Problem Set 2 Solutions
Problem Set 2 Solutions
Mathematics II
  Compute A1 + A4 , A3 + A5 , A1 − A4 , A3 − A5 , A2 · A3 , A5 ·
  A6 , A6 · A5 , A1 · A3 , where Ai · Aj is the matrix multiplication.
  Solution
  We have A1 ∈ M2x2 ; A2 ∈ M3x2 ; A3 ∈ M2x3 ; A4 ∈ M2x2 ; A5 ∈
  M3x3 ;
  A6 ∈ M3x3 . Then,
                                                      
                     1 0         −1 2          1−1 0+2
    • A1 + A4 =              +           =                   =
                     0 1          1 1          0+1 1+1
            
         0 2
         1 2
    • A3 + A5 Not well defined operation since the number of
      rows do not match.
                                                      
                    1 0        −1 2        1 − (−1) 0 − 2
    • A1 − A4 =           −            =                     =
                    0 1         1 1          0−1 1−1
               
          2 −2
         −1 0
    • A3 − A5 Not well defined operation since the number of
      rows do not match.
      Recall that C = AB is defined if A has as many columns
      as B has rows. If A is m × n and B is n × k, then C = AB
      is m × k. Then,
                                2
    • A2 · A3 ∈ M
                 3x3     
                   −1 0                
                             1   0   1
      A2 · A3 =  2 1  ·                 =
                             0 1 −1
                    8 4
                                                          
             −1 · 1 + 0 · 0 −1 · 0 + 0 · 1 −1 · 1 + 0 · −1
        =  2 · 1 + 1 · 0 2 · 0 + 1 · 1 2 · 1 + 1 · −1 
              8 · 1 + 4 · 0 8 · 0 + 4 · 1 8 · 1 + 4 · −1
                         
             −1 0 −1
        = 2 1 1 
              8 4 4
    • A5 · A6 ∈ M
                 3x3                                         
                    1 0 1            1 3 1             1 3 −4
      A5 · A6 = 2 1 1  · 0 1 0  = 2 7 −3
                    8 4 −2           0 0 −5            8 28 18
                                                                             
           1 · 1 + 0 · 0 + 1 · 0 1 · 3 + 0 · 1 + 1 · 0 1 · 1 + 0 · 0 + 1 · −5
      = 2 · 1 + 1 · 0 + 1 · 0 2 · 3 + 1 · 1 + 1 · 0 2 · 1 + 1 · 0 + 1 · −5
           8 · 1 + 4 · 0 − 2 · 0 8 · 3 + 4 · 1 − 2 · 0 8 · 1 + 4 · 0 − 2 · −5
• A6 · A5 ∈ M3x3
                                           
                 1 3 1     1 0 1      15  7   2
      A6 ·A5 = 0 1 0 ·2 1 1  =  2    1   1
                 0 0 −5    8 4 −2    −40 −20 10
    • A1 · A3 ∈ M2x3
                                    
                 1 0    1 0 1     1 0 1
      A1 · A3 =       ·        =
                 0 1    0 1 −1    0 1 −1
                               3
  Solution
  Let us first, compute the sum on the left-hand side of the equa-
  tion:
                                                                   
    3 x 1          2 1 3         3 x 1          4 2 6            7 2+x 7
              +2             =             +               =
    1 2 0          5 x 4         1 2 0         10 2x 8          11 2 + 2x 8
  The problem is thus, to find the values of x and y solving
                                              
                   7 2+x 7               7 3 7
                                    =
                  11 2 + 2x 8           11 y 8
  That is, we need to solve: x + 2 = 3 and 2 + 2x = y. The
  solution is x = 1 y = 4
3. Solve the equation X · A + B = C, where
                  
          0 2 0                                                 
                                4 −2  1                  1 −3 5
   A = 3 0 −3 , B =                      ,     C=
                                5 1 −3                  −2 4 −6
          0 1 2
                              4
  Solution
  Since A ∈ M3x3 and B, C ∈ M2x3 if follows that X ∈ M2x3 .
  Let                             
                            a b c
                      X=
                            d e f
  The left-hand side X · A + B, is
                            
                  0 2 0                   
     a b c                          4  −2  1
                · 3 0 −3 +                     =
      d e f                         5 1 −3
                    0 1 2
                                                
            3b 2a + c −3b + 2c           4 −2 1
                                     +                 =
            3e 2d + f −3e + 2f           5 1 −3
                                                            
                  3 · b + 4 2 · a + c − 2 −3 · b + 2 · c + 1
                  3 · e + 5 2 · d + f + 1 −3 · e + 2 · f − 3
  Therefore, the equation is
                                                        
