0% found this document useful (0 votes)
439 views19 pages

The Gymnopserms Handbook Res Cop

...

Uploaded by

Luz Caballero
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
439 views19 pages

The Gymnopserms Handbook Res Cop

...

Uploaded by

Luz Caballero
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 19

The

Gymnosperms
Handbook
A practical guide to extant families and genera of the world

James W. Byng
The Gymnosperms Handbook
A practical guide to extant families and genera of the world

James W. Byng

High quality and


unrestricted version
available to purchase from
CONTENTS

Introduction................................................................................... 1
CLASSIFICATION.......................................…………….........…....…………… 2

CYCADiDAE........................................................................................... 3
Cycadaceae.…….……................................................................... 3
Zamiaceae...……………….………..................................................... 4

GINKOIDAE........................................................................................... 6
Ginkgoaceae....……………............................................................. 6

GNETIDAE.............................................................................................. 7
Welwitschiaceae…………............................................................. 7
Gnetaceae....……………................................................................ 8
Ephedraceae....……………............................................................. 9

PINIDAE.................................................................................................. 10
Pinaceae.....……….……….............................................................. 11
Araucariaceae.………….…………..................................................... 14
Podocarpaceae………….………….................................................... 15
Sciadopityaceae………….………..................................................... 18
Cupressaceae……….…..………....................................................... 19
Taxaceae………....………….............................................................. 25

GLOSSARY............................................................................................. 27
WEB LINKS.............................................................................................. 29


CUPRESSACEAE TAXONOMIC NOTES................................................. 30
Bibliography….…..........……………...................................................... 31
INDEX OF FAMILY AND GENERIC NAMES..................................... 33
Introduction
As our understanding of plant evolutionary relationships increases it is important to provide
useful and practical resources that help utilise and explain the resulting classification systems.
The Gymnosperms Handbook is the second in the series of practical handbooks to be published
by Plant Gateway.

Gymnosperms are widely distributed and commonly encountered plants, particularly in the
Northern Hemisphere, and molecular work over the past two decades has more or less resolved
evolutionary relationships of all the families and genera ‒ a pine is still a pine and a yew is still a
yew but podocarps and cypresses are more complicated than were previously thought!

Gymnosperms are woody seed-bearing plants differing from the other group of seed plants,
angiosperms (flowering plants), by not having an ovule enclosed in a carpel. The name comes
from the Greek word gymnosperma meaning “naked seed”. The fertilised ovules develop into
seeds on the surface of an integument (interpreted as a scale, bract or leaf) that are aggregated
into cones or cone-like structures, with the exception of Cycas (Cycadaceae) and Ginkgo
(Ginkgoaceae). The reproductive structures are usually unisexual and the cones or cone-like
structures are usually slow to reproduce taking up to a year for pollinated ovules to be fertilised
and up to another three years to mature.

There are currently twelve extant families recognised in eight orders following the most recent
classification. These can be divided into four groups: conifers (Pinidae), cycads (Cycadidae),
ginkgo (Ginkgoidae) and three enigmatic genera in the Gnetidae. Morphologically these groups
are very different from each other but all four groups have ovules unprotected prior to fertilisation
‒ a synapomorphy for gymnosperms. The relationships of extant groups are still incompletely
understand due to the diverse and numerous groups of fossil gymnosperms. During the early
Mesozoic era (about 240 million years ago) gymnosperms were the most dominant plants in the
world but only about 1057 species exist today. However, some members of gymnosperms (the
conifers) are still the dominant vegetation forming groups of plants in many areas of the world,
particularly in the temperate boreal forests of the Northern Hemisphere and alpine forests at
high elevations, because of their adaptation to cold and dry conditions. Many conifer species
are also of huge economic importance as a timber source worldwide. This work aims to provide
a concise introduction to identifying extant gymnosperms of the world.

In this work the families and genera are arranged following the linear sequence of extant
gymnosperms by Christenhusz et al. (2011) with a few changes in Cupressaceae outlined on
page 30. Each description contains useful characters, with diagnostic characters highlighted, and
information on their native distribution. Terminology used in this work follows that generally used
in the literature, in particular when referring to angiosperm-esque flower and fruit characters
in Gnetaceae and Ephedraceae. The reproductive structures are termed pollen (male) and seed
(female) cones throughout to follow that of the authoritative work on conifers by Farjon (2010).

I thank my colleagues Drs Maarten Christenhusz and Neil Snow for their comments on an earlier
draft and Dr Benedetta Bernardini for help collating some of the information. I appreciate the
use of images by many people, notably Josh Der and Chris Davidson. Finally I would like to thank
Valle Domingo Sánchez for providing the illustration for the front cover.

James W. Byng BSc (Hons.) MSc PhD FLS


Leiden, August 2015

1
ginkgoales
GINKOIDAE : GINKGOALES
Notes: An order consisting of a living relict which is nearly extinct in the wild but widespread in cultivation. The monospecific genus
differs from other gymnosperms by the unique leaf shape and ovules developing on long stalks rather than in cones.

3. GinkGOAceae Maidenhair TREE FAMILY


Dioecious, deciduous trees, up to 40 m. Bark light grey or greyish brown; branchlets dimorphic, long and short.
Leaves simple, alternate (spiral), flat, fan-shaped, apex 2-lobed or notched, pale green, turning yellow in autumn;
midrib lacking, numerous parallel veins, dichotomous; crowded on short shoots, widely spaced on longer shoots;
petioles up to 10 cm long. Reproductive structures are clustered in axils of scale-like leaves on short branchlets.
Pollen cones pendulous, catkin-like, numerous pollen sacs. Female structures consist of 2 sessile ovules borne on
long peduncles, each naked ovule with a collar-like rim, usually only one develops into a swollen, pendulous, fleshy,
drupe-like fruit.

Genus 1/species 1; Ginkgo biloba.


Distribution: Originally native to China and now unknown in the wild. The species has been widely cultivated as an ornamental in
temple grounds in eastern Asia for hundreds of years and is now commonly cultivated in gardens across the world.
Useful species: The leaves and roots have medicinal properties.
Notes: The outer coat of the seeds have a foetid scent, like rancid butter or human vomit, which is why male plants are preferred
as ornamentals.
Literature: Fu et al. 1999d; Page 1990a.
© Wouter Hagens / PD-self

Leaves fan-shaped with 2-lobed apex

© H.Zell / CC-BY-SA-3.0

Short branchlet with catkin-like pollen cones


© H.Zell / CC-BY-SA-3.0

© H.Zell / CC-BY-SA-3.0

Long branchlet with widely spaced


leaves

Seeds surrounded by
© H.Zell / CC-BY-SA-3.0
succulent outer envelope © H.Zell / CC-BY-SA-3.0

Ovules on long peduncles (arrowed) (“drupe-like”). Leaves fall yellow in autumn

6
welwitschiales
GNETIDAE : WELWITSCHIALES
Notes: An order consisting of a strange African desert plant. The two spreading opposite leaves of Welwitschia mirabilis form around
a crater-like rim where cones arise singly or in highly branched structures.

4. Welwitschiaceae
Dioecious woody perennials, tap-root present.
Leaves 2(–3), persistent, simple, opposite, strap-
shaped, spreading horizontally along the ground;
margins worn away at edges; numerous parallel
veins. Pollen cones with pollen borne in axils of
scales, each enclosed by 2 lateral bracts and 2
“perianth-like” bracts, surrounding 6 stamen-like
structures; reddish to orange. Seed cones with
ovules borne in axils of scales, each enclosed by
2 “perianth-like” bracts which are fused along
margins; style-like structures eventually exserted;
green to yellow. Seeds enclosed in winged © Harald Supfle / CC BY-SA 2.5
perianth.
In situ habit
Genus 1/species 1; Welwitschia mirabilis.
Distribution: Namibia to Angola in the Namib desert close to the
ocean. A relatively large population exists about 200 km inland in
Namibia between latitudes 20–24°S.
Literature: Glen 2001; Kubitzki 1990; Von Breitenbach & Von
Breitenbach 1992.

