Open navigation menu
Close suggestions
Search
Search
en
Change Language
Upload
Sign in
Sign in
Download free for days
0 ratings
0% found this document useful (0 votes)
217 views
53 pages
CVT Unit 4
Uploaded by
Baba Fakruddin
AI-enhanced title
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here
.
Available Formats
Download as PDF or read online on Scribd
Download
Save
Save CVT UNIT 4 For Later
Share
0%
0% found this document useful, undefined
0%
, undefined
Print
Embed
Report
0 ratings
0% found this document useful (0 votes)
217 views
53 pages
CVT Unit 4
Uploaded by
Baba Fakruddin
AI-enhanced title
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here
.
Available Formats
Download as PDF or read online on Scribd
Go to previous items
Go to next items
Download
Save
Save CVT UNIT 4 For Later
Share
0%
0% found this document useful, undefined
0%
, undefined
Print
Embed
Report
Download
Save CVT UNIT 4 For Later
You are on page 1
/ 53
Search
Fullscreen
| unity Fourley Series | Fourier Series suppose taeb 2 SIV Funct «| oy 0,20) oY inoany | $a) defied 6 Gr, ay omey mfew f Can be expremed © a trigno imetyic sewy os Fo = oe + f@n Coan + baStan% ) ; | nz where ayes BA are Cours op me VArTae. Such Serves to uotinin & destred | Gorge of valugy | mown of me Fourfey sevied Ay ft ond | Be Gots do an, by ome Catled Fourier Coe.| Pheenky of $a. | Euler's Fosmulag me Fourier Series 40¥ me function fa in he mbeyvel cax se Cr2r ee ke oo a @n Coanx + bnSinn% ) 1 j where ay = air T ie tordx cet | ane | * +f 2) Copnndx j | + apon oo i 4O) sinna dx e The vdiney of a, a, bn are enon ay euler, Formulae, note! id FO a & Fourfey Sey in Me heel osxery GM Every Formulae be Comey oa +3 fo. dx ot p One J #00 cosnk -dx T 6 y wy
a ee ae ae eg to be expanded, of a Fi Pagies To [ethit), pub Ca-1; the interval becontes ; the formulae (a) meduces bo ow 4.2e1r and ! “Tread. O0 im flake an = + [pe cosna' cx P ge fh sl eal at 1% bo~ te "P peaycinnn ce av “ “EX : ON S- * | CONDITIONS FOR Ex PANSIE | Condi Hons | FoURIE rnutated ceatain “Daatehlee has fom 1 ana | under + uthich , CerFain, funckons posses wall | | i ions + | | Fourie expans ‘ | | A ae pou has & valid pester server! | phe” -forteo-- ¢ | expansion ©. Ory Cancosnt + by sinew) . = . n i cyt " al PS cn Es movided + heme Qo, bn One constanks P' ia Oe ingle valued | i Po) fs well ‘Clefined, peniodic , | and finite: . ‘ ; ¢ . ; ty fon hor a fintke nuraben Of enite dtsconk- nuous in any one, period: alte roost a firike Neumben Of iy POD has ak interval of manime ahd’ natnima in the, lefini Hon: NOTE: “The above Concliions ome cu PFi nok necessomy: Some Hinpowtont Reculks: 77 °, 1 gfe casrn-ch «Lit fn aes 2, Por roxn=o ent but | mt, 2 [sine sinnt oe = fO-f0% rntn and tren-o - a, fom mzns0 3-.sinnt £0, cimanti=0. fon nez, whenez is the Sek Of all integeas- 4 Cosme C-1)2, cosant=',nez S. sin(meL}rs Cv nez 6 cos (ntl) w=o,nez Te sin. feiSE, if nis ode 0, if n ts even oumien ( j i ] 4 ; : j j 7\ as copnm! £0,1F nis Ode Hat OE Teh Sig miseved 97 o ; | | | | | | | BE! Eapness Pos xT as foumien
