WORKSHEET-16
vz
MATHEMATICS (Book-I) Ex #. 3.1, 3.2, 3.4
Worksheet-16
USE THIS SPACE FOR
3 2 SCRATCH WORK
1. If U 2 3 4 , X 0 2 3 , V 2 , Y 2
1 4
then UV XY =
A. 4 B. 20
C. 16 D. 20
1 2
2. The matrices C and D are given by C and
1 6
3 2
D . Find the matrix X such that
1 4
CX D I . Where I is the identity matrix:
1 10 18 1 10 18
A. B.
8 3 1 8 3 1
1 10 18 1 10 18
C. D.
8 3 1 8 3 1
1
4 k
4 2
3. For Matrices A , B find k that
0 3 0 1
3
makes AB identity:
2 1
A. B.
3 4
5 1
C. D.
6 6
1 a 2 1 1 5
4. If , values of a and b are:
b 1 1 2 3 0
A. 2,5 B. 1, 4
C. 2,5 D. 3, 2
p 2 q 2 10 0
5. If A , B ,C and
1 q 1 p 0 10
AB C then A
A. 5 B. 10
C. 0 D. 2
Your STEP Towards A Brighter Future! 408
MATHEMATICS (Book-I) Ex #. 3.1, 3.2, 3.4
USE THIS SPACE FOR
1 2 SCRATCH WORK
6. If A and A2 5 A1 kI 2 0, then:
3 4
A. k 17 B. k 17
C. k 11 D. k 11
1 0
If A = and A A1 kI then p ? and k ?
P
7.
0
A. +1, +2 B. +2, -2
1 3i
C. 2 D. +2, +1
x
8. Find value of x , if x 5 x 3 :
1
A. 1,0 B. 1, 2
C. 8,10 D. 2,8
9. Scalar matrix is:
1 0 0 0
A. B.
0 2 0 k
2 0
C. D. Both (B) and (C)
0 2
r cos 0 sin cos 0 sin
10. 0 r 0 0 1 0
r sin 0 cos r sin 0 r cos
A. I 3 B. rI 3
C. O D. None of these
1 2
1 3
If A 1 4 and B
2 1
11. which of the
2 1
following is true:
AB B. B AdjB B I3
t
A. Bt At
AB
1
C. B 1 A1 D. All of these
Your STEP Towards A Brighter Future! 409
MATHEMATICS (Book-I) Ex #. 3.1, 3.2, 3.4
USE THIS SPACE FOR
12. A = [aij]mn is called diagonal Matrix if: SCRATCH WORK
I. aij 0, i j
II. At least one aij 0, i j
III. m n
A. I and II only B. I and III only
C. II and III only D. I, II & III
13. A = [aij]23 , B = [bij]34 , C = [aij] with real entries and
AB C is defined then order of C is:
A. 2 4 B. 2 7
C. 4 7 D. 7 2
14. Adjoint of a square matrix is defined by:
A. Matrix of cofactors
B. Transpose of matrix of cofactors
C. Inverse of matrix of minors
D. Inverse of matrix of cofactors
1 0
15. Inverse of matrix is:
z 1
1 0 1 z 0
A. z 1 z
B.
0 1
1 0 1 z
C. D.
z 1 0 1
1 2 0
16. If A then AA
t
3 1 4
A. O B. I
C. At A D. None of these
2 0
17. If A and A kA, then:
4
0 2
A. k 8 B. k 2
C. k 3 D. k 4
1 0 2 3 2 4
1 1 , then:
18. If A 0 2 1 and A 1 1
0 1 1 2 1 k
A. k 1 B. k 2
C. k 2 D. k 3
Your STEP Towards A Brighter Future! 410
MATHEMATICS (Book-I) Ex #. 3.1, 3.2, 3.4
USE THIS SPACE FOR
If A and B are skew-symmetric matrices then AB
t
19. SCRATCH WORK
is equal to:
A. At Bt B. AB
C. AB D. BA
20. If A is a square matrix, then which one is correct:
A. A A is symmetric B. A A is symmetric
t t
C. A A is skew symmetric D. A A is hermitian
t t
21. If A is skew Hermitian Matrix then which of the
following is not skew Hermitian matrix:
A. A2 B. A5
C. A3 D. A7
22. Which of the following is skew symmetric matrix:
0 1 2 0 1 2
A. 1 0 3 B. 1 0 3
2 3 0 2 3 0
0 0 0 6 1 2
C. 1 0 0 D. 1 6 3
2 3 0 2 3 6
1 2
23. Rank of matrix is:
3 0
A. 0 B. 2
C. 1 D. 3
24. Which of the following is a skew Hermitian matrix:
3 i i 0 2 3i
A. B.
2i 1 i 2 3i 0
1 1 i 3i i 1
C. D.
1 i 2 i 1 5
25. If A is a square matrix, then which of the following is
not symmetric matrix:
A. A At B. AAt
C. At A D. A At
Your STEP Towards A Brighter Future! 411
MATHEMATICS (Book-I) Ex #. 3.1, 3.2, 3.4
USE THIS SPACE FOR
x x 2
If B is a symmetric matrix, then x
26. SCRATCH WORK
2 x 3 x 1
A. 3 B. 5
C. 2 D. 4
27. For A aij , if aij 0, i j then the matrix is:
nn
A. Symmetric Matrix B. Hermitian Matrix
C. Lower Triangular D. Upper Triangular
1 2 1 3
28. Rank of matrix 4 6 7 8 is:
0 4 10 8
A. 1 B. 2
C. 4 D. 3
29. Which one is in reduced echelon form only?
1 2
A. 2 1 0
t
B.
5 6
1 2 1
1 1 0 0
C. 0 2 3 D.
0 0 1 3
0 0 1
1 1 1 3
2 0 0 2
30. Rank of the matrix is:
0 2 0 2
0 0 2 2
A. One B. Two
C. Three D. Four
Your STEP Towards A Brighter Future! 412
MATHEMATICS (Book-I) Ex #. 3.1, 3.2, 3.4
ANSWER KEY (Worksheet-16) 1 a 2 1 1 5
4. (D)
1 B 11 A 21 A b 1 1 2 3 0
2 A 12 D 22 B 2 a 1 2a 1 5
3 D 13 C 23 B
2b 1 b 2 3 0
4 D 14 B 24 B
2 a 1 2b 1 3
5 B 15 C 25 D
a 3 b2
6 B 16 D 26 B
p 2
7 A 17 A 27 C 5. (B) A
8 B 18 C 28 D 1 q
9 C 19 D 29 D A pq 2 ….. (i)
10 B 20 A 30 C Now AB C
p 2 q 2 10 0
ANSWERS EXPLAINED
1 q 1 p 0 10
3 2
Comparing 1,1 th element
1. (B) UV XY 2 3 4 2 0 2 3 2
pq 2 10
1 4
Put in (i)
6 6 4 0 4 12 A pq 2 10
4 16 20 1 2
6. (B) Here A
1 2 3 2 3 4
2. (A) Here C , D
1 6 1 4 1 2 1 2 1 6 2 8
A2
CX D I CX I D 3 4 3 4 3 12 6 16
1 0 3 2 2 2 7 10
0 1 1 4 1 3 15 22
2 2 1 6 2 2 2 1 4 2
X C 1 A1
1
AdjA
1 3 8 1 1 1 3 A 4 6 3 1
1 12 2 12 6 1 10 18
1 4 2
8 2 1 2 3 8 3 1 A1
2 3 1
3. (D) By given AB I
1 By given A2 5 A1 kI 2 0
k 7 10 4 2 1 0 0 0
4 2 4 1 0 k
1 0 0
0 3 0 1 0 1 15 22 2 3 1 0
10 5
3 7 10 k 0 0 0
15 5
Multiplying 1st row of first matrix by 2nd
15 22 0 k 0 0
2 2 2
column of second matrix 4k
3 Comparing a11 on both sides
Comparing 1, 2 th element on both sides 7 10 k 0
k 17
2 1 2 1
4k 0 k 1 0
3 4 3 6 7. (A) Here A
0 p
Your STEP Towards A Brighter Future! 413
MATHEMATICS (Book-I) Ex #. 3.1, 3.2, 3.4
1 1 p 0 r cos 2 r sin 2 0 0 0 r cos sin r cos sin
1
A AdjA
p 0 1 000 0r 0 000
A r cos sin r cos sin 000 r sin 2 r cos 2
By given A A1 kI r 0 0 1 0 0
1 0
0 r 0 r 0 1 0 rI 3
1 0 k 0
1 0 0 r 0 0 1
0 p 0 p 0 k
11. (A) Since the matrix A is not square so its
2 0 inverse does not exist so option (C)
k 0 involve A1 , cannot be the answer.
0 p 0 k
1
p The product AB and Bt At exists.
So (A) is the required option.
1
k 2 p k _____ (i) Moreover B AdjB B I 2
p
Put k 2 in (i) So (B) is not true.
1 12. (D) If A aij is a diagonal matrix then
p 2 mn
p it must square i.e. m n and non-
p2 2 p 1 0 diagonal elements all zero but diagonal
elements, not all zero.
p 1 0 p 1
2
Hence all I, II and III are true.
