0 ratings0% found this document useful (0 votes) 36 views7 pagesAnswer Key q2
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here.
Available Formats
Download as PDF or read online on Scribd
Answer Key for Gury No-Z ;
- & integrals
Evaluate and simplify the following ''°9
7 1
4) J fos*(nt) dt
Solution: a
ie HI (ir stant)) ye 2+ (abel ( os (2nt}at
i Gs*(nt) 4 —s alle 2],
Recep cinco)
‘| 2 4n
+}
i °
x au
Fosttntdat = 4 ef +
or =; ant + Sin(ent)
° 4n
when nis a (integer or (-) integer,
[Fos (abide on
0 2
1
2) | Sint (nt dt
a . :
os(ant a
ii sistawdat = J (ep . 5 | ascent
2, Sin ant)” = @. Sin@an®)
an
f Sint(nt)dt = + ged
i sint(ntyat = 20% - Sinfent)
g 4n
when nis a (4) integer or C) integer
T
| sin (nt)dt
A("eet
J, teat
3)
Solution;
oT wT
J tetdt = tet
o °
[by in tegration by parts,
Let,
ust dvzetdt
duzdt y=et
i
4) Betta
,
Solution :
J ett
©
Uaat, eh 2e* 5 2 (e*- 0°) at ot(at-2la-))-2)
[vetaes & 46 + ie a(sft Pbs( Be)dt
Solution: .
Si #bs(Bt)dt = Gy AS sin(
By rae
Let:
ust dy = loc(B-t)at
du =2tdt V=& sina. #)
ji bs a (arta = ( at “sina. 9). ]- seminal
gf bs (Qe )at = am se°sin(an,) . 282 (nes(nt) ): 7 ae (a mal)
Jivtes (2a)st = a Sin (OR) 4 2 tas (B8.) - 2g sin(at.) +6
[Fe tos (2-t)at = 4 (a Sin(nit) + 20nT fos (a) ~ ea Sn(at))
° n a eo
(ets(2thse : sf6"r- 20°) sin (2) $200 (ye (|
po
.
- | b5in(M-A)at
By integration by parts,
ie dve sin(aus)dt
dusdt vek, oe 5)
+a oo (e(aeat]6) (Tat
) ( gttein (nt) dt
Solution ei
at sin (nt) tp
ettsin oe | -2.| es (nt) dt
Tate. /
J sin (nt)dt = —
. p lo
— [ay infegration by parts,
[By inayat By pas
Let: at Let:
he Sintnt) ave © FL | we stot) dv: dt
du=zntosintdt v= i duz-nsin(nt) V= 5
[sin (ot)at
ado
Wee, .
* i o**sin(nt) dt
°
[Pomona =(@2ae00.) pot
fi a a a lo
‘
[sin ot = EAsinlo®) nn fe*Meston) -1
sal) a
2 T,
(: + =) 'sin(ut) dt = aet"sin (nt) - n@" s(n) +9
=
(es2°) (Fe silonat z £(EMasinla- niles (xf) *)
ar / jo a
a7, sin (nit) sint)) +0
fresin(otla : E(asinbon) 2
> aren
r cyinteger s
n is a (+) integer &
at nt}
(Petsnlodaes EOeT
:
when
at n™
‘iets (oat en (ets)
at en>— —
T) Compute and simplify tre Maclaurin series at 6%
followings
3) $4) = bos Lt)
Solution:
fit) = lost)
Reese) eneeaor
¥it)=- Sin lt)
£'(t) = - s(t)
$Ml4)= Sin lt)
£! ta) = s(t)
£%y « -Sin lt)
6) = bolt)
fs)
2/ 4!
9.) £4) = Sin (4)
Solution:
£ (4): Sint)
(3)
When b=?
¢ (0) =Sinle) =D
$'(o) = (oslo) =!
Mo) = -Sinlo)= b
|
££) = Sin
£1) = lost)
£") =-Sinlt)
$A) sles Lt) $e) = - lool
p(y = Sin lt) go) = Sinlo) = 0
£4)(4) = sl) Ye) = osl0) = |
¢£)(k) = -sinlt) | #%) = -Sinl)=?
£'(e) 2-Sinle) = ©
(0) = ~ 5(0)=+1
§"@)= sinle)=0
$%%o) = (05(0)21
$e) = ~Sinlo)=0
£60) =~ losle) #1
Xp RK
24. F2D
degree of the
xeBE Cemapute the Furi a ° os i
ay gl: tif -Tee¢ od ;
Fer Fourier Serits: fsLt)= het 8 fs + & bnSin(nt)
ner
Solution
Selving
ving *
des i cia
is en 3
¥
1°33, yA;
On zt ttes(nt)dt =
1 1
leap nds) [By lndegnstion by pacts]
By integration by parts By integration by parts, |
[ME avelesinddt | iy =Sinlnt)at |
| duettdt v= Sint) | fes(nt)
n ° n -
A
4 talndal] |
den
in (nt) 7] )
wa 7
)))
‘sin(nt) sistem) ))
Ly
1
ore oa
7 lt my
By an by parts |
|
Iver:
Metis — avesindntdat |
wet?
duz2tdt ys~lslnt)
a
iD) +2 [esa Tal “stn
n A ih nag
boned 5 (renee + os et I
bn = 2(2 (5a leon pr) #lt)=3t if -1S45 7 oo .
Solution: For Fourier Series: f5lt)= lot antl) € bn Sin(nt)
v3)
Solving for Qo, An and oa
i : 2 :
is 3 [ste e3 “an aft aa wr fm) 20 eae
My =1 f" a4 los(nt)at = 1 [o(eaeee [* - it ‘sin (nt)at
Td T no den Ody
By infegration by pacts,
thst dv=Cos(at)dt
duedt — ve Sin(nt)
n
tn! fest Fant) A sts)
°
a 2 (2,(ese toe) =
as (: sista 2 (Bstnot |
a (
oe (2 Goslntt) + wistots)) a sel
wT n ) len
“ Onso
bn 3 (7 se Sin nt) tt ai
w -0
dv= Sin(nt}dt
y= ~foslnt)
n