© Hans Hillewaert / CC BY-SA 4.0


© Cole Shatto / CC-BY-SA-3.0

Pollen cones with exserted stamen-like structures Branched seed cone structures
© KENPEI / CC-BY-SA-3.0

1 cm

© Amada44 / CC-BY-SA-3.0

Young individual illustrating the two opposite leaves with branched pollen Seed surrounded by winged
cone structures protruding from the centre perianth

7
pinales
8. Shoots rough due to prominent and persistent peg-like
projections.........................................................................9 6 8
8. Shoots more or less smooth (with slightly raised scars)
[seed cones with conspicuous exserted, 3-lobed bracts.
China].............................................................Pseudotsuga
columella
9. Seed cones erect. Pollen cones in umbellate clusters
..........................................................................Nothotsuga
9. Seed cones pendulous. Pollen cones solitary........................10

10. Leaves sessile. Leaf apex usually sharp-pointed or bluntly


acute [leaves usually very aromatic]............................Picea
10. Leaves with petiole-like base. Leaf apex rounded or © Keisotyo / CC-BY-SA-3.0

Pendulous
notched........................................................................Tsuga © MPF / CC-BY-SA-3.0
seed cone of
Disintegrating Pseudotsuga
seed cone of Abies with conspicuous
with persistent exserted bracts
columella (arrowed)

Generic synopsis
• Cedrus (cedar. Shoots dimorphic, angled. Leaves needle-
like, spirally arranged (long shoots) and fascicled
(lateral shoots). Pollen cones solitary at apex of
short shoots. Seed cones when mature disintegrate
on tree, mature in 2nd or 3rd year. Atlas Mountains
(North Africa) through Mediterranean to western
Himalayas; 3 spp.).
• Pinus (pine. Leaves in fascicles of 2–5(–8) surrounded
by a sheath, linear. Seed cones with usually thick
woody seed scales. Temperate and subtropical
northern hemisphere; 111 spp.; incl. Apinus, Caryo-
pitys, Ducampopinus, Strobus).
• Picea (spruce. Leaves linear, needle-like, sessile, © Ebustad / PD-self

whorled, usually aromatic, all on long shoots, persis- Intact and partially
tent leaf base projections. Seed cones erect at first disintegrated seed cones of
and pendulous when mature, mature in 1st year. Cedrus deodara
Northern temperate regions; 37 spp.). © MPF / CC BY-SA 2.5

• Cathaya (Shoots weakly dimorphic. Leaves linear,


spirally arranged, poorly defined lateral shoots,
flattened, longitudinally grooved, hairy margins on
young leaves. Seed cones axillary, fall intact when
mature, mature in 1st year. Western China; 1 sp., C. © USFS Region5 / CC BY-SA 2.0

argyrophylla). Pollen cones of Pinus contorta

Foliage, pollen cone


© Karlostachys / CC-BY-SA-3.0 (arrowed) and mature seed © Nova / CC-BY-SA-3.0

Spirally arranged leaves of Cathaya argyrophylla cone of Picea Pinus nigra seed cone

12
pinales
• Pseudotsuga (Douglas fir. Leaves linear, © J Byng

spirally arranged on long shoots,


leaf base not persistent. Seed cones
pendulous, red or green when
mature, falling intact, maturing in
1st year. Bracts exserted, apically
3-lobed. Japan, China, Taiwan and
western North America; 4 spp.).
• Larix (larch. Deciduous trees. Shoots
dimorphic. Leaves spirally arranged
(long shoots) or fascicled (short
shoots). Pollen cones solitary. Seed
cones erect, falling whole, mature
in 1st year. Subarctic and temperate
northern hemisphere; 10 spp.).
• Pseudolarix (golden larch. Deciduous
trees. Shoots dimorphic. Leaves line-
ar, spirally arranged (long shoots) or
fascicled (short shoots). Pollen cones
clustered. Seed cones erect, disinte-
grating on tree, maturing in 1st year. © Keisotyo / CC-BY-SA-3.0
Central and northeast China; 1 sp., P. Mature (left) and young (right) seed
Long shoots of Pseudotsuga cones of Larix decidua
amabilis; incl. Chrysolarix).
japonica
• Nothotsuga (Shoots weakly dimorphic. © Peter Stevens / CC BY-SA 2.0

Leaves linear-elliptic, leaf base © Louis Van Houtte / PD

projections persistent. Pollen


cones in umbellate clusters. Seed
cones solitary, falling entire or
disintegrating on tree. Bracts large,
conspicuous. Southwest China; 1
sp., N. longibracteata).
• Tsuga (hemlock. Shoots weakly
dimorphic. Leaves linear, ±2-ranked,
apices rounded or notched, leaf
base projections persistent making
branchlets rough, petioles present.
Pollen cones solitary, axillary. Seed
cones solitary, terminal, maturing
in 1st year. Bracts inconspicuous.
North America, China, Japan, Tai-
wan; 9 spp.; incl. Hesperopeuce).
• Keteleeria (Shoots ± smooth. Leaves
spirally arranged on long shoots.
Pollen cones terminally clustered. Foliage and erect seed cone of Foliage and pendulous seed cone of
Seed cones erect, fall intact from Pseudolarix amabilis Tsuga heterophylla
tree. Bracts conspicuous, exserted.
Himalayas to China, Taiwan, Laos,
Vietnam; 3 spp.).
• Abies (fir. Shoots opposite. Leaves
linear, spirally arranged on long
shoots. Pollen cones pendulous.
Seed cones erect, maturing in 1st
year, disintegrating on tree and
cone rachis persistent. Temper-
ate to subtropical in the northern
hemisphere regions; 47 spp.).

© Eric in SF / CC-BY-SA-3.0 ©Yoko Nekonomania / CC-BY-SA-2.0 © H.Zell / CC-BY-SA-3.0

Pollen cones of Keteleeria Erect seed cones of Keteleeria Erect seed cone and many pendulous
evelyniana davidiana pollen cones of Abies koreana

13
araucariales
7. Seeds erect at maturity [New Zealand, southern
South America].............................................................8 5 seed

7. Seeds oblique or inverted at maturity [tropical Asia to epimatium

Pacific Islands, incl. New Zealand]................................9 seed

8. Epimatium swollen and fleshy, covering basal half of


seed..................................................................Manoao
8. Epimatium membranous, surrounding base of seed scales

..............................................................Lepidothamnus
5, 7, 8
9. Epimatium completely surrounding seed and Multiple fertile scales and seeds of
Lagarostrobos (left) and erect seed of
becoming swollen and succulent [fleshy and
Manoao with swollen epimatium covering
warty receptacle]......................................Dacrycarpus basal half of the seed (right)
9. Epimatium forming a collar around the base of seed.....10 © Chris Davidson / floraoftheworld.org
9

10. Epimatium brown or nearly black..................Dacrydium


10. Epimatium white or yellow............................Halocarpus

11. Seeds more or less erect at maturity.............................12 Seed cone of Dacrycarpus with fleshy, red
and warty receptacle
11. Seeds inverted at maturity............................................13

12. Seed cones with a warty receptacle.................Acmopyle


12. Seed cones without a warty receptacle......Falcatifolium

13. Leaves without a single prominent midrib...................14


13. Leaves with a prominent single midrib........................15
14
14. Leaves <3 cm long.....................................Retrophyllum © Keisotyo / CC-BY-SA-3.0

Broad leaves and seeds of Nageia nagi


14. Leaves ≥3 cm long...............................................Nageia
16 16
15. Seed cones swelling to form a succulent receptacle
...................................................................Podocarpus
15. Seed cones reduced and not swelling to form a
succulent receptacle.................................................16