    3 · b + 4 2 · a + c − 2 −3 · b + 2 · c + 1      1 −3 5
                                                =
    3 · e + 5 2 · d + f + 1 −3 · e + 2 · f − 3     −2 4 −6
  The solution of the equation is
             −3              1              7
        a=      , b = −1, c = , d = 4, e = − , f = −5
             4               2              3
  and accordingly, the matrix X is
                            −3     1
                                      
                                 −1
                      X = 4 −7 2 .
                              4 3 −5
Solution
                              5
  We need X ∈ M2x2 . Let us denote this matrix as
                                  
                               a b
                       X=             .
                               c d
  Then, the problem is to solve
                           
     1 1       a b         4 −2
            ·         ·           =
     3 4       c d       −3 2
                                                  
      4a + 4c − 3b − 3d −2a − 2c + 2b + 2d     6 4
                                            =
    12a + 16c − 9b − 12d −6a − 8c + 6b + 8d    22 14
  Solution
  To find the matrix X that commutes to matrix A means to find
  X such that
                         X ·A=A·X
  Since A ∈ M3x3 ⇒ X ∈ M3x3 .     Let,
                                      
                          a        b c
                    X = d         e f
                          g        h i
                              6
  Then,
                                                          
                 a b c    0 1            0     0 1    0    a b c
    X·A = A·X = d e f ·0 0            1 = 0 0    1·d e f  ⇔
                 g h i    0 0            0     0 0    0    g h i
                                                        
                             0           a b      d    e f
                           0            d e = g
                                                    h i
                             0           g h      0    0 0
  It gives as solution: a = e = i, b = f, d = g = h = 0 and
  hence:                              
                                a b c
                          X = 0 a b 
                                0 0 a
  Double-check:
                                         
              a b c        0 1 0        0 a b
  X · A = 0 a b  · 0 0 1 = 0 0 a
              0 0 a        0 0 0        0 0 0
                                          
               0 1 0       a b c        0 a b
  A · X = 0 0 1 · 0 a b  = 0 0 a
               0 0 0       0 0 a        0 0 0
6. Find the matrix X that solves the   equation A · X = X · A,
   where:                               
                               0 0     0
                        A = 1 1       0
                               0 0     0
  Solution
                      look for X· A= A · X.
  Proceed as above to                               
                        a b c        0 0 0       0 0 0
  X · A = A · X = d e f  · 1 1 0 = 1 1 0 ·
                        g h i        0 0 0       0 0 0
          
    a b c
  d e f  ⇔
    g h i
                             7
                                    
       b b 0            0     0      0
  ⇔  e e 0  = a + d b + e c + f 
       h h 0            0     0      0
  Solution: a = e − d, b = h = 0, f = −c:
                                       
                            e−d 0 c
                     X= d         e −c
                              g    0 i
  Double-check:
                                                 
            e−d     0 c      0 0 0     0         0   0
  X ·A= d          e −c · 1 1 0 = e         e   0 =
              g     0 i      0 0 0     0         0   0
                                                  
            0 0    0     e−d 0 c        0        0   0
  A·X = 1 1
                  0 ·
                        d   e −c = e
                                               e   0
            0 0    0      g   0 i       0        0   0
7. Calculate the 2 × 2 matrixes with A2 = A:
  Solution
  Let                            
                              a b
                          A=
                               c d
  Then,                            
                          a b     a b
                    A·A=       ·
                           c d    c d
  so that we want to solve
                  2                     
                   a + bc ab + bd      a b
                                    =
                   ca + dc bc + d2     c d
  Solution: a2 + bc = a, ab + bd = b, ca + dc = c, bc + d2 = d.
  For instance:
                               d(1−d)
Sol 1: a = 1 − d, b = b, c =      b ,   d = d.
Sol 2: a = 1, b = 0, c = c, d = 0.
                               8
Sol 3: a = 0, b = 0, c = 0, d = 0.
Sol 4: a = 0, b = 0, c = c, d = 1.
  Solution
  Recall Sarrus rule:
       a11 a12 a13
       a21 a22 a23 = a11 a22 a33 + a12 a23 a31 + a13 a21 a32
       a31 a32 a33
                        − a13 a22 a31 − a12 a21 a33 − a11 a23 a32
                                 9
        1 0 −3
  [a)] −1 6 7 = (1 · 6 · 1) + (−1 · 1 · −3) + 0 − [0 + (1 · 7 · 1) + (1 · 0 · −1
       0 1 1
       −1 1 1
  [b)] 1 −1 1 = [−1 + 1 + 1] − [−1 − 1 − 1] = 4
       1 1 −1
       2 0 1
  [c)] 1 1 0 = −6
       2 0 −2
       −4 −6 −2
  [d)] 2 4 2 = 0
       −2 −3 −1
        1 0 3
  [e)] −1 1 1 = −11
        2 1 −1
Solution
                  x    2x + 1 2x + 1
             a) 2x + 1 3x − 1   4x = −6x2 + 3x
                3x − 1   4x   6x − 1
  and
                                         1
                  −6x2 + 3x = 0 ⇔ x = {0, }
                                         2
                     4 8 6
                  b) 5 7 12 = −12x + 180
                     3 −1 x
                             10
    and
                     −12x + 180 = 0 ⇔ x = 15
Solution
               a+b  a   a
          [a)]  a  a+b  a | = 3ab2 + b3 = b2 (3a + b)
                a   a  a+b
          a−b−c   2a    2a
     [b)]   2b  b−a−c   2b  =
            2c    2c  c−a−b
    6abc+3ab2 +a3 +3ac2 +3b2 c+b3 +3ba2 +3bc2 +3ca2 +c3 = (a+b+c)3
                                11
   Solution
              −1
                      −4 −3
                                                    