oF “xe mf sino cn] =e sina “7r(0)] [ro x sinnx *s even Fuockon, and’ Sinn % 0c 2 w heed Fe fasion cle > eh [(-32) “1 el: axing aes. peat- eC ed + Teco = PY pon me t2y3-- - 00) On and bn 709, We hating Fhe values Of sua neq uized fourien series for PO a the | hone cmmas Hn er ¢ FLV 2 sinon | ante rel ( <4 2 [sing sina +g Sngn ~psing + | | | ind the Pousier Senie mepaecenbing Pena of Ptr) le° POA) = Hy O06 442 sketch the gmoph iF from -4m bo 4TT tet xe B+ Sancosnn - . bysinns ——(D | 2 a Pa ur I 1 a Ll _ op [Theo Oem ae f Pea ch «Jono = “ef | land on. 12% ur one ane 2 freneosna-de = & fx corm dx ° | ° | ‘Sin a 7 - re "—cosni ' [x 20%) - | =] | our aL xsionn + sLcosnx) a + } | Fino) 2 Perf be ale a ee HJ osorsh | | | ' > ah (fh cotanm= 4, | n . (rapeseed pzeomeaee] , 2 fftbe s ‘ “t/t eas 2 -+0)- co¥6) é £ ee -Coseoe! f staid J i Substituting the valu OF 93,an and by in Ong Y 4 2 Aa ora S Easinne a JR@ KROSS S97. 2 [sinatLsina+43 | oben Fhe Foumen Sexties fox Plays x= aD the & | ZF | ov eaval fet] < tence Show that Sex nt eal a | iz Sa The foumiea Series OP foyex-arin [-m, ny is Im, aewre By S Concasox + bysinow) el ao ate po tle deresmire Qn and by ie wr # "fren oh = too: he eb wah faba Tuite eb fo-e Ge : x ke ged funcken ond + i / “he even funckon) PR (B)" = eet). wan 3 ond , — ooh Sine ve [o- nau) Sinoe ion Oe ox) (~ £080 JG of sos 4, = -4cosnir ne “HON Cao) [+ coon =e] RE pounzen Senies Finally, bye ae ar)sinor-ox 2 & [o- 0) (~ (:e2st)- Cina) (Si SHO) 4.62) oxy = ~200snIr eam =2C-0? a Sa etring the. values of Qe, an ond bp inQ, He g 4-2 = + Et seo? ee “pecwPat nD) ay FS pyc Atty S [ut sana ¢ 2 SD" ssn] net n = a cosx az tu | ~~ 082% 5 cosan | cost ge Sead rnc oie [es inn Sina% 4 singe 3 Deduction: 120 fe 9 lence the to co). ae Jn Point GP continuity of fev, Fourier sexier op f¢x) at A=0 connaytfyrng HO TO), HE gee pattiog Zz » Punctions Having points of Discortinutys 15 04 x4IT gxptand — Few= fi a 5 OT KAA 27 the ftesval (o,217) 6 @ Founien senies The ourien senies op pea) fo ts given os o pad= pad + 20m corm t ar Sinn —AOD ere Qo - Efron de = ° [Jee Ot eo] Pe aT, On et J tenecn® dx = HL casnx dus fe cron w? i v 22 cu = Lessin psy L fcosnt-Ou = a (0-0) = af ( 7 ) a, =o oe [he and bye ‘i 7 VAP . " s fens nnach = it [f-som ch fousnena COSNe | = fina ei ceane ® el