0% found this document useful (0 votes)
153 views11 pages

Ex# (3.1-3.2-3.4) First Year Step

This document contains 28 multiple choice questions about matrices and linear algebra concepts. Some key questions involve: - Finding the product of two matrices or the inverse of a matrix - Identifying properties of matrices like symmetric, skew-symmetric, or diagonal - Computing the rank of given matrices - Determining conditions under which a matrix is the identity matrix The questions cover a range of foundational topics in linear algebra including matrix operations, properties, inverses, and rank.

Uploaded by

Aqeel Abbas
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
153 views11 pages

Ex# (3.1-3.2-3.4) First Year Step

This document contains 28 multiple choice questions about matrices and linear algebra concepts. Some key questions involve: - Finding the product of two matrices or the inverse of a matrix - Identifying properties of matrices like symmetric, skew-symmetric, or diagonal - Computing the rank of given matrices - Determining conditions under which a matrix is the identity matrix The questions cover a range of foundational topics in linear algebra including matrix operations, properties, inverses, and rank.

Uploaded by

Aqeel Abbas
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 11

WORKSHEET-16

vz
MATHEMATICS (Book-I) Ex #. 3.1, 3.2, 3.4

Worksheet-16
USE THIS SPACE FOR
 3  2 SCRATCH WORK
   
1. If U   2 3 4 , X   0 2 3 , V   2  , Y   2 
1  4
   
then UV  XY =
A.  4 B.  20
C. 16 D. 20
 1 2
2. The matrices C and D are given by C    and
 1 6 
 3 2 
D  . Find the matrix X such that
1 4 
CX  D  I . Where I is the identity matrix:
1  10 18  1  10 18 
A.   B.  
8  3 1  8 3 1 
1  10 18  1  10 18 
C.   D.  
8  3 1  8 3 1 
1 
4 k
 4 2 
3. For Matrices A   , B    find k that
 0 3 0 1
 
 3
makes AB identity:
2 1
A. B.
3 4
5 1
C. D.
6 6

1 a   2 1  1 5 
4. If    , values of a and b are:
 b 1   1 2   3 0 
A. 2,5 B. 1, 4
C. 2,5 D. 3, 2
 p 2  q 2  10 0 
5. If A   , B   ,C    and
 1 q  1 p   0 10 
AB  C then A 
A. 5 B. 10
C. 0 D. 2

Your STEP Towards A Brighter Future! 408


MATHEMATICS (Book-I) Ex #. 3.1, 3.2, 3.4

USE THIS SPACE FOR


1 2  SCRATCH WORK
6. If A    and A2  5 A1  kI 2  0, then:
3 4 
A. k  17 B. k  17
C. k  11 D. k  11
1 0
If A =  and A  A1  kI then p  ? and k  ?
P 
7.
0
A. +1, +2 B. +2, -2
1 3i
C. 2 D. +2, +1

 x
8. Find value of x , if  x 5  x      3 :
1
A. 1,0 B. 1, 2
C. 8,10 D. 2,8
9. Scalar matrix is:
1 0 0 0
A.   B.  
0 2 0 k 

2 0
C.   D. Both (B) and (C)
0 2
 r cos  0  sin    cos  0 sin  
10.  0 r 0   0 1 0  

 r sin  0 cos    r sin  0 r cos  

A. I 3 B. rI 3
C. O D. None of these
 1 2 
  1 3
If A   1 4  and B  
2 1
11. which of the
 2 1  

following is true:

 AB  B. B  AdjB   B I3
t
A.  Bt At

 AB 
1
C.  B 1 A1 D. All of these

Your STEP Towards A Brighter Future! 409


MATHEMATICS (Book-I) Ex #. 3.1, 3.2, 3.4

USE THIS SPACE FOR


12. A = [aij]mn is called diagonal Matrix if: SCRATCH WORK
I. aij  0, i  j
II. At least one aij  0, i  j
III. m  n
A. I and II only B. I and III only
C. II and III only D. I, II & III
13. A = [aij]23 , B = [bij]34 , C = [aij] with real entries and
 AB  C is defined then order of C is:
A. 2  4 B. 2  7
C. 4  7 D. 7  2
14. Adjoint of a square matrix is defined by:
A. Matrix of cofactors
B. Transpose of matrix of cofactors
C. Inverse of matrix of minors
D. Inverse of matrix of cofactors
1 0 
15. Inverse of matrix   is:
 z 1
1 0  1  z 0
A.   z 1 z 
B.
0 1 
 1 0  1  z 
C.   D.  
 z 1  0 1 
1 2 0 
16. If A    then AA 
t

