0% found this document useful (0 votes)
4 views10 pages

Lec-16 Wave Equation

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
4 views10 pages

Lec-16 Wave Equation

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 10

UNIT -5

APPLICATION OF PARTIAL DIFFERENTIAL EQUATIONS –


ONE DIMENSIONAL WAVE EQUATIONS .

APPLICATION OF PARTIAL DIFFERENTIAL EQUATION


 In physical problems, we always seek a solution of the differential
equation which satisfies some conditions known as boundary
conditions.
 The differential equation together with this boundary conditions,
contribute a boundary value problem.
PARTIAL DIFFERENTIAL EQUATIONS OF ENGINEERING
2 2
∂ y 2∂ y
1) Wave Equation: 2 =c 2
∂t ∂x
2
∂u 2 ∂ u
2) One Dimensional heat flow Equation: ∂ t =c 2
∂x
3) Two-Dimensional heat flow equation which in steady state becomes the
2 2
∂ u ∂ u
two-Dimensional Laplace’s Equation: 2
+ 2 =0
∂x ∂y

VIBRATIONS OF A STRETCHED STRING – WAVE EQUATION:


2 2
∂ y 2∂ y 2 T
2 where c= speed, T = tension ,
=c c=
∂t
2
∂x m

m= mass per unit length


y ( x , t ) why ? x = position , t- time

This the partial differentiation equation giving the transverse vibrations of the
string. It is also called the one-Dimensional wave equation.
SOLUTION OF THE WAVE EQUATION:
y=( C 1 ⅇ Px +C 2 ⅇ−Px )( C 3 ⅇC Pt + C4 e CPt )

y=( c 5 cos Px+ c 6 sin Px )( c 7 cos c P t +c 8 sin cPt )


y= ( C 9 x +C 10 )( C 11 t+ C12 )
y= (C 1 cos P x +C 2 sin P x)(C 3 cos c P t+ C4 sin c P t) is the only suitable
solution of the wave equation.
 1-D Wave Equation – String
 1-D heat Equation – Rod
 2D heat Equation – Plate
BOUNDARY CONDITIONS:
As the end points of the string are fixed, for all time.
1) y(0,t)=0
2) y(l,t)=0
3) The initial transverse velocity of any point of the string is zero

( ∂∂ yt ) t =0
=0

4)y(x,0) = f(x) (Gn) Initial displacement.


THE GENERAL SOLUTION:
When velocity is given

( nπxl ) sin ( cnπtl )


y(x,t)= ∑ bn sin
n =1

When velocity is not given

( nπxl ) cos ( cnπtl )


y(x,t) =∑ bn sin
n =1

EXAMPLE : 1
A tightly stretched string with fixed end points x= 0 and x= l is the initially in
a position given by y = y 0 sin
3
( πxl ). If it is released from rest from this position,
find the displacement y(x,t).

Solution:
Step-1:
2 2
∂ y 2∂ y
The wave equation of the vibrating string is: 2 =c 2 --------(1)
∂t ∂x

where c¿ T is the wave speed.
m

Step-2:
Boundary conditions, assume the string is fixed in both ends so,
y(0,t)=0
y(l,t)=0 for all t --------------(2)
This means the displacement must be zero at both ends at all times.
Step-3:
General solution with boundary conditions. The general solution
satisfying the boundary conditions is a Fourier sine series:

( nπxl )

y(x,t) =∑ ¿¿ sin
n =1

Step-4:
Apply initial condition

 Initial displacement y= y 0 sin


3
( πxl ) --------------(3)
 Initial velocity
(velocity not given)

( ∂∂ yt ) t =0
=0 …………(4)

Since the vibration of the string is periodic therefore the solution of (1) is the
form of the
y =( c 1 cos Px+ c2 sin Px ) ( c 3 cos c Pt +c 4 sin cPt )

