0% found this document useful (0 votes)
41 views9 pages

Solution 2065634

The document is a mathematics test focused on matrices and determinants for Class 12 students. It includes various problems and explanations related to matrix operations, properties, and specific types of matrices such as symmetric and skew-symmetric matrices. The test covers concepts such as matrix addition, multiplication, determinants, and adjoint matrices.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
41 views9 pages

Solution 2065634

The document is a mathematics test focused on matrices and determinants for Class 12 students. It includes various problems and explanations related to matrix operations, properties, and specific types of matrices such as symmetric and skew-symmetric matrices. The test covers concepts such as matrix addition, multiplication, determinants, and adjoint matrices.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 9

Solution

MATRICES AND DETERMINANT TEST

Class 12 - Mathematics
Section A
1
1
1. (a) [ 2
]
2 1

Explanation:
a11 a12
In general, the matrix A of order 2 × 2 is given by A = [ ] ,
a21 a22
i
Now, aij = ; i = 1, 2 and j = 1, 2
j

∴ a11 = 1, a 12 =
1

2
, a21 = 2; a22 = 1
1
1
Thus, matrix A is [ 2
]
2 1

2.
π
(d) 3

Explanation:
cos α − sin α
Given A = [ ]
sin α cos α

cos α sin α
Therefore, A ′
= [ ]
− sin α cos α

Also given that A + A' = I ...(1)


(Putting the values in equation (1))
cos α − sin α cos α sin α 1 0
[ ]+ [ ]= [ ]
sin α cos α − sin α cos α 0 1

cos α + cos α − sin α + sin α 1 0


⇒ [ ]= [ ]
sin α − sin α cos α + cos α 0 1

2 cos α 0 1 0
⇒ [ ]= [ ]
0 2 cos α 0 1

We know the two matrices are equal only when all their corresponding elements or entries are equal i.e. if A = B, then aij and
bij for all i and j.
This implies,
2 cos α = 1
1
⇒ cos α =
2

π π 1
⇒ cos α = cos . . . (∵ cos = )
3 3 2

π
⇒ α =
3

3.
(d) A is a zero matrix
Explanation:
If a matrix A is both symmetric and skew-symmetric,
A’ = A & A’ = -A
Comparing both the equations,
A = -A
A+A=0
2A = 0
A=0
then A is a zero matrix.

1/9
4.
(b) x = 2
Explanation:
0 1 −2
⎡ ⎤

Given, A = ⎢ −1 0 3⎥
⎣ ⎦
x −3 0

We know that, if A is a skew-symmetric matrix, then


A = -AT ...(i)
From Eq. (i) We, get
0 1 −2 0 −1 x
⎡ ⎤ ⎡ ⎤

⎢ −1 0 3⎥ = −⎢ 1 0 −3 ⎥
⎣ ⎦ ⎣ ⎦
x −3 0 −2 3 0

0 1 −2 0 1 −x
⎡ ⎤ ⎡ ⎤
⇒ ⎢ −1 0 3 ⎥ = ⎢ −1 0 3⎥
⎣ ⎦ ⎣ ⎦
x −3 0 2 −3 0

On comparing the corresponding element, we get


-2 = -x ⇒ x = 2

5.
(b) A2 = A
Explanation:
∣1 0∣ ∣1 0∣∣1 0∣ ∣1 0∣
A=∣ ∣ , then A2 = ∣ ∣∣ ∣ = ∣ ∣ =A
∣0 0∣ ∣0 0∣∣0 0∣ ∣0 0∣

6.
(c) (-6, 11)
Explanation:
(-6, 11)

7.
(b) 26
Explanation:
|A| = d
|adj A| = |A|n - 1
Here, n = 3, |A| = 8
|adj A| = 82
|adj A| = (23)2 = 26