 3 1 4 
A. O B. I
C. At A D. None of these
2 0
17. If A    and A  kA, then:
4

 0 2 
A. k  8 B. k  2
C. k  3 D. k  4
1 0 2   3 2 4
  1  1  , then:
18. If A  0 2 1  and A   1 1
0 1 1   2 1 k 
A. k  1 B. k  2
C. k  2 D. k  3

Your STEP Towards A Brighter Future! 410


MATHEMATICS (Book-I) Ex #. 3.1, 3.2, 3.4

USE THIS SPACE FOR


If A and B are skew-symmetric matrices then  AB 
t
19. SCRATCH WORK
is equal to:
A. At Bt B.  AB
C. AB D. BA
20. If A is a square matrix, then which one is correct:
A. A  A is symmetric B. A  A is symmetric
t t

C. A  A is skew symmetric D. A  A is hermitian


t t

21. If A is skew Hermitian Matrix then which of the


following is not skew Hermitian matrix:
A. A2 B. A5
C. A3 D. A7
22. Which of the following is skew symmetric matrix:
0 1 2  0 1 2 
A. 1 0 3  B.  1 0 3
   
 2 3 0   2 3 0 

 0 0 0  6 1 2 
C.  1 0 0  D.  1 6 3
   
 2 3 0   2 3 6 

1 2 
23. Rank of matrix   is:
3 0 
A. 0 B. 2
C. 1 D. 3
24. Which of the following is a skew Hermitian matrix:
3  i i   0 2  3i 
A.   B.  
 2i 1  i   2  3i 0 
 1 1 i  3i i  1
C.   D.  
1  i 2  i  1 5 
25. If A is a square matrix, then which of the following is
not symmetric matrix:
A. A  At B. AAt
C. At A D. A  At

Your STEP Towards A Brighter Future! 411


MATHEMATICS (Book-I) Ex #. 3.1, 3.2, 3.4

USE THIS SPACE FOR


 x x  2
If B    is a symmetric matrix, then x 
26. SCRATCH WORK
 2 x  3 x  1 
A. 3 B. 5

C. 2 D. 4
27. For A   aij  , if aij  0, i  j then the matrix is:
nn
A. Symmetric Matrix B. Hermitian Matrix
C. Lower Triangular D. Upper Triangular
1 2 1 3 
28. Rank of matrix  4 6 7 8  is:
 
0 4 10 8

A. 1 B. 2
C. 4 D. 3
29. Which one is in reduced echelon form only?
1 2 
A.  2 1 0
t
B.  
5 6 
1 2 1
 1 1 0 0 
C. 0 2 3  D.  
  0 0 1 3
 0 0 1 

1 1 1 3
2 0 0 2 
30. Rank of the matrix  is:
0 2 0 2
 
0 0 2 2
A. One B. Two
C. Three D. Four

Your STEP Towards A Brighter Future! 412


MATHEMATICS (Book-I) Ex #. 3.1, 3.2, 3.4

ANSWER KEY (Worksheet-16)  1 a   2 1  1 5 


4. (D)    
1 B 11 A 21 A  b 1   1 2   3 0 
2 A 12 D 22 B  2  a 1  2a   1 5 
3 D 13 C 23 B   
 2b  1 b  2   3 0 
4 D 14 B 24 B
 2  a  1 2b  1  3
5 B 15 C 25 D
 a  3 b2
6 B 16 D 26 B
 p 2
7 A 17 A 27 C 5. (B) A   
8 B 18 C 28 D  1 q
9 C 19 D 29 D  A  pq  2 ….. (i)
10 B 20 A 30 C Now AB  C
 p 2   q 2  10 0 
ANSWERS EXPLAINED    
 1 q   1 p   0 10 
 3  2
Comparing 1,1 th element
 