Here given x=0 , x=l


X=0 x=l
Substitute x=0
y(0,t) = ( c1 cos P(0)+c 2 sin P (0) ) ( c 3 cos cpt + c 4 sin cPt )
cos ( 0 )=1
sin ( 0 )=0

y(0,t) = c 1 ( c 3 cos c P t +c 4 sin cPt )=0


c 1=0 this is to be true for all time
y(x,t) = (c ¿¿ 2 sin Px)( c3 cos cPt +c 4 sin cPt ) ¿
Also substitute x=l in the above equation
y(x,t) = (c ¿¿ 2 sin Px)( c3 cos cPt +c 4 sin cPt ) ¿

y(l,t) = (c ¿¿ 2 sin Pl) ( c 3 cos cpt +c 4 sin cPt ) ¿



This gives pl=n π or p= l n being the integer

thus

y(x,t)= ¿ ¿sin ( nπxl ) ¿ ¿ cos ( cnπtl )+ ❑ sin ( cnπtl )…(5)


Differentiate the above equation with respect to t,

∂y
∂t
=¿sin
nπx
l ( )
¿ ¿sin
cnπt
l
+ c 4 cos
l( )
cnπt
¿.
cnπ
l ( ) ( ) d¿

d(cosθ ¿=−sinθ
By (4)

( ∂∂ yt )
t =0
=¿ ¿sin ( nπxl ) ¿ ¿sin ( cnπl ( 0 ) )+ c cos ( cnπl ( 0 ) )¿ .( cnπl )
4

( ∂∂ yt )
t =0
=¿sin ( nπxl ) ¿ c ¿( cnπl )=0
4

Then c 4 =0
Substitute c 4 =0 Thus (5) becomes

y(x,t) = c2 sin l ( ( )) cos ( ))


nπx
¿
cnπt
l
nπx
( ) ( )
cnπt
y(x,t) = c 2 c 3sin l cos l

So c 2 c 3=bn

y(x,t) = b nsin l( nπx ) cos( cnπtl ) (velocity not given)

Adding all such solutions of (1) is

( nπxl ) cos ( cnπtl )


y(x,t) =∑ bn sin ……(6)


n =1

From (3)

( ) ( ) ( )

πx nπx cnπt
y 0 sin3 =∑ b n sin cos
l n=1 l l

Put t=0

( ) ( ) cos ( 0 )

πx nπx
y 0 sin3 =∑ b n sin
l n=1 l

sin3 ( )
πx
l
=¿
[ 3 sin ( πxl )−sin ( 3 πxl )
4 ]
( ) ( )

πx nπx
y 0 sin3 =∑ b n sin
l n=1 l

Step5:
Expand the initial shape into a Fourier sine series

y0 [ 3 sin

4 ]
( πxl )−sin ( 3 πxl ) =b sin ( πxl ) + b sin ( 2 πxl )+ b sin ( 3 πxl ) +………..
1
2 3

Step 6:
Comparing both sides:
3 y0
b 1=
4
b 2=0 ,

− y0
b 3= ,
4
b 4=0 ,

b 5=0

Final solution :

( ) ( )
3 y0 πx y0 3 πx
y(x,t) = 4 sin l + 0− 4 sin l

( ) ( ) ( ) ( )
3 y0 πx πct y0 3 πx 3 πct
y(x,t) = 4 sin l cos l − 4 sin l cos l

PRACTICE PROBLEMS:
A tightly stretched flexible string has its ends fixed at x=0 and x=l. at time t=o
string is given a shape defined by F(x)= μx ( l−x ) ,
Where μ is the constant, and then released. find the displacement of any point
X of the string at any time t¿ o .
Solution:
2 ∞
8μl 1 (2 m−1) π (2 m−1) πct
= 3
π
∑ (2 m−1)3 sin
l
x cos
l
m=1

EXAMPLE : 2
A tightly stretched string of length l with fixed ends is initially in

( )
3 πx
equilibrium position, it is set vibrating by giving each point a velocity v 0 sin l
. Find the displacement y ( x , t ) .
solution:
Step-1:
2 2
∂ y 2∂ y
The equation of the vibrating string is : 2 =c 2 ---------------------(1)
∂t ∂x

Step-2:
Boundary conditions, assume the string is fixed in both ends so,
y(0,t)=0
y(l,t)=0 for all t --------------------------------
(2)
This means the displacement must be zero at both ends at all times,

and also the velocity is given as : ∂ t (∂ y) t =0


=v 0 sin3 ( πxl )