8.
−1
x 0 0
⎡ ⎤

(d) ⎢ 0 y
−1
0 ⎥

⎣ −1 ⎦
0 0 z

Explanation:
x 0 0
⎡ ⎤

Here, A = ⎢ 0 y 0⎥
⎣ ⎦
0 0 z

Clearly, we can see that


yz 0 0
⎡ ⎤

adjA= ⎢ 0 xz 0 ⎥ and |A| = xyz

⎣ ⎦
0 0 xy

2/9
yz 0 0
⎡ ⎤
adjA 1
−1
∴ A = = ⎢0 xz 0 ⎥
|A| xyz

⎣ ⎦
0 0 xy
−1
x 0 0
⎡ ⎤
−1
= ⎢0 y 0 ⎥
⎣ −1 ⎦
0 0 z

9.
(b) |A| = 22|B|
Explanation:
2 2 1 1
Let A = [ ] and B = [ ]
4 0 2 0

Now, |A| = 0 - 8 = -8
and |B| = 0 - 2 = -2
Observe that |A| = 4(-2) = 22 |B|

10. (a) Idempotent


Explanation:
clearly for given matrix A 2
= A

Therefore idempotent
4 2 −2 1
11. Given matrices are, A = [ ] and B = [ ]
1 3 3 2

We have 3A – 2B + X = 0
So X = -(3A – 2B)
Thus,
4 2 −2 1
X = −3 [ ]− 2[ ]
1 3 3 2

3 × 4 + 2 × 2 3 × 2 − 2 × 1
X = −[ ]
3 × 1 − 2 × 3 3 × 3 − 2 × 2

−16 −4
X=[ ]
3 −5

2 4 1 3
12. A + 2B = [ ] + 2 ([ ])
3 2 −2 5

2 4 2 6
= [ ]+ [ ]
3 2 −4 10

4 10
= [ ]
−1 12

13. |A⋅ adj A| = |A|n = 4n where n is order of matrix


14. We know that, for a non-singular square matrix of order n
|adj (A) | = |A| n- 1
Here, the order of A is 3 × 3, therefore n = 3
Hence, |adj (A) |= |A|2 ...(i)
But |adj (A)| = |A| [given]....(ii)
From Eqs. (i) and (ii), we get,
k=2
Section B
a11 a12 a13
⎛ ⎞

15. A= ⎜ a 21 a22 a23 ⎟ …......(1)


⎝ ⎠
a31 a32 a33

3/9
b11 b12
⎛ ⎞

B = ⎜b 21 b22 ⎟ …......(2)
⎝ ⎠
b31 b32

2 3 −5 2 −1
⎛ ⎞ ⎛ ⎞

Given, A = [aij] = ⎜ 1 4 9 ⎟ B = [bij] = ⎜ −3 4 ⎟


⎝ ⎠ ⎝ ⎠
0 7 −2 1 2

Now, Comparing with equation (1) and (2)


a11 = 2, a22 = 4, b11 = 2, b22 = 4
a11 b11 + a22 b22 = 2 × 2+ 4 × 4 = 4 + 16 = 20
3 1 3 1 8 5
16. A2
= [ ][ ] = [ ]
−1 2 −1 2 −5 3

15 5 7 0
5A = [ ] , 71 = [ ]
−5 10 0 7

0 0
⇒ A2 - 5A + 7I = [ ]= 0
0 0

⇒ A-1(A2 - 5A + 7) = A-1 0
⇒ A - 5t + 7A-1 = 0
⇒ 7A-1 = 5I - A
1
5 0 3 1
−1
⇒ A = ([ ]− [ ])
7
0 5 −1 2

1
2 −1
−1
⇒ A = [ ]
7
1 3

0 0
17. Given: A = [ ]
4 0

We will find A2,


0 0 0 0
A2 = A × A = [ ][ ]
4 0 4 0

0 + 0 0 + 0
2
⇒ A = [ ]
0 + 0 0 + 0

⇒ A2 = 0
Hence, A16 = (A2)8 = (0)8 = 0
Hence A16 is a null matrix.
18. Since, A and B are square matrices of same order and B is a skew-symmetric matrix
∴ B' = -B .....(1)

Now, we have to prove that A’BA is a skew-symmetric matrix.