ni 2 —Lfe> ee ee ee 2 2, uthen 9 if odd z ir and bn inenesrt yg Subostituting the values Of 2070 inne Lsingn rhs Leno} fo tg ee F Asinne = Let LBS sin tel A166 Eran wery, ; Mig Substituting the values of a,, a, and b, in (1), we Bet ’ sin ne I a- tangs 4 += | inde a sin dx +. Le) 4 ta oO a ym fe Graph offlg mx inf de 4°) Af Example 6 : Obtain the Fourier series for f(r) = x ~ x7 in the interya) a show that 4) (or) wz 7 eTDe e Solution: The Fourier series of f(x) = x~ x? in (-n,} is given by eae! a Bey (a, cos nx +b, sin nx) Using Fuler’s formulae, we determine a, and by, eto. 2 * (; xis odd function and x? is even function) ~0-2y(=2 mem) a ay (=e) bys (n40) (% cosnn =(-1)")goutor Sao it Finlly By = f(e~2?)sinme ae cones Hest) n ned ned cose) sons] 7 7m ) [sts _ sindx , sin3x _ nee 2 aes ~Q) Deduction :x=0 is a point of continuity of f(x). Hence the Fourier series of f(x) at x=0 converges to f(0). Putting x= 0 in (2), we get ove oo yor m7 : 7 Example 7 : Expand /(x)= (5) 0
sin nx = 0] 2acosne sinha )cosmn, = 24cosnmsinhan [ean sf na? +n?) (-1)"2asinh ax i bem FF c0smn=(-1)"] e a | Use the formula J e* sinbxde = —— (asinbx- beoshx) | L +h }170 Substituting the values of $ sinhar yl (A) 2asinh ar ony ax S| xa +H) _2sinhan [( 1 _ 2a t a ncosmm (e (=ncostt)~ a ; xa +") which is the required Fourier series. Deduction : Putting x=0 and a= 1 in (2), we get 1 = 2sinhe * k a oF sinh ftsghaghe a 1 = (e which is the required result. (Notice that x = 0 is a point of continuity of fx) =e), * (-asinax =!" cS. “| t " wv wet) _ (este x(a tnt) acos 3x “Fea +My and b, it (1), we get (A)"2nsinhar aa x(a’ +n) Engineering Mathonay, co (0- -rcost) AQ) Example 10: Obtain the Fourier series for the function ix) = x sin x, 0
sinnx 22 2 Lai oon or xoosx=nmeosx—5sinx-2 si 5 Fa in me ann SL pra mmanan RRA VC) #7rd the pe mesent the | “Sy ourxien Sexies to we given by fea) fr fon “T<*
| 1f6 l Hginooring M i 208 sing 1 jaf sins n| cot) ‘J n| n "” ” LBA Gog ne 2 (ly form = h 23 fe n ‘ith Nn, "ai, \, mon 0 Xt { Lf Le o4 Finally b,, : J soysinnrde = fo.sinm dx = fx 2 sin nx de men 1 0 a 2 = {x7 sin nx dv t 0 1 | 2f ~cosmx | ' als (- st asl using, Bemoullis Ry . Mtl ee od) cos nn-+-%(cosnm-l) ln ae =e" 3 [c yt ‘| Substituting the values of a’s and b’s in (1), we gel pe (-l)” o : 10) 2EF canes S| eat 4 Ao 1 |x ae mur a nelry Frouriem Semes fom Eveo ond Oda Functions - I fe finehon foo ay even in (i, ) tently fowicy SEXVES Cxpantéon Contatns only Cosine ford 7 * © . $ anCarny ney fw = % where Oo a A= a [sovennads | ° metion Fe va on ond seas yhy Fourtey ifa (mn) Then gine cexig Cxpan tion Coc oing term : ua [ fe - & bnSinnx ny only w Sia where bn >= 7 J fessinns dx ese