16. Seed cone consisting of many cone scales © Stan Shebs / CC-BY-SA-3.0 © Forest & Kim Starr / CC-BY-SA-3.0

swelling at maturity.................................Saxegothaea Seed cone of Saxegothaea with many,


fleshy cone scales (left) and drupe-like
16. Seed cones drupe-like.................................................17 fruit of Afrocarpus (right)
18
17. Pollen cones solitary or 2–3 clustered [Africa]
....................................................................Afrocarpus
17. Pollen cones clustered (≥3) [New World or Asia]........18

18. Leaves ≥5 cm long [pollen cones 3–7 on a stalk]


.................................................................Sundacarpus © Kahuroa / PD-self

Foliage of Prumnopitys
18. Leaves <3 cm long [pollen cones in spikes].Prumnopitys

16
araucariales
• Falcatifolium (Dioecious shrubs or trees. © Daderot / CC0

Leaves dimorphic, scale-like and


lanceolate-falcate. Pollen cones catkin-
like. Seed cones usually solitary, ±erect,
consisting of several bracts, apical
bract swelling into a fleshy receptacle
at maturity. Seed basally covered by
a swollen epimatium. Malesia to New
Guinea and New Caledonia; 6 spp.).
• Retrophyllum (Dioecious trees. Leaves
lanceolate to ovate, petioles twisting. © Koppchen / CC-BY-SA-3.0

Seed cones reduced. Seeds covered Seeds of Podocarpus


by fleshy epimatium, drupe-like, when macrophyllus with
mature dark red-violet. Northern South fleshy recptacle
America, Malesia, Fiji and New Caledo-
nia; 5 spp.; incl. Decussocarpus).
• Nageia (Dioecious or monoecious trees or Retrophyllum rospigliosii
shrubs. Leaves ovate-elliptic to oblong-
lanceolate, midrib absent but many © Shih-Shiuan Kao / CC-BY-SA-2.0

parallel veins. Seed cones reduced or


forming a fleshy receptacle. Seeds cov-
ered by fleshy epimatium, drupe-like.
Northeast India to southeast Asia and
New Guinea; 5 spp.).
• Afrocarpus (Dioecious trees. Leaves
lanceolate-elliptic, 1 midrib present.
Pollen cones catkin-like. Seed cones
solitary, reduced. Seeds covered by
fleshy epimatium, drupe-like. Ethiopia
to South Africa, A. mannii from São
Tomé; 5 spp.). ©Koppchen
© Almandine / CC-BY-SA-3.0
/ CC-BY-SA-3.0

• Podocarpus (Dioecious or rarely monoe- Foliage and pollen cones of Nageia Pollen cones of Podocarpus
cious shrubs or trees. Leaves usually nagi macrophyllus
linear-lanceolate or linear-elliptic,
conspicuous midrib present on lower surface. Pollen cones spike or catkin-like. Seed cones usually solitary, swelling to form a
conspicuous, brightly coloured and fleshy receptacle. Tropical to subtropical regions; ca. 100 spp.; incl. Margbensonia).

10. Sciadopityaceae Umbrella Tree FAMILY


Monoecious evergreen trees, resinous. Leaves reduced and scale-like; foliage represented by linear cladodes in
pseudo-whorls. Pollen cones terminal, clustered; cone scales many. Seed cones terminal, maturing in 2nd year,
disintegrate at maturity; cone scales broadly cuneate or fan-shaped, many, spirally arranged, deciduous; bract ± free
of seed cone scales in mature cones. Seeds 5–9 per scale, winged.

Genus 1/species 1; Sciadopitys verticillata.


Distribution: Central and southern Japan.
Notes: The species is cultivated as an ornamental.
Literature: Eckenwalder 2009; Farjon 2005, 2010; Fu et al. 1999h; Page 1990b; WCSP 2015.

© J Byng
© J Byng © KENPEI / CC-BY-SA-3.0

Whorled linear cladodes of Sciadopitys Young seed cone of Sciadopitys Pollen cones of Sciadopitys

18
cupressales
• Platycladus (Monoecious trees. Leaves dimorphic, scale-like, minute, opposite, decussate. Pollen cones solitary, terminal. Seed
cones oblong, erect with 3–5 valvate scale pairs, central 2-pairs fertile, scales thick and woody. Seed wingless. Russian Far
East, northern China and Korea, naturalised in Florida [USA]; commonly cultivated in China; 1 sp., P. orientalis; incl. Biota).
• Microbiota (Monoecious shrubs. Leaves weakly dimorphic, scale-like, opposite, imbricate, shortly decurrent. Seed cones reduced,
globose, with 4 valvate, scales. Seeds wingless. Russian Far East near Vladivostock; occasionally seen in cultivation in northern
hemisphere; 1 sp., M. decussata).
© Ram-Man / CC BY-SA 2.5

© Roger Culos / CC-BY-SA-3.0 © Luis Fernández García / CC-BY-SA-3.0

Seed cone of Tetraclinis Young seed cones of Platycladus Foliage of Microbiota decussata

12. TAXACEAE YEW FAMILY


Dioecious or monoecious, evergreen trees or shrubs, slightly resinous. Leaves spirally arranged or decussate, linear
to lanceolate, stomatal bands either side of the midvein. Pollen cones solitary or aggregated in globose umbels,
spikes or heads; cone scales few to many, peltate or compressed on their lower and upper sides; pollen sacs 2–9,
pendulous. Seed cones structures consisting of reduced shoots and several overlapping or decussate scales at base,
usually strongly reduced to a single seed or in Cephalotaxus with much reduced obscure scales or seed on a fleshy
“peduncle”; erect ovules borne at apex of floral axis, 1 or 2 (Cephalotaxus) ovules mature. Seeds drupe-like or nut-
like, seed coat hard, partially or completely covered by a fleshy or succulent aril.

Genera 6/species ca. 28.


Distribution: Temperate northern hemisphere, south to Sulawesi [Indonesia] and Mexico or New Caledonia (Austrotaxus).
Useful species: The wood of Taxus is stringy and was historically used to make bows.
Notes: The leaves and seeds of Taxus are highly poisonous.
Literature: Eckenwalder 2009; Farjon 2010; Fu et al. 1999c, e; Ghimire & Heo 2014; Hao et al. 2008; Hils 1993; Page 1990b; Price
2003; WCSP 2015.

Key to genera Images to complement generic key

1. Leaves opposite-decussate or 2-ranked............................2


1. Leaves spirally arranged....................................................3

2. Pollen in axillary, globular structures............Cephalotaxus


2. Pollen in terminal spike-like structures...........Amenotaxus

3. Aril incompletely covering the seeds (seed visible).


Leaves usually less than 4 cm long................................4 1
3. Aril completely or almost completely covering the
seeds (seed invisible or virtually invisible). Leaves 1
© Themodoccypress / CC-BY-SA-3.0 © J Byng

usually more than 4 cm long.........................................5 Opposite-decussate leaves of Amentotaxus


(left) and spirally arranged of Taxus (right)
4. Stomatal bands of lower leaves pale yellow or pale
3, 4
greyish-green. Aril of seed when ripe red..............Taxus
4. Stomatal bands of lower leaves white. Aril of seed
when ripe white..........................................Pseudotaxus
3
5. Midrib on upper leaf surface prominently raised...Torreya © J Byng © Qwert1234 / CC-BY-SA-3.0

5. Midrib on upper leaf surface grooved (cannulate) Red aril incompletely covering the seed of
Taxus (left) and aril completely covering the
[New Caledonia]...........................................Austrotaxus seed of Torreya (right)