(A'BA)' = [A'(BA)]'=(BA)'(A')' ...[∴(AB)'=B'A']
= (A'B')A. [∴ (A')'=A]
= A'(-B)A [using (1)]
= -(A'BA)
Hence, A'BA is a skew-symmetric matrix.
19. Given,
1 2 2
⎛ ⎞
A= ⎜ 2 1 x ⎟
⎝ ⎠
−2 2 −1

1 2 −2
⎛ ⎞

A = ⎜2 1 2 ⎟

⎝ ⎠
2 x −1

Since, A A' = 9I
1 2 2 1 2 −2 1 0 0
⎛ ⎞⎛ ⎞ ⎛ ⎞

⎜ 2 1 x ⎟⎜2 1 2 ⎟ = 9⎜0 1 0⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠
−2 2 −1 2 x −1 0 0 1

1 + 4 + 4 2 + 2 + 2x −2 + 4 − 2
⎛ ⎞
2
⎜ 2 + 2 + 2x 4 + 1 + x −4 + 2 − x ⎟
⎝ ⎠
−2 + 4 − 2 −4 + 2 − x 4 + 4 + 1

4/9
9 0 0
⎛ ⎞

= ⎜0 9 0⎟
⎝ ⎠
0 0 9

9 2x + 4 0 9 0 0
⎛ ⎞ ⎛ ⎞
2
⎜ 2x + 4 x + 5 −x − 2 ⎟ = ⎜ 0 9 0⎟
⎝ ⎠ ⎝ ⎠
0 −x − 2 9 0 0 9

Now, x2 + 5 = 9
x2 = 9 - 5
x2 = 4

x = √4
x = ±2
Also, 2x + 4 = 0
2x = -4
4
x=− 2

So, x = -2
20. By using the definition, on expanding the given determinant with respect to C​​​1
∣ 2 3 −2 ∣

D=∣ 1 2 3

∣ ∣
∣ −2 1 −3 ∣

∣2 3∣ ∣3 −2 ∣ ∣3 −2 ∣
⇒ D = (- 1)1+1 (2) ∣ ∣ + (-1)2+1 (1) ∣ ∣ + (-1)3+1 (- 2) ∣ ∣
∣1 −3 ∣ ∣1 −3 ∣ ∣2 3∣

∣2 3∣ ∣3 −2 ∣ ∣3 −2 ∣
⇒ D= 2∣ ∣ − ∣ ∣ − 2∣ ∣
∣1 −3 ∣ ∣1 −3 ∣ ∣2 3∣

⇒ D = 2 (- 6 - 3) - (- 9 + 2) - 2 (9 + 4) = -18 + 7 - 26 = - 37
21. Matrix form of given equations is AX = B
1 −1 1 x 4
⎡ ⎤⎡ ⎤ ⎡ ⎤

⇒ ⎢2 1 −3 ⎥ ⎢ y ⎥ = ⎢ 0 ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦
1 1 1 z 2

1 −1 1 x 4
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

Here A = ⎢ 2 1 −3 ⎥ , X = ⎢ y ⎥ and B = ⎢ 0 ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
1 1 1 z 2

∣1 −1 1 ∣
∣ ∣
∴ |A| = 2 1 −3
∣ ∣
∣1 1 1 ∣

= 1(1 + 3) - ( - 1)(2 + 3) + 1(2 - 1)


= 4 + 5 + 1 = 10 ≠ 0

Therefore, solution is unique and X = A −1


B=
1
(adj. A) B
|A|

x 4 2 2 4
⎡ ⎤ ⎡ ⎤⎡ ⎤
1
⇒ ⎢ y ⎥ = ⎢ −5 0 5⎥⎢0⎥
10
⎣ ⎦ ⎣ ⎦⎣ ⎦
z 1 2 3 2

16 + 0 + 4
⎡ ⎤
1
= ⎢ −20 + 0 + 10 ⎥
10
⎣ ⎦
4 + 0 + 6

20 2
⎡ ⎤ ⎡ ⎤
1
= ⎢ −10 ⎥ = ⎢ −1 ⎥
10
⎣ ⎦ ⎣ ⎦
10 1

Therefore, x = 2, y = - 1 and z = 1
22. Given system of equations:
ax + y + z = 0
x + by + z = 0
x + y + cz = 0
and, It is given that x, y, z are not all zero. This means that there are non-trivial solutions of the given system of equations.