1. (B) UV  XY   2 3 4  2   0 2 3  2 
    pq  2  10
1  4
    Put in (i)
  6  6  4   0  4  12 A  pq  2  10
  4  16   20 1 2 
6. (B) Here A   
 1 2  3 2  3 4 
2. (A) Here C   , D   
 1 6  1 4  1 2  1 2   1  6 2  8 
A2     
CX  D  I  CX  I  D 3 4  3 4  3  12 6  16 
 1 0   3 2    2 2   7 10 
      
 0 1   1 4   1 3  15 22 
 2 2  1  6 2   2 2  1  4 2
 X  C 1      A1 
1
AdjA 
 1 3  8  1 1   1 3  A 4  6 3 1 
1  12  2 12  6  1  10 18 
     1  4 2 
8  2  1 2  3  8  3 1 A1 
2  3 1 
3. (D) By given AB  I
1  By given A2  5 A1  kI 2  0
 k  7 10    4 2  1 0  0 0 
 4 2  4 1 0    k  
      1  0 0 
 0 3 0 1  0 1 15 22  2  3 1  0
   10 5
 3  7 10   k 0  0 0 
   15 5    
Multiplying 1st row of first matrix by 2nd
15 22     0 k  0 0 
2  2 2
column of second matrix  4k 
3 Comparing a11 on both sides
Comparing 1, 2  th element on both sides 7  10  k  0
 k  17
2 1  2  1
4k  0 k    1 0 
3 4 3  6 7. (A) Here A   
0 p 

Your STEP Towards A Brighter Future! 413


MATHEMATICS (Book-I) Ex #. 3.1, 3.2, 3.4

1 1  p 0  r cos 2   r sin 2  0  0  0 r cos  sin   r cos  sin  


1
A  AdjA    
p  0 1   000 0r 0 000 
A  r cos  sin   r cos  sin  000 r sin 2   r cos 2  
 
By given A  A1  kI  r 0 0 1 0 0 
1 0   
 0 r 0  r 0 1 0   rI 3
1 0     k 0
   1   0 0 r  0 0 1 
0 p  0 p   0 k 
 
11. (A) Since the matrix A is not square so its
2 0  inverse does not exist so option (C)
    k 0  involve A1 , cannot be the answer.
0 p    0 k 
1
 p  The product AB and Bt At exists.
So (A) is the required option.
1
 k  2 p   k _____ (i) Moreover B  AdjB   B I 2
p
Put k  2 in (i) So (B) is not true.
1 12. (D) If A   aij  is a diagonal matrix then
p 2 mn
p it must square i.e. m  n and non-
 p2  2 p  1  0 diagonal elements all zero but diagonal
elements, not all zero.
  p  1  0  p  1
2
Hence all I, II and III are true.
Hence k  2 p  1 13. (C) Order of A is 2  3
 x Order of B is 3  4
8. (B)  x 5  x      3 Then the order of AB is 2  4
1
Now if  AB  C is defined then C must
  x  5  x    3
2

have order 4  n
 x2  5  x  3 Option (C) is of this type.
x2  x  2  0 14. (B) Adjoint is defined by “Transpose of the
 x2  x  2  0 matrix of cofactors”.
b  b 2  4ac 1
x 15. (C) Since A1  AdjA
2a A
1
1  1  4 1 2  1  7i 1 0 1 1 0  1 0
x        
2 1 2  z 1 1 0  z 1  z 1 
This equation is satisfied by x  2 and 1 3
 1 2 0 
x  1 only. 16. (D) AA  
t
 2 1
9. (C) A square matrix is a scalar matrix if  3 1 4   0 4 
aij  0 i  j and aij  k  0 i  j 
1  4  0 3  2  0 
i.e. non-diagonal elements are zero and  
diagonal elements are equal to a single 3  2  0 9  1  16 
non-zero scalar. 5 1 
 r cos  0  sin    cos  0 sin      O and  I
1 26 
10. (B)   0 0 
 0 r 0  1
Also order of AAt is 2  2
 r sin  0 cos    r sin  0 r cos   But order of At A is 3  3