25
WEB LINKS

General Gymnosperm links


Conifers of the World : http://herbaria.plants.ox.ac.uk/bol/conifers
The Gymnosperm Database : http://www.conifers.org/
World Checklist (lists more or less recognised species and synonyms) : http://apps.kew.org/wcsp/

Cycadidae
African Cycads : http://www.wild-about-you.com/AfricaCycads.htm
Cycad Pages (incl. keys to genera and species) : http://plantnet.rbgsyd.nsw.gov.au/PlantNet/cycad/ident.html
Cycad Society : http://www.cycad.org/

Gnetidae
Gnetaceae

Flora of China (key to 9 spp.) : http://flora.huh.harvard.edu/china/mss/volume04/GNETACEAE.published.pdf

Flora Malesiana (key to 16 spp.): http://www.biodiversitylibrary.org/item/124368#page/587/mode/1up


Ephedraceae
Flora of China (key to 14 spp.) : http://flora.huh.harvard.edu/china/mss/volume04/EPHEDRACEAE.published.pdf
Flora of North America (key to 12 spp.) : http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=111784
Flora of Pakistan (key to 9 spp.) : http://www.efloras.org/florataxon.aspx?flora_id=5&taxon_id=111784

Pinidae
Pinaceae
Flora of China (key to 108 spp.) : http://flora.huh.harvard.edu/china/mss/volume04/PINACEAE.published.pdf
Flora of North America (key to 66 spp.) : http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=10691

Araucariaceae
Flora of New Caledonia (images and descriptions) : http://www.endemia.nc/flore/fiche68.html
Cupressaceae
Flora of China
– (Cupressaceae s.s. key to 125 spp.) : http://flora.huh.harvard.edu/china/mss/volume04/CUPRESSACEAE.published.pdf
– (Taxodiaceae key to 12 spp.) : http://flora.huh.harvard.edu/china/mss/volume04/TAXODIACEAE.published.pdf
Flora of North America (key to 30 spp.) : http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=10237

Identification key to the Cypress family (Schulz et al. 2005) : http://www.ruhr-uni-bochum.de/biodivpfl/pdfs/Schulz_2.pdf


Podocarpaceae
Flora of Australia (key to 16 spp.) : http://www.anbg.gov.au/abrs/online-resources/flora/main-query-styles.html

Flora of China (key to 12 spp.) : http://flora.huh.harvard.edu/china/mss/volume04/PODOCARPACEAE.published.pdf

Flora of New Caledonia (images and descriptions) : http://www.endemia.nc/flore/fiche83.html


Taxaceae
Flora of China (key to 21 spp.) : http://flora.huh.harvard.edu/china/mss/volume04/TAXACEAE.published.pdf
Flora of North America (key to 5 spp.) : http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=10871

29
CUPRESSACEAE TAXONOMIC NOTES

Actinostrobus and Neocallitropsis


Molecular and morphological studies on the genus Callitris Vent., distributed in Australia and New Caledonia, showed a close
relationship between Callitris, the Australian genus Actinostrobus Miq. and the monotypic New Caledonian Neocallitropsis Florin.
The study by Gadek et al. (2000) and Pye et al. (2003) found the three genera formed a well-supported monophyletic clade. The
morphological study by Piggin & Bruhl (2010) provided further evidence for placing Actinostrobus within Callitris, providing the
new combinations required, but stopped short of sinking Neocallitropsis too. Further molecular studies (e.g. Mao et al. 2010, 2012)
supported the placement of Actinostrobus within Callitris and Neocallitropsis either within Callitris or forming a well-supported clade
with the only other New Caledonian Callitris species sampled, C. sulcata Schltr., as sister to the Australian Callitris.

The name Neocallitropsis means ‘near Callitris’ and the genus differs from Callitris mainly in having leaves in whorls of 4 (vs. usually
in whorls of 3, very rarely 4), seemingly in 8 rows, and 8 seed cone scales (vs. usually 6, rarely 8). Both Callitris macleayana (F.Muell.)
F.Muell. and C. oblonga Rich. & A.Rich. have 8 seed cones scales, though rarely so, and in the former species the leaves are either 3-
or 4-whorled. The recent molecular evidence suggests that Neocallitropsis pancheri (Carrière) de Laub. should be treated in Callitris
and the new combination is provided below.

New Combination
Callitris pancheri (Carrière) Byng, comb. nov.: basionym: Eutacta pancheri Carrière, Traité Gén. Conif., ed. 2, 2: 864
[615]. 1867.

Cupressus s.l.
The circumscription of Cupressus L. has proven to be difficult and resulted in a flurry of studies in recent years (e.g. Little et al.
2004, Little 2006, Mill & Farjon 2006, Adams et al. 2009, Laubenfels 2009, Mao et al. 2012, Terry et al. 2012, Laubenfels et al. 2012,
Terry & Adams 2015). The general consensus from these studies show that Old World distributed species (= Cupressus s.s.) are
not related to those in the New World (= Hesperocyparis Bartel & R.A.Price) and the monospecific genera Callitropsis Oerst. and
Xanthocyperis Farjon & T.H.Nguyen form a grade with Hesperocyparis. Notably, Terry & Adams (2015) found Juniperus L. embedded
inside Cupressus s.l. showing Cupressus s.l. to be paraphyletic, in their study where two nuclear and eleven chloroplast regions were
analysed. Christenhusz et al. (2011) adopted a conservative approach and maintained Cypressus in a broad sense, the best solution
given the data at hand at the time, but the growing morphological and molecular evidence suggests it is better to recognise the four
genera as distinct as presented here.

Fokienia
The genus Fokienia A.Henry & H.H.Thomas is sometimes treated as distinct or a synonym of Chamaecyparis Spach. Molecular studies
(e.g. Gadek et al. 2000, Little et al. 2004, Mao et al. 2012) show the monotypic genus Folkienia is nested within Chamaecyparis
and Rushworth (2007) made the necessary new combination. The sole species, Fokienia hodginsii A.Henry & H.H.Thomas, differed
notably from other species of Chamaecyparis by the two apical, unequal wings on the seeds (vs. lateral and narrow wings) and
conspicuous white stomatal bands (vs. greenish-white bands) but the globose seed cones (when closed) and several (8 or more)
peltate scales are potential synapomorphies.