teeceern rea os a Fouriey Sexi in ene tT = expand FO > x ® ginte TED ena, a8 $m , £6) fy odd the veveguired Fousiey SERS Pex = SP by Shame a Pn — there be 2 | fensinnn dn o inna % o(~ sien + bx ( Geen ae ng & (sive 9 J" s = of <3 cosmn + ot : ae : 2 a on conn | 2 reoonn far £1) ra Atle gt : Hone SF a el)! a= &. ne NEED Ham od @ we oo day b Sinna ae eeeXL Express Faye % as @ founien senies in (ona ' oo) Since PEN ~*~ OO \ < - fox ts on odd punchor in Emm | 1 tn tle Fouaier Senter €XPorsion, the Cocin ence ' : : absent and only sine teams one Preig fears ane oe hE SF bosinnx —+O et w > wthene jb 2 2 inng-dy af sm) - = 2 fas =| y 2 enh + (+ Sinnreo) GubsHtule the value of ba in O, He get 2S cue, te DS EE sion ye ‘ I a =. [sin-sinc sing —Lsin yas - sol 2 3 Am kthich fs Fhe mequined Founien Seniec. Obtain the Founies senies fon the 2unchen Peay Juin -1 <2<7 and deduce that seeks me \e Olt i Since #2) = bal=%= It) = BOY) , thene fore Po=1x} a ) fs an even Punchon. tence the Founren Series talitl Consist OP cosine teams only: 2 Bas Itt= Qe + Sancesne 30 nm “= Klhease, Qo = 2 wv wT = fewdn == Jind = = de ° 22 eM T zh And, - 7 22 w seal = fe C4). carn ch = [lai-cosnn ce a To = vel conn «dy * sinina ) [-sesony™ 7 ne © 2 =! TL AT Ai] > 2 fer-1] : Tht STOLE His even hy ik nis odg = — HO methe Values in), we gee Cos, CO3 [Dede pihen ¥2 Os [nfs lol=® [path wzo- in Cy), We have ioe be] weu ftriehe Eo ae gt te ate i ee st & — % rpc cosh ar, expand fC) 06 0 Pour er genies in CTU) Ot lek Fa)= coshon = te 2a then pleay]e EEX 2 coshaxe POY z fs PCW) 11S} On ey even Punckon oe vee pene 22 + San come mers) nel ps 2 Oo= 7+ hay-dx ° Sree 2 ec ard ease 2_ (sinhor - sinha) ao to or “Thea ale = 2 (sinhor -0) = 3_ sinha | otr on | ancl 1. ard, One = if Po conn dn | Te r 7 Uf peo, 2°) cosnn dy =z hoax - Cosma de az] (Pee Jeasnrdn ar, fom oe & [eteoer: od + festeosns dx] r] elf S coccomensnnlfe (S (occnn ncn i om ts (acosniro) =! carafe eae acornia)- caro? Cae a’n aha BAe a OTe 1), Same Faqm) [¥ cot f+ f- 97% red] acy? arian) 4j CeO G97) = zat)? [= - au) (nad+ 2a¢-1Psinhat 7 (n>40%) Subst tu bing Fhe value of Qo ond an M@,u har s 2A SIDhAT cee. or hey ina = 20 cinhan fe + Ss cPeos ne oe za Ban This is the nrequined Founies Seni es. | Hair Range Fourier Sentess “The Sine Sevig The Hatf vonge Sine Sevvey of £m tn HW) 1% Qivun by o fm = © bn Sinnx nr) wT j Fovsinnx dx 0 where bn = = U. The Casime Sevies The waif -onge Gesine Serry ef FO fa (1) 4 given by fos An Coan col at 7 J fordx | ° 7 \ anit = J $ercernx dx | 2 awhich is the required Fourier series. ; Example 8 ; Find the Fourier series to represent the function Ji) aS eel NTU Peedi. s) Solution : Since sin x is an odd function, ay Let f(x) = 2b, sin nx, where Ea fe Lp b= 2] sinx sinnx dx == [2sin xsin nx de nto 7 = + Fcost =n)x ~ cos(1-+n)x] de x0 - feats. stems] (n#1) t I-n 1+ I-n l+n = 0(n#1) Ifm= 1, then {oe are tn n#1) _ 2p wo b= sf sin’ x de = + [id cos2xjax 1 , om) =1 + f@) =, sin x = sin x Example 9 ; Find the Fourier series to represent the function AX) =|sinx|,-n
