3 ≤ x ≤ l
{
3 hx l
, 0≤ x ≤
l 3
3 h l 2l
⸫ f ( x )= l ( l−2 x ) , 3 ≤ x ≤ 3 ................... (1)
3h 2l
( x−l ) , ≤ x ≤l
l 3
represents the initial position of the string.
The displacement y(x,t) at any point of the string is given by
∂2 y 2
2∂ y
=a ................... (2)
∂ t2 ∂ x2
(iv) y ( x , 0 ) =f (x )
y ( x , t )=c 2 sin
nπx
l (
c 3 cos
nπat
l
+ c 4 sin
nπat
l )
................. (5)
( ∂∂ yt )t =0
=0=c 2 sin
nπx
l (
−c 3
nπa
l
sin
nπa .0
l
+ c4
nπa
l
cos
nπa .0
l )
0=c 2 sin
nπx
l (
0+c 4
nπa
l )
⇨0=c 2 c 4
nπa
l
sin
nπx
l
(
⇨ c 4=0 ⸪ c 2 ≠ 0 , sin
nπx
l
≠0 )
Hence equation (5) becomes
nπx nπat
y ( x , t )=c 2 c3 sin cos
l l
Putting c2 c3 = cn , we get
nπx nπat
y ( x , t )=c n sin cos
l l
∑ c n sin nπx
l
=∑ bn sin
nπx
l
n =1 n=1
[ ]
l 2l
3 3 l
b n=
2
l 0
3 hx nπx
l
3h
( ) nπx
2l
3h nπx
∫ l sin l dx+∫ l ( l−2 x ) sin l dx+∫ l ( x −l ) sin l dx( ) ( )
3 3
{[ ( ) ( ( ) ) ] [ ( ) ( ( ) )] [ (
l 2l
nπx nπx
( ) nπx nπx
(
3 3
−cos −sin −cos −sin −cos
6h l l l l
b n= 2 x −1. + ( l−2 x ) −(−2 ) + ( x−l )
l nπ nπ
2
nπ nπ
2
nπ
l l 0
l l
l
3
l
b n=
6h
l
2
−
{[ (
l2
3 nπ
cos
nπ
3
+
l 2
nπ )
sin
nπ
3
+ −
l2
( )
3 nπ
cos
2 nπ
3
−2
nπ ] [( ( )
l 2
sin
2nπ
3
− −
l2
3 nπ
nπ
cos −2
3 ( ) )] [ ( )
[( ) ( ) ] [ ]
2 2 2
6h l nπ l 2 nπ 18 h l nπ 2 nπ
b n= 2
3 sin −3 sin = 2 2 2 sin −sin
l nπ 3 nπ 3 l n π 3 3
[ ]
2
18 h l nπ n nπ
b n= sin −(−1 ) sin
2 2 2
l n π 3 3
⸪ sin
2 nπ
3
=sin nπ −
nπ
3 (
n
=(−1 ) sin
nπ
3 )
18 h nπ
⸫ bn= 2 2
sin
3
[ 1−(−1 )n ]
n π
{
0 ,if nis odd
b =
Thus n 36 h sin nπ , if n is even
n2 π2 3
∞
36 h 2 nπ 2nπx 2 nπat
y ( x , t )= ∑ sin sin cos
n=1
2 2
n π 3 l l
∞
9h 1 2 nπ 2 nπx 2 nπat
y ( x , t )= 2 ∑ 2 sin sin cos ............... (10)
π n=1 n 3 l l
( )
∞
l 9h 1 2 nπ 2 nπat
⸫ y ,t = 2 ∑ 2 sin sin nπ cos =0 ⸪sin nπ =0
2 π n=1 n 3 l