Step-3:
General solution with boundary conditions. The general solution
satisfying the boundary conditions is
y(x,t)=( c 1 cos px+ c 2 sin px )( c 3 cos cpt +c 4 sin cpt ) -----------------(3)
substitute y(0,t)
y(0,t)= ( c1 cos(0)+ c 2 sin(0) ) ( c3 cos cpt +c 4 sin cpt )
since sin 0 = 0,
cos 0 = 1
y(0,t)= c 1 ( c 3 cos cpt +c 4 sin cpt )
we know that y(0,t)=0 , then equating the above equation to zero. Therefore,
we get
c 1=0

Substitute c 1 in eq.(3)
y(x,t)= ( c 2 sin px ) ( c 3 cos cpt +c 4 sin cpt )--------------------------------(4)
Substitute y(l,t)
y(l,t)= ( c 2 sin pl ) ( c3 cos cpt +c 4 sin cpt )
we know that y(0,t)=0 , then equating the above equation to zero. Therefore,
we get

p= l( πx )
Substitute in eq.(4)

y(x,t)= c2 sin l( ( ))( ( )nπx


c 3 cos
cnπt
l
+c 4 sin
cnπt
l ( ))
0=c 2 c 3 sin ( nπxl ) cos ( cnπtl ) +c c sin ( nπxl ) sin( cnπtl )
2 4

Consider c 3 c 3=0, c 2 c 4=b n we get


nπx cnπt
y(x,t)= b n sin l sin l ( ) ( )
The general solution is

( nπxl ) sin ( cnπtl )


y(x,t)= ∑ bn sin -------------------------------(5)


n =1

Step-4:
Differentiating the general solution with respect to ‘t’

( ) {∑ ( ) ( )( )}

∂y nπx cnπt cnπ
= bn sin cos
∂t t =0 n=1 l l l t =0

( ) ( )

πx cπ nπx
¿ ∑ n bn sin
3
v 0 sin
l l n=1 l

3 3 sin A−sin 3 A
Since sin A= 4

3 sin ( πxl )−sin ( 3 πxl )


sin
3
( πxl )= 4

v0 ( 3 sin

4
)
( πxl )−sin ( 3 πxl ) = cπ ∑ n b sin nπx
l (l)

n=1
n

( ) ( ) ( ) ( ) ( )
3 v0 πx v 0 3 πx cπ πx 2 cπ 2 πx cπ 3 πx
sin − sin = b 1 sin + b 2 sin +3 b 3 sin
4 l 4 l l l l l l l

Step-5:
Comparing both sides and equating the same , we get
( ) ( )
3 v0 πx cπ πx
sin = b1 sin
4 l l l

3 v 0 cπ
= b1
4 l
3 v0l
b 1=
4 cπ
−v 0
4
sin ( )
3 πx
l

=3 b3 sin
l
3 πx
l ( )
−v 0 cπ
=3 b
4 l 3
−v 0 l
b 3= Whereas b 2 , b 4=0
12 cπ

Step-6:
Substituting the above values in the general solution (5)
We get,

( ) ( ) ( ) ( )
3 v0 l πx πct v0 l 3 πx 3 cπt
y(x,t)= 4 cπ sin l sin l − 12 cπ sin l sin l

y(x,t)= [ ( ) ( )
v0l 3
cπ 4
sin
πx
l
sin
πct
l
1
− sin
12
3 πx
l ( ) ( )]
sin
3 cπt
l

The final solution :


v 0l
[ ( ) ( ) ( ) ( )]
πx πct 3 πx 3 cπt
y(x,t)= 12cπ 9 sin l sin l −sin l sin l

PRACTICE PROBLEM:
A Tightly stretched string with fixed end points x=0, x=l initial at rest in its
equilibrium position. If it is vibrating by giving to each of its points with a
velocity λx(l-x). Find the displacement of the string at any distance x from the
end at any time ‘t’.
ANSWER:

8 λ l3 1 (2 m−1) πx (2m−1) πct
4 ∑
y= 4
sin sin
c π m=1 (2 m−1) l l
3
8 λl
Where b n= 4 4
c π ( 2 m−1 )

You might also like