Hence k 2 p 1 13. (C) Order of A is 2 3
x Order of B is 3 4
8. (B) x 5 x 3 Then the order of AB is 2 4
1
Now if AB C is defined then C must
x 5 x 3
2
have order 4 n
x2 5 x 3 Option (C) is of this type.
x2 x 2 0 14. (B) Adjoint is defined by “Transpose of the
x2 x 2 0 matrix of cofactors”.
b b 2 4ac 1
x 15. (C) Since A1 AdjA
2a A
1
1 1 4 1 2 1 7i 1 0 1 1 0 1 0
x
2 1 2 z 1 1 0 z 1 z 1
This equation is satisfied by x 2 and 1 3
1 2 0
x 1 only. 16. (D) AA
t
2 1
9. (C) A square matrix is a scalar matrix if 3 1 4 0 4
aij 0 i j and aij k 0 i j
1 4 0 3 2 0
i.e. non-diagonal elements are zero and
diagonal elements are equal to a single 3 2 0 9 1 16
non-zero scalar. 5 1
r cos 0 sin cos 0 sin O and I
1 26
10. (B) 0 0
0 r 0 1
Also order of AAt is 2 2
r sin 0 cos r sin 0 r cos But order of At A is 3 3
Your STEP Towards A Brighter Future! 414
MATHEMATICS (Book-I) Ex #. 3.1, 3.2, 3.4
Hence AAt At A Number of non-zero rows in reduced
So (D) is required option. echelon form or echelon form is called
17. (A) For a diagonal matrix rank of matrix
a 0 a n 0 So Rank 2
If A A n
Note:
0 a 0 an For a 2 2 non-zero matrix
2 0 24 0 Rank 1 , if A 0
So if A 4
2 4
then A
0 0 2 and Rank 2 , if A 0
16 0 2 0 24. (B) In a skew Hermitian matrix
A4 8 kA
0 16 0 2 aij 0 or i (pure imaginary) i j
Hence k 8 and aij a ji i j
18. (C) AA1 I i.e. diagonal elements are zero or pure
1 0 2 3 2 4 1 0 0 imaginary and elements opposite to main
0 2 1 1 1 1 0 1 0 diagonal are the negative conjugate of
each other.
0 1 1 2 1 k 0 0 1
Only (B) option satisfy this condition.
Comparing 1,3 rd element 25. (D) For a square matrix A
1 4 01 2 k 0 AAt , At A, A At all are symmetric
4 2 k 0 k 2 But A At is skew-symmetric
26. (B) Since B is symmetric
19. (D) If A and B are skew symmetric then
So a12 a21
At A and Bt B
Now 2x 3 x 2 x 5
27. (C) aij 0 i j
AB Bt At B A BA
t
Elements above main diagonal are zero
20. (A) For a square matrix A
then the matrix is called lower triangular.
A At is always symmetric and
1 2 1 3
A At is always skew-symmetric.
28. (D) 4 6 7 8
21. (A) If A is skew-Hermitian
Hermitian, if n is even 0 4 10 8
Then An
Skew Hermitian, if n is odd 1 2 1 3
0 2 11 4 R 4 R
So A2 is not skew-Hermitian. R~ 2 1
22. (B) A square matrix is skew-symmetric. If 0 4 10 8
aij 0 i j and aij a ji i j 1 2 1 3
0 2 11 4 R 2 R
i.e. each diagonal element is zero and R~ 3 2
elements opposite to main diagonal are 0 0 12 0
negative of each other. 1 2 1 3 1
1 2 1 2 11 2 2
R
23. (B) R R2 3 R1 R 0 1 2
3 0 0 6 ~ 2 1
0 0 R
1 2 1 1 0 12 3
R R2
0 1 6 The number of non-zero rows in echelon
form of matrix is 3, so rank 3
Your STEP Towards A Brighter Future! 415
MATHEMATICS (Book-I) Ex #. 3.1, 3.2, 3.4
29. (D) A matrix will be in reduced echelon
form if
(i) “the number of leading zeros in a row
is greater than the number of such zero’s
in the preceding row.”
(ii) “Each element above or below the
leading element must be zero.”
Only (D) option satisfy above-mentioned
conditions.
30. (C) We reduce the matrix in echelon form
1
1 1 1 3 1 1 1 3 2 R2
2 0 0 2 1 0 0 1
R 1R
0 2 0 2 0 1 0 1 2 3
0 0 2 2 0 0 1 1 1 R4
2
1 1 1 3
0 1 1 2
R R R
0 1 0 1 2 1
0 0 1 1
1 1 1 3
0 1 1 2
R 1 R
0 1 0 1 2
0 0 1 1
1 1 1 3
0 1 1 2
R R R
0 0 1 1 3 2
0 0 1 1
1 1 1 3
0 1 1 2
R R R
0 0 1 1 4 3
0 0 0 0
It is clear from the last step that the
number of non-zero rows in echelon form
is 3
So Rank 3
Your STEP Towards A Brighter Future! 416