5/9
∣a 1 1∣
∣ ∣


1 b 1

= 0 ⇒ abc - a - c - b + 2 = 0 ⇒ abc = a + b + c - 2 ...(i)
∣1 1 c ∣
(1−b)(1−c)+(1−c)(1−a)+(1−a)(1−b)
Now, 1

1−a
+
1−b
1
+
1−c
1
=
(1−a)(1−b)(1−c)

3−2(a+b+c)+(ab+bc+ca)
=
1−(a+b+c)+(ab+bc+ca)−abc

3−2(a+b+c)+(ab+bc+ca)
= [Using (i)]
1−(a+b+c)+(ab+bc+ca)−(a+b+c)+2

3−2(a+b+c)+(ab+bc+ca)
= =1
3−2(a+b+c)+(ab+bc+ca)

2 1
23. Given: A = [ ]
5 3

⇒ |A| = 1
3 −1
Adj A = [ ]
−5 2

3 −1
A–1=
adj A 1
= [ ]
|A| 1
−5 2

4 5
and, B = [ ]
3 4

|B| = – 1
4 −5
B–1=
adj A 1
= [ ]
|A| −1
−3 4

2 1 4 5 11 14
Also, AB = [ ][ ]= [ ]
5 3 3 4 29 37

|AB| = 407 – 406 = 1


37 −14
And, adj(AB) = [ ]
−29 11

adj AB 37 −14
(AB) – 1 = |AB|
=[ ]
−29 11

4 −5 3 −1
Now, B – 1A – 1 = [ ][ ]
−3 4 −5 2

37 −14
=[ ]
−29 11

Hence, (AB) – 1 = B – 1A – 1
24. The given matrix is
6 − x 4
[ ]
3 − x 1

We need to find the value of x such that the matrix is singular.


∣6 − x 4∣
i.e, ∣ ∣ = 0
∣3 − x 1∣

⇒ (6 - x) × 1 - 4 × (3 - x) = 0
⇒ (6 - x) - (12 - 4x) = 0
⇒ 6 - x - 12 + 4x = 0

⇒ 4x - x - 12 + 6 = 0

⇒ 3x - 6 = 0

⇒ x =
6

⇒ x=2
Thus, the value of x = 2 for which the matrix is singular. x = 2
Section C
−1 2 3 −4 1 −5
⎡ ⎤ ⎡ ⎤

25. A = ⎢ 5 7 9⎥ and B = ⎢ 1 2 0 ⎥
⎣ ⎦ ⎣ ⎦
−2 1 1 1 3 1

(A+B)’ = A’+B’
Explanation: We will first calculate L.H.S i.e. (A+B)’ and then consecutively we will calculate R.H.S and verify that both are
equal.