cy 2 sin ne =2 [xis in sus.) Example 2 : Find the half range sine series for f(x) = x(n —), in0
mA 35.228 Engineering Mat, a ggsinse— +] [snags - x as ne series expansion of ) is given by (ii) Cosine Series. The Cost wd (:@sC foe) E32], le w2( a2} ow( 2) 2) o( 22 a) Lol “Rin C2) 2) nr 2n 2 pea | 0 = 2 [i xcosnrdr + Joe-scosm | a ca When n is odd, a, = ie, a =a; =a, 2 nt =| 005 i and a, -(: cas = is even 0) Putting »=2,4,6,8,10,...in (3), we get ay «2 (2888=2)_2. 5, ® Ed z 2 ( 2c0s2i a =2 (2emeze=2 ™ 4229 | 2 (2cos2n-2)_ EL ee 2cos4n—2 as = 2 ge SO 2 Tt -2 (2esse=2 =2(-4\) 4 0 1?) ao?) Fe ggbsttting the values of ay and a, in (2), we get 2 1 fee vtec gone rm] nm 2(1 1 aaa Foret sreonsr+ A cosors, ) liter: ; since a, =0 when n is odd, we have n=2,4,6,0 ete 2 A nos —1- (2 ose Ue Gh eee (-17"] cos 2nx (Replacing n with 2n) n=l t sl n eI SICp" = =24— PY [2 (A)" 2) cos2n =. 2b lO) Nos, 4 as 4 a w m nl (3) e284 1 okie = eee 500s 2nx 7 | cos 2nx 2 4A BBM 4 yt 33 222 J cos2x+ + cos6x +5 cosl0x +. | 4 «le 3 3the halt - mange Cosine and cine cesies ‘by fa lve gunckion f= «in the Monge o
Fi coor) a5 [en] | Tw oF | et ore toe | » for 0 odd- | ; t | subastg there - Volues In (1 We ge | ge LS Aycan | \ nets" | | es) fon) yam 4 [ cots be SE ] j SL a joey PlOIO ars eo in ol, we get £ Zz 5 4 4 4 A p $ 7“The Sine Sem The olf Onge “given by | F | aye & there br = | * | | | Tag basinn® sine semies expansion eg a Lv POO Ie —7@ a Jpensonreb FT bre Speer sxe a [= (eset ces > 2h ar cosomr substituting the value oF nl Scud 5 2 r 2 bo ina, Kle Je : ian Le Soo" ae o ale yrs z eanies Por PON) 29K incom, \ fousiien cosine cenies is given by Oe + F An conn ne ue a [am sis ts | Obtain halt mange cosine Henee short that GO The halk mange | fOO= Sine na Hese, land On: 2 Jee de 7 Efenst Qn = w, 2 [ simeosor-olx a eA ° at 3 ' = Lf feo tern tain ten)x] he 7 “ell [[7= costlenye eosenn |" 1-9 fens ces CI+n aT care ~amaiiad 1h f eo w = (-cosx), aanW arf vsirncosn-ok ° [: asinasse = sinfare) sine cos 1-0) a TA 5] Ceo cesar]putting xo in 1, 2 — f-coset teeny? a(n!) ] wemy! P], nel pals (1D | Tr ina)tne) is even (on) odd one poxding as 9 va cere ch = 2 fSina-dx " ar = 2 ° 1 fe cosex]” Le eee = LL Ccos2m-Coso, of | = Ceosan-coso) os Qs O3 2082 77° are 4 and 0° Fa ojeue cl ee ae cra (ut) Cat) ginte 2 S rv 2D, — © D=1) 6 kod