30
Bibliography
Adams RP [Adams et al. 2009], Bartel JA, Price RA. 2009. A new genus, Hesperocyparis, for the cypresses of the western
hemisphere (Cupressaceae). Phytologia 91:160–185.
Barker NP [Barker et al. 2004], Muller EM, Mill RR. 2004. A Yellowwood by Any Other Name: Molecular Systematics and the
Taxonomy of Podocarpus and the Podocarpaceae in Southern Africa. S. African J. Sci. 100: 630–632.
Biffin E [Biffin et al. 2012], Brodribb TJ, Hill RS, Thomas P, Lowe AJ. 2012. Leaf evolution in Southern Hemisphere conifers tracks the
angiosperm ecological radiation. Proc. R. Soc. B 279: 341–348.
Chaw S-M [Chaw et al. 2000], Parkinson CL, Cheng Y, Vincent TM, Palmer JD. 2000. Seed plant phylogeny inferred from all three
plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc. Natl. Acad. Sci. U. S. A. 97:
4086–4091.
Chaw S-M [Chaw et al. 2005], Walters TW, Chang C-C, Hu S-H, Chen SH. 2005. A phylogeny of cycads (Cycadales) inferred from
chloroplast matK, trnK, and nuclear rDNA ITS region. Mol. Phyl. Evol. 37: 214–234.
Christenhusz MJM [Christenhusz et al. 2011], Reveal J, Farjon A, Gardner MF, Mill RR, Chase MW. 2011. A new classification and
linear sequence of extant gymnosperms. Phytotaxa 19: 55–70.
Conran JG [Conran et al. 2000], Woods GM, Martin PG, Dowd JM, Quinn CJ, Gadek PA, Price RA. 2000. Generic relationships within
and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene
rbcL. Aust. J. Bot. 48: 715–724.
Crisp MD, Cook LG. 2011. Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms.
New Phytologist 192: 997–1009.
Debreczy Z [Debreczy et al. 2009], Musial K, Price RA, Rácz I. 2009. Relationships and nomenclatural status of the Nootka cypress
(Callitropsis nootkatensis, Cupressaceae). Phytologia 91: 140–159.
Donaldson J. 2003. Cycads: Status Survey and Conservation Action Plan. IUCN, Cambridge. pp. 86.
Eckenwalder JE. 2009. Conifers of the World. Timber Press, Portland.
Farjon A [Farjon et al. 2002], Hiep NT, Harder DK, Loc PK, Averyanov L. 2002. A new genus and species in the Cupressaceae
(Coniferales) from northern Vietnam, Xanthocyparis vietnamensis. Novon 12: 179–189.
Farjon A. 2005. Monograph of Cupressaceae and Sciadopitys. Royal Botanic Gardens, Kew, London.
Farjon A. 2010. A Handbook of the World’s Conifers. E.J. Brill, Leiden and Boston.
Fu L [Fu et al. 1999a], Li N, Elias TS, Mill RR. 1999. Pinaceae. In: Wu Z, Raven PH, Hong D (eds), Flora of China. 4, Science Press,
Beijing, and Missouri Botanical Garden Press, St. Louis, pp. 11–52.
Fu L [Fu et al. 1999b], Li N, Mill RR. 1999. Araucariaceae. In: Wu Z, Raven PH, Hong D (eds), Flora of China. 4, Science Press, Beijing,
and Missouri Botanical Garden Press, St. Louis, pp. 9–10.
Fu L [Fu et al. 1999c], Li N, Mill RR. 1999. Cephalotaxaceae. In: Wu Z, Raven PH, Hong D (eds), Flora of China. 4, Science Press,
Beijing, and Missouri Botanical Garden Press, St. Louis, pp. 85–88.
Fu L [Fu et al. 1999d], Li N, Mill RR. 1999. Ginkgoaceae. In: Wu Z, Raven PH, Hong D (eds), Flora of China. 4, Science Press, Beijing,
and Missouri Botanical Garden Press, St. Louis, p. 8.
Fu L [Fu et al. 1999e], Li N, Mill RR. 1999. Taxaceae. In: Wu Z, Raven PH, Hong D (eds), Flora of China. 4, Science Press, Beijing, and
Missouri Botanical Garden Press, St. Louis, pp. 89–96.
Fu L [Fu et al. 1999f], Li N, Yu Y-F, Adams RP, Farjon A. 1999. Cupressaceae. In: Wu Z, Raven PH, Hong D (eds), Flora of China. 4,
Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis, pp. 62–77.
Fu L [Fu et al. 1999g], Li Y, Mill RR. 1999. Podocarpaceae. In: Wu Z, Raven PH, Hong D (eds), Flora of China. 4, Science Press, Beijing,
and Missouri Botanical Garden Press, St. Louis, pp. 78–84.
Fu L [Fu et al. 1999h], Yu Y-F, Farjon A. 1999. Sciadopityaceae. In: Wu Z, Raven PH, Hong D (eds), Flora of China. 4, Science Press,
Beijing, and Missouri Botanical Garden Press, St. Louis, p. 53.
Fu L [Fu et al. 1999i], Yu Y-F, Gilbert MG. 1999. Gnetaceae. In: Wu Z, Raven PH, Hong D (eds), Flora of China. 4, Science Press,
Beijing, and Missouri Botanical Garden Press, St. Louis, pp. 102–105.
Fu L [Fu et al. 1999j], Yu Y-F, N, Mill RR. 1999. Taxodiaceae. In: Wu Z, Raven PH, Hong D (eds), Flora of China. 4, Science Press,
Beijing, and Missouri Botanical Garden Press, St. Louis, pp. 54–61.
Fu L [Fu et al. 1999k], Yu Y-F, Riedl H. 1999. Ephedraceae. In: Wu Z, Raven PH, Hong D (eds), Flora of China. 4, Science Press, Beijing,
and Missouri Botanical Garden Press, St. Louis, pp. 97–101.
Gadek PA, Alpers DL, Heslewood MM, Quinn CJ. 2000. Relationships within Cupressaceae sensu lato: a combined morphological
and molecular approach. Am. J. Bot. 87: 1044–1057.
Gernandt DS, Magallón S, López GG, Flores OZ, Willyard A, Liston A. 2008. Use of simultaneous analyses to guide fossil-based
calibrations of Pinaceae phylogeny.Int. J. Pl. Sci. 169: 1986–1099.
Ghimire B, Heo K. 2014. Cladistic analysis of Taxaceae s. l. Pl. Syst. Evol. 300: 217–223.
Gilmore S, Hill KD. 1997. Relationships of the Wollemi pine Wollemia nobilis and a molecular phylogeny of the Araucariaceae.
Telopea 7: 275–291.
Glen HF. 2000. Welwitchiaceae. In: Leistner OA (ed), Seed Plants of Southern Africa. Strelitzia 10, National Botanical Institute,
Pretoria, p. 31.
Hao DC [Hao et al. 2008], Xiao PG, Huang BL, Ge GB, Yang L. 2008. Interspecific relationships and origins of Taxaceae and
Cephalotaxaceae revealed by partitioned Bayesian analyses of chloroplast and nuclear DNA sequences. Pl. Syst. Evol.
276: 89–104.
Hill KD [Hill et al. 2003], Chase MW, Stevenson DW, Hills HG, Schutzman B. 2003. The families and genera of cycads: A molecular
phylogenetic analysis of Cycadophyta based on nuclear and plastid DNA sequences. Int. J. Pl. Sci. 164: 944–948.
Hill KD, Stevenson DW. 1998-. The Cycad Pages. Retrieved from: http://plantnet.rbgsyd.nsw.gov.au/PlantNet/cycad/ Accessed:
1–30 April 2015.
Hill KD. 1998a. Cupressaceae. In: Hill KD (ed), Flora of Australia. 48, Melbourne: CSIRO. pp. 569–588.
Hill KD. 1998b. Cycadophyta. In: Hill KD (ed), Flora of Australia. 48, Melbourne: CSIRO. pp. 597–661.
Hils MH. JE. 1993. Taxaceae. In: Flora of North America Editorial Committee (eds), Flora of North America. 2, Oxford University
Press, New York, pp. 423-427.
Huang J [Huang et al. 2005], Giannasi DE, Price RA. 2005. Phylogenetic relationships in Ephedra (Ephedraceae) inferred from
chloroplast and nuclear DNA sequences. Mol. Phylogenet. Evol. 35: 48–59.
Ickert-Bond SM, Wojciechowski MF. 2004. Phylogenetic relationships in Ephedra (Gnetales): Evidence from nuclear and
chloroplast DNA sequence data. Syst. Bot. 29: 834–849.