6/9
−1 2 3 −4 1 −5
⎡ ⎤ ⎡ ⎤

So, A + B = ⎢ 5 7 9⎥ + ⎢ 1 2 0 ⎥
⎣ ⎦ ⎣ ⎦
−2 1 1 1 3 1

−1 + (−4) 2 + 1 3 + (−5)
⎡ ⎤

⇒ A+ B= ⎢ 5 + 1 7 + 2 9 + 0 ⎥

⎣ ⎦
−2 + 1 1 + 3 1 + 1

−5 3 −2
⎡ ⎤

⇒ A+ B= ⎢ 6 9 9 ⎥
⎣ ⎦
−1 4 2

−5 6 −1
⎡ ⎤
Therefore, (A + B) ′
= ⎢ 3 9 4 ⎥ ...(1)
⎣ ⎦
−2 9 2

−1 5 −2 −4 1 1
⎡ ⎤ ⎡ ⎤

Noe, A ′
= ⎢ 2 7 1 ⎥ and B ′
= ⎢ 1 2 3⎥

⎣ ⎦ ⎣ ⎦
3 9 1 −5 0 1

−1 5 −2 −4 1 1
⎡ ⎤ ⎡ ⎤

So, A' + B' = ⎢ 2 7 1 ⎥ + ⎢ 1 2 3⎥


⎣ ⎦ ⎣ ⎦
3 9 1 −5 0 1

−1 + (−4) 5 + 1 −2 + 1
⎡ ⎤
′ ′
⇒ A + B = ⎢ 2 + 1 7 + 2 1 + 3 ⎥

⎣ ⎦
3 + (−5) 9 + 0 1 + 1

−5 6 −1
⎡ ⎤

⇒ A + B = ⎢

3 9 4 ⎥ ...(2)
⎣ ⎦
−2 9 2

From equation (1) &( 2), we see that


(A+B)’ = A’+B’. Hence verified.
2 3 1
⎡ ⎤

26. The given matrix is ⎢ 3 4 1⎥


⎣ ⎦
3 7 2

∣4 1∣ ∣3 1∣ ∣3 4∣
|A| = 2 ∣ ∣ − 3∣ ∣ + 1∣ ∣
∣7 2∣ ∣3 2∣ ∣3 7∣

= 2(8 – 7) – 3(6 – 3) + 1(21 – 12)


=2–9+9
=2
Hence, A – 1 exists
Cofactors of A are:
C11 = 1 C21 = 1 C31 = – 1
C12 = – 3 C22 = 1 C32 = 1
C13 = 9 C23 = – 5 C33 = – 1
T
C11 C12 C13
⎡ ⎤