Your STEP Towards A Brighter Future! 414


MATHEMATICS (Book-I) Ex #. 3.1, 3.2, 3.4

Hence AAt  At A Number of non-zero rows in reduced


So (D) is required option. echelon form or echelon form is called
17. (A) For a diagonal matrix rank of matrix
a 0  a n 0 So Rank  2
If A     A n
   Note:
0 a 0 an  For a 2  2 non-zero matrix
2 0  24 0  Rank  1 , if A  0
So if A   4

2   4
then A
0 0 2  and Rank  2 , if A  0
16 0 2 0 24. (B) In a skew Hermitian matrix
 A4     8   kA
0 16  0 2 aij  0 or i (pure imaginary)  i  j
Hence k  8 and aij  a ji i  j
18. (C) AA1  I i.e. diagonal elements are zero or pure
1 0 2  3 2 4  1 0 0  imaginary and elements opposite to main
 0 2 1   1 1 1   0 1 0 diagonal are the negative conjugate of
each other.
0 1 1   2 1 k  0 0 1 
Only (B) option satisfy this condition.
Comparing 1,3 rd element 25. (D) For a square matrix A
1 4  01   2 k   0 AAt , At A, A  At all are symmetric
4  2 k  0  k  2 But A  At is skew-symmetric
26. (B) Since B is symmetric
19. (D) If A and B are skew symmetric then
So a12  a21
At   A and Bt  B
Now  2x  3  x  2  x  5
27. (C) aij  0  i  j
 AB   Bt At   B   A  BA
t

 Elements above main diagonal are zero


20. (A) For a square matrix A
then the matrix is called lower triangular.
A  At is always symmetric and
1 2 1 3 
A  At is always skew-symmetric.
28. (D)  4 6 7 8 
21. (A) If A is skew-Hermitian  
 Hermitian, if n is even 0 4 10 8
Then An  
 Skew Hermitian, if n is odd  1 2 1 3 
 0 2 11 4  R  4 R
So A2 is not skew-Hermitian. R~   2   1
22. (B) A square matrix is skew-symmetric. If  0 4 10 8 
aij  0  i  j and aij  a ji  i  j  1 2 1 3 
 0 2 11 4  R  2 R
i.e. each diagonal element is zero and R~   3   2
elements opposite to main diagonal are  0 0 12 0 
negative of each other. 1 2 1 3  1
1 2   1 2   11  2 2
R
23. (B)   R  R2   3 R1 R  0 1  2
3 0  0 6  ~  2  1
0 0 R
1 2  1  1 0  12 3
R   R2
0 1  6 The number of non-zero rows in echelon
form of matrix is 3, so rank  3

Your STEP Towards A Brighter Future! 415


MATHEMATICS (Book-I) Ex #. 3.1, 3.2, 3.4

29. (D) A matrix will be in reduced echelon


form if
(i) “the number of leading zeros in a row
is greater than the number of such zero’s
in the preceding row.”
(ii) “Each element above or below the
leading element must be zero.”
Only (D) option satisfy above-mentioned
conditions.
30. (C) We reduce the matrix in echelon form
1
1 1 1 3  1 1 1 3 2 R2
 2 0 0 2  1 0 0 1
  R  1R
 0 2 0 2  0 1 0 1 2 3
   
 0 0 2 2  0 0 1 1 1 R4
2
1 1 1 3 
0 1 1 2 
 R R R
0 1 0 1  2 1

 
0 0 1 1 
1 1 1 3 
0 1 1 2 
 R   1 R
0 1 0 1  2

 
0 0 1 1 
1 1 1 3 
0 1 1 2 
 R R R
0 0 1 1 3 2

 
0 0 1 1 
1 1 1 3 
0 1 1 2 
 R R R
0 0 1 1 4 3

 
0 0 0 0 
It is clear from the last step that the
number of non-zero rows in echelon form
is 3
So Rank  3

Your STEP Towards A Brighter Future! 416

You might also like