inte 2 — 402% _ ooche __Y cose r case tetas) Tos) 1-9 (oH) COs2% - COHX — Conen rs le Be S17 which is mequixed semies for sin TE is easy to ge that ay can he ttmitten . OS Gare 2-4 S Cost on te 7® 4 tue obtain ho Which ig the mequined aesutl Sine Senties. Eipond pexy- cosy 9 eae 7 halk nange let pons 5 bp sinnx lO. az wv _[cessinnr de 2 ie aL rt 2 ban 2 = ‘due & = | Frwsino de ; ate we f2sonxeos ad = bff sinentn sing ide >EE r CL fe cor cnet Coscn-1)% Tony Hem ntl eis ‘ a fe cost — cosCn-T + L +2] ote nel aoe tT a eo 4] cnet) ntt n-t nt me Per 5 eyo, 1 + nel nm ne om da tit bata |! t_\} coe) «£ [foreni(aa tas] . a ee Cal ae nel ' 2 bye then IS odd and net = Un then n ts ever arte) TE Wie, then WY, a ‘i ee Ze “feosusinnche = 1 fsinza-ch Tv o . ° Sie © . +/ al = x1 Ccasen -coso) = = or Seas (ane mill 0 ° Ths bpeo when nis odd = HO then nis even artn=1) Sub, the values Of bs In(i), ule He mye FH cine iz 2 on _gpnx x (ney aes Sa a2 MG -- + r Runs atin 9 coms AS 2N cima [vm is even, seplace n by AYN oe [os 32 3 4 =— 24 va i es aT 13 Feoran th sno +| Me In an “Aréthrary Wferval’. o> a he wu 7 fi enaion Aer Hoey. Foo e Ty ogivua by Pe ana courte Serre exp | Sete me CF at - A eo eee ConA B.S. Sn Sin nit rm. . AD » ef2h “| in (0,24) courier S007 of Feu pees | pe Conse fom@ PEO’ | fay Con MTA alot | AOS. deacge ty ere Te ot 7 / LeysinnTx de di baat ae J Feo seine dx Anke. > 5Feuprers PU os & fourier geries foE J, Q. , Since 4-H a LE W=PD therefore 4X) 76 ar Be, function: Hence. the ‘fourier, gevies of 4ex) fo ELD ig ghion by Pea) = Oo. 2 £0, cos MX _sO) whove ee Hine [Pence Y= Hh fata -H(F fy. a at On = % flops tm MIA dha. = 2 cos TA E L =a? tot cst “(ag | fet mh i e per \* Be | - | Bain | 2 cos DUA rt Ts] eee: or , i | Goce the Hast and fast Lorms vanish a bots | Upper and ower. Itmits - Oy = x 3 ee) deosnr EWA s™ ne Ma | a Rubgtttubing, - these values Ph (1 te ety 2 = Dt og niet nt Ret pa Lae Peps oa 3 oT Tei n> a L oP aly ) zie [estat ~ ose tert) cst} ), we get find the tourter gextos of 4o)- T= wy fy 02h eo | tleve Length Of intewvol ale ¥ fet jo) fp Z [oyccsmm 4! Lby8n i t] ie : | = ey E faocosrnra +n 8% MMA, Since Le) | 2 ; | “thon 0 Feb fe ae onoi ort Sta cos 2 nwa Sine oo. + fet cosnTin dtd 2 1 * =L fiweosnna de | ‘ ° pet Sona) _ 2 2 2 [eo ) cof-zsami \ o = t] — cog ant. | ; [38a “aa cosgrn) = stelle de i pi wt ido CL) a {tran omade 6° eo fa en (eset ms = Sogn “ales a) ai (ra aja = ustltng the wause - als andes to W> pe Ih) = ea Tet 2 oe Rona: ; whfch te the. creqtriod “Pourter, gore. Kapand “fea =e ogo. -fourter certo, i the fnterialC,) lek He Bey Zo cos OT x 25, iq deve Let note San Z ances eZinto mx-30 “hen sunt 4 fend. fee ce Ly) ° ee