31
Johnson LAS, Wilson KL. 1990. Cycadatae. In: Kubitzki K (ed), The families and genera of vascular plants. I, Springer, Berlin,
Heidelberg, New York, pp. 362-377.
Keay RWJ. 1954. Flora of West Tropical Africa. 1(1), Crown Agents for Overseas Governments and Administrations, London.
Kelch DG. 1997. The phylogeny of the Podocarpaceae based on morphological evidence. Syst. Bot. 22: 113–131.
Kelch DG. 1998. Phylogeny of Podocarpaceae: comparison of evidence from morphology and 18S rDNA. Am. J. Bot. 85: 986–996.
Kelch DG. 2002. Phylogenetic Assessment of the Monotypic Genera Sundacarpus and Manoao (Coniferales: Podocarpaceae)
Utilising Evidence from 18S rDNA Sequences. Austral. Syst. Bot. 15: 29–35.
Kubitzki K.1990. Gnetatae. In: Kubitzki K (ed), The families and genera of vascular plants. I, Springer, Berlin, Heidelberg, New York,
pp. 378–391.
Laubenfels DJ. de 2009. Nomenclatural actions for the New World cypresses (Cupressaceae). Novon 19: 300– 306.
Laubenfels DJ de [Laubenfels et al. 2012], Husby CE, Griffith MP. 2012. Further Nomenclatural Action for the Cypresses
(Cupressaceae). Novon 22: 8–15.
Little DP [Little et al. 2013], Schwarzbach AE, Adams RP, Hsieh Chang-Fu. 2004. The circumscription and phylogenetic relationships
of Callitropsis and the newly described genus Xanthocyparis (Cupressaceae). Am. J. Bot. 91: 1872–1881.
Little DP. 2006. Evolution and circumscription of the true cypresses (Cupressaceae: Cupressus). Syst. Bot. 31:461–480.
Mao K [Mao et al. 2010], Hao G, Liu J, Adams RP, Milne RI. 2010. Diversification and biogeography of Juniperus(Cupressaceae):
variable diversification rates and multiple intercontinental dispersals. New Phytologist 188: 254–272.
Mao K [Mao et al. 2012], Milne RI, Zhang L, Peng Y, Liu J, Thomas P, Mill RR, Renner SS. 2012. Distribution of living Cupressaceae
reflects the breakup of Pangea. Proc. Natl. Acad. Sci. U. S. A. 109: 7793–7798
Markgraf F, 1951. Gnetaceae. In: van Steenis, C.G.G.J. (ed), Flora Malesiana, 1(4). Wolters-Noordhoff, Groningen, pp. 338–347.
Mill RR, Farjon A. 2006. Proposal to conserve the name Xanthocyparis against Callitropsis Oerst. (Cupressaceae). Taxon 55: 229–
231.
Page CN. 1990a. Ginkgoatae. In: Kubitzki K (ed), The families and genera of vascular plants. I, Springer, Berlin, Heidelberg, New
York, pp. 284–289.
Page CN. 1990b. Pinatae. In: Kubitzki K (ed), The families and genera of vascular plants. I, Springer, Berlin, Heidelberg, New York,
pp. 290–361.
Piggin J, Bruhl JJ. 2010. Phylogeny reconstruction of Callitris Vent. (Cupressaceae) and its allies leads to inclusion of Actinostrobus
within Callitris. Aust. Syst. Bot. 23: 69–93.
Price RA. 2003. Generic and familial relationships of the Taxaceae from rbcL and matK sequence comparisons. Acta Hort. 615:
235–237.
Pye MG [Pye et al. 2003], Gadek PA, Edwards KJ. 2003. Divergence, diversity and species of the Australian Callitris (Cupressaceae)
and allied genera: evidence from ITS sequence data. Aust. Syst. Bot. 16: 505–514.
Quinn C J [Quinn et al. 2002], Price RA, Gadek PA. 2002. Familial Concepts and Relationships in the Conifers Based on rbcL and
matK Sequence Comparisons. Kew Bull. 57: 513–531.
Rushworth K. 2007. Notes on Cupressaceae in Vietnam. Tap Chi Sinh Hoc 29: 32–39.
Rydin C [Rydin et al. 2002], Kallersjo M, Friis EM. 2002. Seed plant relationships and the systematic position of Gnetales based
on nuclear and chloroplast DNA: conflicting data, rooting problems, and the monophyly of conifers. Int. J. Pl. Sci. 163:
197–214
Salas-Leiva DE [Salas-Leiva et al. 2013], Meerow AW, Calonje M, Griffith MP, Francisco-Ortega J, Nakamura K, Stevenson DW, Lewis
CE, Namoff S. 2013. Phylogeny of the cycads based on multiple single-copy nuclear genes: Congruence of concatenated
parsimony, likelihood and species tree inference methods. Ann. Bot. 112: 1263–1278.
Schulz CS, Knopf P, Stutzel Th. 2005. Identification key to the Cypress family (Cupressaceae). Feddes Repert. 116: 96–146.
Setoguchi H [Setoguchi et al. 1998], Osawa TA, Pintaud J-C, Jaffré T, Veillon J-M. 1998. Phylogenetic relationships within
Araucariaceae based on rbcL gene sequences. Am. J. Bot. 85: 1507–1516.
Sinclair WT [Sinclair et al. 2002], Mill RR, Gardner MF, Woltz P, Jaffré T, Preston J, Hollingsworth ML, Ponge A, Moller M. 2002.
Evolutionary Relationships of the New Caledonian Heterotrophic Conifer, Parasitaxus usta (Podocarpaceae), Inferred
from Chloroplast trnL–F Intron/Spacer and Nuclear rDNA ITS2 Sequences. Pl. Syst. Evol. 233: 79–104.
Stevenson DW. 1992. A formal classification of the extant cycads. Brittonia 44: 220-223.
Stevenson DW. 1993. Ephedraceae. In: Flora of North America Editorial Committee (eds), Flora of North America. 2, Oxford
University Press, New York, pp. 428–434.
Terry RG, Adams RP. 2015. A molecular re-examination of phylogenetic relationships among Juniperus, Cupressus, and the
Hesperocyparis-Callitropsis-Xanthocyparis clades of Cupressaceae. Phytologia 97: 67–75.
Terry RG [Terry et al. 2012], Bartel JA, Adams RP. 2012. Phylogenetic relationships among the New World cypresses
(Hesperocyparis; Cupressaceae): evidence from noncoding chloroplast DNA sequences. Pl. Syst. Evol. 298: 1987–2000.
Thieret JW. 1993. Pinaceae. In: Flora of North America Editorial Committee (eds), Flora of North America. 2, Oxford University
Press, New York, pp. 352-398.
Von Breitenbach F, Von Breitenbach J. 1992. Tree atlas of southern Africa section 1. Dendrological Foundation, Pretoria.
Wang X-Q [Wang et al. 2000], Tank DC, Sang T. 2000. Phylogeny and divergence times in Pinaceae: Evidence from three genomes.
Mol. Biol. Evol. 17: 773–781.
Watson FD, Eckenwalder JE. 1993. Cupressaceae. In: Flora of North America Editorial Committee (eds), Flora of North America. 2,
Oxford University Press, New York, pp. 399–422.
WCSP. 2015. World Checklist of Selected Plant Families. Retrieved from: http://apps.kew.org/wcsp/ Accessed: 1–30 April 2015.
Xiang Q, Li J. 2005. Derivation of Xanthocyparis and Juniperus from within Cupressus: Evidence from sequences of nrDNA internal
transcribed spacer region. Harv. Pap. Bot. 9: 375–382.
Yang ZY [Yang et al. 2012], Ran JH, Wang XQ. 2012. Three genome-based phylogeny of Cupressaceae s.l.: further evidence for the
evolution of gymnosperms and Southern Hemisphere biogeography. Mol. Phylogenet. Evol. 64: 452–470.
Zgurski JM [Zgurski et al. 2008], Rai HS, Fai QM, Bogler DJ, Francisco-Ortega J, Graham SW. 2008. How well do we understand the
overall backbone of cycad phylogeny? New insights from a large, multigene plastid data set. Mol. Phylogenet. Evol. 47:
1232–1237.