adj A = ⎢ C 21 C22 C23 ⎥

⎣ ⎦
C31 C32 C33
T
1 −3 9
⎡ ⎤

=⎢ 1 1 −5 ⎥
⎣ ⎦
−1 1 −1

1 1 −1
⎡ ⎤
So, adj A = ⎢ −3 1 1 ⎥
⎣ ⎦
9 −5 −1

1 1 −1
⎡ ⎤

Now, A – 1 =
1
⎢ −3 1 1 ⎥
2
⎣ ⎦
9 −5 −1

1 1 −1 2 3 1
⎡ ⎤⎡ ⎤

Also, A – 1.A = 1

2
⎢ −3 1 1 ⎥⎢3 4 1⎥
⎣ ⎦⎣ ⎦
9 −5 −1 3 7 2

7/9
2 + 3 − 3 3 + 4 − 7 1 + 1 − 2
⎡ ⎤

1 ⎢ −6 + 3 + 3 −9 + 4 + 7 −3 + 1 + 2 ⎥
⎣ ⎦
18 − 15 − 3 27 − 20 − 7 9 − 5 − 2

2 0 0 1 0 0
⎡ ⎤ ⎡ ⎤
1
⎢0 2 0⎥ = ⎢0 1 0⎥
2
⎣ ⎦ ⎣ ⎦
0 0 2 0 0 1

Hence, A – 1.A = I
Section D
27. We have,
2 3
2X + 3Y = [ ] ....(i)
4 0

−2 2
And 3X + 2Y = [ ] ...(ii)
1 −5

On subtracting Eq. (i) from Eq. (ii), we get


−2 − 2 2 − 3
∴ (3X + 2Y ) − (2X + 3Y ) = [ ]
1 − 4 −5 − 0

−4 −1
(X − Y ) = [ ] ....(iii)
−3 −5

On adding Eqs. (i) and (ii), we get


0 5
(5X + 5Y ) = [ ]
5 −5

0 5 0 1
⇒ (X + Y ) =
1

5
[ ]= [ ] ....(iv)
5 −5 1 −1

On adding Eqs. (iii) and (iv), we get


−4 0
⇒ (X − Y )(X + Y ) = [ ]
−2 −6

−2 0
⇒ 2X = 2 [ ]
−1 3

−2 0
∴ X = [ ]
−1 3

From Eq. (iv),


−2 0 0 1
[ ]+ Y = [ ]
−1 −3 1 −1

0 1 −2 0 0 + 2 1 − 0 2 1
∴ Y = [ ]− [ ] = [ ]= [ ]
1 −1 −1 −3 1 + 1 −1 + 3 2 2

28. Here, we have:


1 0 −2
⎡ ⎤

A = ⎢ −2 −1 2 ⎥
⎣ ⎦
3 4 1

A3 = A2.A
1 0 −2 1 0 −2
⎡ ⎤⎡ ⎤
2
A = ⎢ −2 −1 2 ⎥ ⎢ −2 −1 2 ⎥
⎣ ⎦⎣ ⎦
3 4 1 3 4 1

1 + 0 − 6 0 + 0 − 8 −2 + 0 − 2 −5 −8 −4
⎡ ⎤ ⎡ ⎤
= ⎢ −2 + 2 + 6 0 + 1 + 8 4 − 2 + 2 ⎥ = ⎢ 6 9 4 ⎥
⎣ ⎦ ⎣ ⎦
3 − 8 + 3 0 − 4 + 4 −6 + 8 + 1 −2 0 3

−5 −8 −4 1 0 −2
⎡ ⎤⎡ ⎤

A2.A =⎢ 6 9 4 ⎥ ⎢ −2 −1 2 ⎥
⎣ ⎦⎣ ⎦
−2 0 3 3 4 1
2
−5 + 16 − 12 0 − 8 + 16 10 − 16 − 4
⎡ ⎤

=⎢ 6 − 18 + 12 0 − 9 + 16 −12 + 18 + 4 ⎥
⎣ ⎦
−2 − 0 + 9 0 − 0 − 12 4 + 0 + 3

−1 −8 −10
⎡ ⎤
=⎢ 0 7 10 ⎥
⎣ ⎦
7 12 7

Now, A3 – A2 – 3A – I

8/9
−1 −8 −10 −5 −8 −4 1 0 −2 1 0 0
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ 0 7 10 ⎥ − ⎢ 6 9 4 ⎥ − 3 ⎢ −2 −1 2 ⎥ − ⎢0 1 0⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
7 12 7 −2 0 3 3 4 1 0 0 1

−1 + 5 −8 + 8 −10 + 4 −3 − 1 −0 − 0 6 − 0
⎡ ⎤ ⎡ ⎤

=⎢ 0 − 6 7 − 9 10 − 4 ⎥ + ⎢ 6 − 0 +3 − 1 −6 − 0 ⎥
⎣ ⎦ ⎣ ⎦
7 + 2 12 − 0 7 − 3 −9 − 0 −12 + 0 −3 − 1

4 0 −6 −4 0 6
⎡ ⎤ ⎡ ⎤
= ⎢ −6 −2 6 ⎥ + ⎢ 6 2 −6 ⎥
⎣ ⎦ ⎣ ⎦
9 12 4 −9 −12 −4

0 0 0
⎡ ⎤

= ⎢0 0 0⎥

⎣ ⎦
0 0 0

Thus, A3 – A2 – 3A – I = 0
Multiply both sides by A −1
, we get
−1 3 −1 2 −1 −1
A A –A A – 3A A– I A = 0

A2 – A – 3I = A −1
...(since A −1
A= I )
⇒ A–1= (A2 - A - 3I)
−5 −8 −4 1 0 −2 1 0 0
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ 6 9 4 ⎥ − ⎢ −2 −1 2 ⎥ − 3⎢0 1 0⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
−2 0 3 3 4 1 0 0 1

−5 −8 −4 1 0 −2 3 0 0
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ 6 9 4 ⎥ − ⎢ −2 −1 2 ⎥ − ⎢0 3 0⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
−2 0 3 3 4 1 0 0 3

−5 − 1 − 3 −8 − 0 − 0 −4 + 2 − 0
⎡ ⎤

=⎢ 6 + 2 − 0 7 + 1 − 3 4 − 2 − 0 ⎥

⎣ ⎦
−2 − 3 − 0 0 − 4 − 0 3 − 1 − 3

−9 −8 −2
⎡ ⎤

=⎢ 8 7 2 ⎥
⎣ ⎦
−5 −4 −1

−9 −8 −2
⎡ ⎤
Hence, A – 1 = ⎢ 8 7 2 ⎥
⎣ ⎦
−5 −4 −1

9/9

You might also like