       3 8                 4    −8       1     3     32
   a)             =                   =
       5 − 34         169 −5 3          169 20 −12
              −1
        −4 83
                                     3 1
                      −3 2 −11             −
   b)             =          8         = 3256 14   3
        11 2          112 − 3 4            112    28
                                   3 −1        −1 −1        −1 3
                                                                    
                                1 1       −
                   −1                          2 1         2 1     
        1     −1 2                                                  
                          −1  −2 3
                                               1 3          1 −2    
   c) −2      3 1 =            −                        −          
                          15        1 1        2 1          2 1     
        3     −1 1             
                                −2 3
                                                                     
                                                 1 3        1 −2     
                                           −
                                   3 −1        −1 −1 −1 3
                   
        −4    1 7
    1 
        −1    1 1
   15
        7     2 −1
                    −1
               2 13
                                            
        3                        15 −31 −1
                           1 
   d) −2      1 0 =            30 45 −2
                          107
        0     −1 5                6    9 21
   Solution
   Use Gauss, i.e. the row echelon form to find the rank (See
   example d)). After that use the rule: The rank of a matrix with
   more rows than columns is “# of columns” minus “# of Zero-
   rows”. If more columns than rows, then rank is “# of rows”
                              12
    minus “# of Zero-rows”.
                                    
                                2 3
                     [a)] rk           =1
                               −4 −6
                                  
                              2 3 1
                     [b)] rk          =2
                              1 2 3
                                      
                               −2 3 1
                     [c)] rk  1 −1 0 = 2
                                0 1 1
                                3 2 13
                                      
                     [d)] rk −2 1 0 = 3
                                0 −1 5
Solution
     a)                          
                            1 2 3
                       det 1 a 1 = −2a + 2
                            2 3 4
          Then, −2a + 2 = 0 ⇔ a = 1. Therefore,
                               (
                         1 2 3
                                      2 if a = 1
                    rk 1 a 1 =
                         2 3 4        3 if a 6= 1
     b)                         
                          a 1 0
                     det 2 2 a  = −a3 − a + 2
                          1 a −1
                                  13
          Then, a3 − a + 2 = 0 ⇔ a = 1. Therefore,
                                (
                         a 1 0
                                        2 if a = 1
                    rk 2 2 a  =
                         1 a −1         3 if a 6= 1
     c)                         
                           a 1 1
                      det 1 a 1 = a3 − 3a + 2
                           1 1 a
          Then, a3 − 3a + 2 = 0 ⇔ a = {1, −2}. Therefore,
                              
                                 1 if a = 1
                     
                       a 1 1     
                  rk 1 a 1 = 2 if a = −2
                       1 1 a
                                 
                                    3 if a 6= {1, −2}
                                 
                                14
      • Firm 3 keeps 85% of its customers, while losing 10% to
         Firm 1, and 5% to Firm 2.
Solution
y = a + b1 x1 + b2 x2
                                 15
                            y        x1      x2
                            1         4      2.5
                            3        5.5      3
                            5         6      3.8
                                      16
                Part II. Systems of linear equations
Solution
                               17
   to obtain                    
                    1 4  8   | 0
                   0 13 14 | 3 
                    0 0 −229 | 41
   Note that                 
                       1 4 8
                   rk −2 5 −2 = 3
                       3 7 1
   and                         
                   1 4  8   | 0
               rk 0 13 14 | 3  = 3
                   0 0 −229 | 41
   Since the ranks coincide, and given that the number of
   equations equals the number of unknowns, the Roche-Frobenius
   theorem guarantees a unique solution. Solving the triangu-
   lar system, we obtain
                     60         97        41
               x=−       , y=−     , z=−
                     229       229       229
(b) Write the system in matrix form
                                    