32
INDEX AND SYNONYMS OF FAMILY AND
GENERIC NAMES
Abies (Pinaceae)………....................…………….………… 12 Cephalotaxaceae = Taxaceae................................… 25
Abietaceae = Pinaceae…....……......................………… 11 Cephalotaxus (Taxaceae)……….......…………….………… 26
Abietia = Pseudotsuga (Pinaceae)…....……....………… 13 Ceratozamia (Zamiaceae)………...........……….………… 5
Abutua = Gnetum (Gnetaceae)…....…….........………… 5 Chaetocladus = Ephedra (Ephedraceae)…....………… 9
Acmopylaceae = Podocarpaceae…………….………....… 15 Chamaecyparis (Cupressaceae)………...........………… 24
Acmopyle (Podocarpaceae)………...…………….………… 15 Chigua = Zamia (Zamiaceae)…....……............………… 5
Actinostrobaceae = Cupressaceae…......................… 19 Chrysolarix = Pseudolarix (Pinaceae)…....……........… 13
Actinostrobus = Callitris (Cupressaceae)...............… 23 Columbea = Araucaria (Araucariaceae)………...……… 14
Afrocarpus (Podocarpaceae)……….…………….………… 18 Corneria = Dacrydium (Podocarpaceae)………..……… 17
Agathidaceae = Araucariaceae…….......……….………… 14 Cryptomeria (Cupressaceae)………....………….………… 22
Agathis (Araucariaceae)………........…………….………… 14 Cryptomeriaceae = Cupressaceae.........................… 19
Amentotaxaceae = Taxaceae................................… 25 Cunninghamia (Cupressaceae)………...……….………… 22
Amentotaxus (Taxaceae)……….......…………….………… 26 Cunninghamiaceae = Cupressaceae......................… 19
Americus = Sequoiadendron (Cupressaceae)........… 22 Cuprespinnata = Taxodium (Cupressaceae)..........… 22
Apinus = Pinus (Pinaceae)…....…….................………… 12 Cupresstellata = Fitzroya (Cupressaceae)............… 23
Araucaria (Araucariaceae)……........…………….………… 14 Cupressaceae...………….............................….………… 19
Araucariaceae........……........................……….………… 14 Cupressus (Cupressaceae)……….....…………….………… 24
Arceuthidaceae = Cupressaceae...........................… 19 Cycadaceae……................................…...........………… 3
Arceuthos = Juniperus (Cupressaceae)..................… 24 Cycas (Cycadaceae)………................…………….………… 3
Athrotaxidaceae = Cupressaceae..........................… 19 Cyparissia = Callitris (Cupressaceae).....................… 23
Athrotaxis (Cupressaceae)……….....…………….………… 22 Dacrycarpaceae = Podocarpaceae…………….……….… 15
Aulacophyllum = Zamia (Zamiaceae)…....……..……… 5 Dacrycarpus (Podocarpaceae)………..............………… 17
Austrocedrus (Cupressaceae)……...…………….………… 23 Dacrydium (Podocarpaceae)……..…..............………… 17
Austrotaxaceae = Taxaceae...................................… 25 Dammara = Agathis (Araucariaceae)………….………… 14
Austrotaxus (Taxaceae)………..........…………….………… 26 Decussocarpus = Retrophyllum (Podocarpaceae)…. 18
Belis = Cunninghamia (Cupressaceae)..................… 22 Dioaceae = Zamiaceae…....……......................………… 4
Biota = Platycladus (Cupressaceae)......................… 24 Dioon (Zamiaceae)………................................………… 5
Botryopitys = Prumnopitys (Podocarpaceae)………… 17 Diselma (Cupressaceae)…….........…..............………… 23
Bowenia (Zamiaceae)………............…………….………… 5 Diselmaceae = Cupressaceae................................… 19
Boweniaceae = Zamiaceae…....……..............…….…… 4 Dolophyllum = Thujopsis (Cupressaceae)..............… 24
Bracteocarpaceae = Podocarpaceae…………….....…… 15 Dombeya = Araucaria (Araucariaceae)…………....…… 14
Bracteocarpus = Dacrycarpus (Podocarpaceae)….… 17 Ducampopinus = Pinus (Pinaceae)…....……............… 12
Brownetera = Phyllocladus (Podocarpaceae)………… 17 Dyerocycas = Cycas (Cycadaceae)…..............………… 3
Callitris (Cupressaceae)……….........…………….………… 23 Encephalartaceae = Zamiaceae…....…...........………… 4
Callitridaceae = Cupressaceae...............................… 19 Encephalartos (Zamiaceae)…....……..............………… 5
Callitropsis (Cupressaceae)…............………….………… 24 Ephedra (Ephedraceae)……..........…..............………… 9
Calocedrus (Cupressaceae)………....…………….………… 24 Ephedraceae........…......................................………… 9
Caryopitys = Pinus (Pinaceae)…....……...........………… 12 Epicycas = Cycas (Cycadaceae)…....……............……… 3
Caryotaxus = Torreya (Taxaceae)...........................… 26 Eutacta = Araucaria (Araucariaceae)……...….………… 14
Catakidozamia = Lepidozamia (Zamiaceae)…..……… 5 Eutassa = Araucaria (Araucariaceae)……….......……… 14
Cathaya (Pinaceae)………................…………….………… 12 Falcatifoliaceae = Podocarpaceae……………...………… 15
Cedraceae = Pinaceae…....…….......................………… 11 Falcatifolium (Podocarpaceae)………............………… 18
Cedrus (Pinaceae)………..................…………….………… 12 Fitzroya (Cupressaceae)……….......................………… 23

33
Fitzroyaceae = Cupressaceae................................… 19 Nageia (Podocarpaceae)……........…..............………… 18
Foetataxus = Torreya (Taxaceae)...........................… 26 Nageiaceae = Podocarpaceae…………….…........……… 15
Fokienia = Chamaecyparis (Cupressaceae)...........… 24 Neocallitropsidaceae = Cupressaceae...................… 19
Frenela = Callitris (Cupressaceae).........................… 23 Neocallitropsis = Callitris (Cupressaceae)…...………… 23
Gaussenia = Dacrydium (Podocarpaceae)…..………… 17 Neocupressus = Cupressus (Cupressaceae)...........… 24
Ginkgo (Ginkgoaceae)……............…..............………… 6 Nothocallitris = Callitris (Cupressaceae)................… 23
Ginkgoaceae……..............................…...........………… 6 Nothotaxus = Pseudotaxus (Taxaceae)..................… 26
Glyptostrobus (Cupressaceae)……................………… 22 Nothotsuga (Pinaceae)……….........................………… 13
Gnemon = Gnetum (Gnetaceae)…....…….......………… 8 Octoclinis = Callitris (Cupressaceae)......................… 23
Gnetaceae…..................................................………… 8 Pachylepis = Widdringtonia (Cupressaceae).........… 23
Gnetum (Gnetaceae)………............................………… 8 Palma = Zamia (Zamiaceae)…...……..............………… 5
Halocarpaceae = Podocarpaceae…………….………...… 15 Papuacedrus (Cupressaceae)………...............………… 23
Halocarpus (Podocarpaceae)…….…..............………… 17 Parasitaxaceae = Podocarpaceae……...……….………… 15
Hesperocyparis (Cupressaceae)………...........………… 24 Parasitaxus (Podocarpaceae)………...............………… 17
Hesperopeuce = Tsuga (Pinaceae)…....……....………… 13 Parolinia = Widdringtonia (Cupressaceae)...........… 23
Heyderia = Calocedrus (Cupressaceae).................… 24 Phaerosphaeraceae = Podocarpaceae……….………… 15
Jacularia = Cunninghamia (Cupressaceae)...........… 22 Pherosphaera (Podocarpaceae)………...........………… 17
Juniperaceae = Cupressaceae...............................… 19 Phyllocladaceae = Podocarpaceae…………….….……… 15
Juniperus (Cupressaceae)……….....................………… 24 Phyllocladus (Podocarpaceae)……….............………… 17
Keteleeria (Pinaceae)………...........................………… 13 Picea (Pinaceae)………...................................………… 11
Laechhardtia = Callitris (Cupressaceae)................… 23 Piceaceae = Pinaceae…....……........................………… 11
Lagarostrobos (Podocarpaceae)…….............………… 17 Pilgerodendraceae = Cupressaceae......................… 19
Laricopsis = Pseudolarix (Pinaceae)…....……...….…… 13 Pilgerodendron (Cupressaceae)………...........………… 23
Larix (Pinaceae)………....................................………… 13 Pinaceae…....................................................………… 11
Laubenfelsia = Dacrycarpus (Podocarpaceae)……… 17 Pinea = Pinus (Pinaceae)…....……..................………… 12
Lepidothamnaceae = Podocarpaceae………..………… 15 Pinus (Pinaceae)…….....................…..............………… 12
Lepidothamnus (Podocarpaceae)……...........………… 17 Platycladaceae = Cupressaceae............................… 19
Lepidozamia (Zamiaceae)……….....................………… 5 Platycladus (Cupressaceae)………..................………… 25
Leucopitys = Pinus (Pinaceae)…………….…........……… 12 Platycyparis = Cupressus (Cupressaceae)..............… 24
Libocedraceae = Cupressaceae.............................… 19 Platyzamia = Dioon (Zamiaceae)…................………… 5
Libocedrus (Cupressaceae)…….....…..............………… 23 Podocarpaceae.……......................................………… 15
Macrozamia (Zamiaceae)……….....................………… 5 Podocarpus (Podocarpaceae)…....……...........………… 18
Manoao (Podocarpaceae)……......…..............………… 17 Podocarpus = Phyllocladus (Podocarpaceae)………… 17
Margbensonia = Podocarpus (Podocarpaceae)…..… 18 Prumnopityaceae = Podocarpaceae….……….………… 15
Marywildea = Araucaria (Araucariaceae)……..….…… 14 Prumnopitys (Podocarpaceae)……..…...........………… 17
Metadacrydium = Dacrydium (Podocarpaceae)….… 17 Pseudolarix (Pinaceae)……….........................………… 13
Metasequoia (Cupressaceae)………...............………… 22 Pseudotaxus (Taxaceae)……….......................………… 26
Metasequoiaceae = Cupressaceae........................… 19 Pseudotsuga (Pinaceae)……............…...........………… 13
Microbiota (Cupressaceae)………..................………… 25 Pterophyllus = Ginkgo (Ginkgoaceae)….........………… 6
Microbiotaceae = Cupressaceae...........................… 19 Quadrifaria = Araucaria (Araucariaceae)…...………… 14
Microcachrydaceae = Podocarpaceae………..………… 15 Raxopitys = Cunninghamia (Cupressaceae)..........… 22
Microcachrys (Podocarpaceae)……...............………… 17 Retinispora = Chamaecyparis (Cupressaceae)......… 24
Microcycadaceae = Zamiaceae…....…….........………… 4 Retrophyllum (Podocarpaceae)………............………… 18
Microcycas (Zamiaceae)……….......................………… 5 Sabina = Juniperus (Cupressaceae).......................… 24
Microstrobaceae = Podocarpaceae…………….………… 15 Sabinella = Juniperus (Cupressaceae)...................… 24
Microstrobos = Pherosphaera (Podocarpaceae)…… 17 Salisburia = Ginkgo (Ginkgoaceae)….............………… 6

34
Salisburyodendron = Agathis (Araucariaceae)…….… 14 Veitchia = Picea? (Pinaceae)…....……..................….… 12
Saxegothaea (Podocarpaceae)….……...........………… 17 Washingtonia = Sequoiadendron (Cupressaceae)... 22
Saxegothaeaceae = Podocarpaceae…………...………… 15 Wellingtonia = Sequoiadendron (Cupressaceae)..... 22
Schubertia = Taxodium (Cupressaceae).................… 22 Welwitschia (Welwitschiaceae)………...........………… 7
Sciadopityaceae….........................................………… 18 Welwitschiaceae………..................................………… 7
Sciadopitys (Sciadopityaceae)………..............………… 18 Widdringtonia (Cupressaceae)……….............………… 23
Sequoia (Cupressaceae)……….......................………… 22 Widdringtoniaceae = Cupressaceae......................… 19
Sequoiaceae = Cupressaceae................................… 19 Wollemia (Araucariaceae)…….........…...........………… 14
Sequoiadendron (Cupressaceae)……............………… 22 Xanthocyparis (Cupressaceae)……..…...........………… 24
Shishindenia = Chamaecyparis (Cupressaceae)....... 23 Zamia (Zamiaceae)……....................…...........………… 5
Squamataxus = Saxegothaea (Podocarpaceae)….… 17 Zamiaceae……....................…........................………… 4
Stachycarpus = Prumnopitys (Podocarpaceae)…..… 17
Stachypitys = Prumnopitys (Podocarpaceae)….....… 17
Stangeria (Zamiaceae)……..............…...........………… 5
Stangeriaceae = Zamiaceae…....……..............………… 4
Stegocedrus = Libocedrus (Cupressaceae)............… 23
Strobus = Pinus (Pinaceae)…....……..............…….…… 12
Struvea = Torreya (Taxaceae)................................… 26
Sundacarpus (Podocarpaceae)……..…...........………… 17
Taiwania (Cupressaceae)……..........…...........………… 22
Taiwaniaceae = Cupressaceae...............................… 19
Tassilicyparis = Cupressus (Cupressaceae)............… 24
Taxodiaceae = Cupressaceae.................................… 19
Taxodium (Cupressaceae)………....................………… 22
Taxaceae.......….............................................………… 25
Taxus (Taxaceae)……........................…...........………… 26
Tetraclinaceae = Cupressaceae.............................… 19
Tetraclinis (Cupressaceae)………....................………… 24
Thalamia = Phyllocladus (Podocarpaceae)….........… 17
Thoa = Gnetum (Gnetaceae)…......................………… 8
Thoaceae = Gnetaceae…....…….....................………… 8
Thuja (Cupressaceae)………...........................………… 20
Thujaceae = Cupressaceae....................................… 19
Thujiaecarpus = Juniperus (Cupressaceae)............… 24
Thujopsidaceae = Cupressaceae...........................… 19
Thujopsis (Cupressaceae)……….....................………… 24
Thya = Thuja (Cupressaceae)...............................… 24
Titanodendron = Araucaria (Araucariaceae)………… 14
Todda = Cycas (Cycadaceae)…....……............….……… 3
Torreya (Taxaceae)………................................………… 22
Torreyaceae = Taxaceae........................................… 25
Tsuga (Pinaceae)………..................................………… 13
Tumboa = Welwitschia (Welwitschiaceae)…......…… 7
Tumion = Torreya (Taxaceae).................................… 26
Van-Tieghemia = Prumnopitys (Podocarpaceae)….. 17
Verataxus = Taxus (Taxaceae)................................… 26

35
This plant book aims to help identify all extant gymnosperm plants to genus and
family level anywhere in the world. The Gymnosperm Handbook is a practical
teaching and identification guide, as well as, a useful reference work to the
world’s gymnosperms designed for both specialists and non-specialists and from
beginner to expert.

The book contains:


- descriptions of all gymnosperm families
- morphological notes for all currently recognised genera
- practical keys to genera for all families
- over 160 images and illustrations.

Dr James W. Byng is Director of Plant Gateway Ltd.


and an Honorary Research Fellow at the University
of Aberdeen. He completed his PhD at the University
of Aberdeen and Royal Botanic Gardens, Kew and
previously completed the MSc in Biodiversity and
Taxonomy of Plants at the University of Edinburgh
and Royal Botanic Gardens, Edinburgh. His research
is mainly focused on the systematics of Syzygium
(Myrtaceae) and the biogeography and floristics of
Old World plants.

View publication stats

You might also like