                         2 −5 3 | −12
                   A = 3 2 −5 | 1 
                         7 −4 2 | 0
                          18
        Then, det(A) = 74 6= 0, rk(A) = (A|b) = 3 ⇒ unique
        solution:
                          175       241       16
                     x=       , y=−     , z=−
                           37        37       37
    (d) Write the system in matrix form
                                        
                             1 −3 1 | −13
                       A = 2 4 3 | 47 
                             3 5 −2 | 44
x = 4, y = 3, z = 5
                                19
equations:
                               
     2x + 3y − 7z = −1
                               3x + 2y − 4z = 1
                                
  (a) 3x + 4y − 6z = 5       (b) 5x − y − 2z = 2
                               
       5x − 2y + 4z = −7          x + 3y − z = 3
                               
     
     2x − 5y + 3z = −12
                                 (
                                   x − 2y + z = 3
  (c) 3x + 2y − 5z = 1        (d)
                                  3x + y − 5z = 2
       7x − 4y + 2z = 0
     
     
     3x + 5y = 1
     
  (e) 2x − y = 23
     
       2x + 25y = −6
     
Solution
 a) Write the system in matrix form
                                     
                          2 3 −7 | −1
                   A = 3 4 −6 | 5 
                          5 −2 4 | −7
    Then, det(A) = −64 6= 0, rk(A) = (A|b) = 3 ⇒ unique
    solution:
                   x = −1, y = 5, z = 2
 b) Write the system in matrix form
                                     
                           3 2 −4 | 1
                    A = 5 −1 −2 | 2
                           1 3 −1 | 3
    Then, det(A) = −37 6= 0, rk(A) = (A|b) = 3. Solving
    using Cramer rule, we obtain,
       1 2 −4             3 1 −4         3 2 1
       2 −1 −2            5 2 −2         5 −1 2
       3 3 −1    −37      1 3 −1   37    1 3 3     37
    x=         =     ; y=         = ; z=         =
        det(A)   −37       det(A)  37     det(A)   37
                        20
  Therefore, the solution is
x=y=z=1
                          21
        Applying Gauss we can write
                                                
          3 5 | 1            3 5 | 1       3 5 |  1
        2 −1 | 23  ∼ 0 13 | −67 ∼ 0 13 | −67 
          2 25 | −6          0 26 | −29    0 0 | −105
        Given that rk(A) = 2 6= (A|b) = 3, the Roche-Frobenius
        theorem tells us that the system is incompatible, and thus
        has no solution.
18. Classify and solve the following systems of linear equations as
    a function of the parameter a:
                                        
             2x + y + az = 4
                                        ax + y + z = 1
                                         
         (a) x + z = 2                (b) x + ay + z = 2
                                        
               x+y+z =2                    x + y + az = 3
                                        
             
             x + 2y + 3z = 0
             
         (c) x + ay + z = 0
             
               2x + 3y + 4z = 2
             
    Solution
     a) Write the system in matrix form:
                                           
                                   2 1 a | 4
                       (M |b) = 1 0 1 | 2
                                   1 1 1 | 2
        Then, det(M ) = a − 2, det(M ) = 0 ⇔ a = 2. Hence,
        (
         a = 2 ⇒ rk(M ) = 2 = rk(M |b) (Two equal columns) Infinite solutions
         a 6= 2 ⇒ rk(M ) = 3 = rk(M |b) ⇒ Unique solution
     b) Write the system in matrix form:
                                            
                                   a 1 1 | 1
                       (M |b) = 1 a 1 | 2
                                   1 1 a | 3
                               22
        Then, det(M ) = a3 − 3a + 2; det(M ) = 0 ⇔ a = 1, −2.
        Hence, (see problem 13(c)),
          
          
          
           if a = 1 then ⇒ rk(M ) = 1 6= 2 = rk(M |b)
          
          
          
          
           ⇒ Incompatible
          
          if a = −2 then ⇒ rk(M ) = 2 6= 3 = rk(M |b)
          
          
           ⇒ Incompatible
          
          
          
          
           if a 6= {1, −2} then ⇒ rk(M ) = 3 = rk(M |b)
          
          ⇒ Compatible and determinate
                                 23
We can describe the two consumers through their budgets con-
straints as
                      p1 qa1 + p2 qa2 = wa
                      p1 qb1 + p2 qb2 = wa
that is
                       10p1 + 8p2 = 50
                       6p1 + 12p2 = 60
or in matrix form
                             
                     10 8    p1   50
                                =
                      6 12   p2   60
The problem to solve is
           −1    1            1
                                        
   p1   10 8       50         6   −  9    50
      =                 =       1  5          =
   p2    6 12      60        − 12 36      60
                 50 60   150−120   5 
                   6 − 9               18
                              = −150+300        3
                                             = 25
                    50
                  − 12 + 300
                          36           36       6
24