ere -a! = 9(se € “£a8iobh}. : : and One § (ie COS Ma « fe “amend C esate). “Seat te)SEE l |= 1 Wee (ecostsit tong to nit) = =e (=cosnt sei ni iy san belen” ret DP ote ee ate (e- elie “em” ED" asioh : HS The Finally bp = iste) So: re -fPemn (# Ie )- . (tor “oe oo tt | : nog CSiorm— seas) e(sionn= ree) “aa = Le, frmeosnir(end q ; byte aos piled ) ~ anit aot gin,’ bo : | fubgitantag the. values ©f a, Anand by §ntt),tue f Lea) = aioh) 42 RT etaby ae Pe B cose Serco gyn het Oe. & ot =Sfohy [w92 Sot scosmma +82 SF orm] War 7 net el(o~ arrest) ~ e@- aireeson} Find the fourier geates to epee 4d= 2a, when —2 Sree ( Ad = 1% § an even tunckibo tove L=g det Yas) = 4 2 arncos-*t | 2 80+ Hayes M1 _5.@ . La not 2ay ic ; 902 4 Shenae See jae gen & x) = a 73 4 [deo co NE on dt = J ‘oi oes om dx (7 ed so 2) “feos HUF ome (O2 *) “f oft Ae (Say Ce) “eee sfosrmr +0 a wg} | Op ob, cosnTt dhs / i. pn . ganged the “values -Of a ae Ay ints) ,we get we ABs 20 tno ; sm ie} ce 43 co tl ye) Bae B- 1 pie ; a ets ; amt_| cosy Bigs a+b, feos - Lome 78 WR 3 oe cos 3 es ei tag, the pourtar gertes Por PLY) = = Ur Win 02H 22d. land hence decluce 1 sheet heap =z, the fourier “govtes for $i) sala 42 fo the fotenal (mal) te given by ‘ fo) -% + 2% cos (ME) + 2 yp 80(SH) 0 bee oh dts fee eae wi? e “es if nt® ae 2% ed 1 (at) = as 1 feo cos (trh)aa = st = cos MH Pr | ee one unt oP oy we AAS =I re 3“ihe tate-Dgtn( + tfal- -sa)eas De (tap, E 3 B el i> Is = fhe - Je sath Pe soften HE) mffean 32) 8 ame det a gif Et “fi _Y).7 tf) “ey ya fe) or PEI go = yh de lees a Subset tubing he volurs ef 9,2, And by tl) ibe get RO = My | 2 al eos(ON) : i bel He i | fey ghia gp) ong. Eo (ot nr) Poduckton : aie Busing 420 in@) , we obtaty ul oO. onal He 2 yx Gh 2 Te ee Sie | Pind the fourcter gortes expansion fer 46) if | tea) fae MH -adaco G | by te o4ner | Here bag : ‘ deb dev) = Be + Boge mB gin M4 mm (: “fe 3)-30 Then a, wf “ififiapeg : -t[ear(2}] ae ard nt $ Seo) Oo a ~Ctde2)a (fast dn fa cog Mae] an * L 92) ob fa) + |) @ | 2a a = a Re ny a -A5 eo) sv O = =0 oshen n ts even | eB, when n Ss odd. ew ‘rally b= > 4 fi Fea) ste MY dat | ou 2| fash ni anf see by at afd + al Sin OA an a : aa by =a. ! 4 Boson tihséin ott] 3 a =) = = wk 4 rain io a | staking the values 15h: An Q hee § : 2 £t 4 gy L-a. A, cos SA 2 ape neh 135? -pie Stes 244 gaample 3‘ Find the Fourier series to represent 1 — x? in the interval -1
roe 2 =4 [ine jnas fo] : 2 -l 2 ola [rereos re (-1=2) 2 “le cota cate cos = a =f £ fata =k j cos a, since cos oi is even function _ (nme)) sin } 2k nm _ 12 )| = —-sin— “hig m2 2h = 0 when nis even Ez k mm =2@=0, 7 : 2) since sin“ is odd Sostitng the values of a’s and b’s in (2), we get _ 1 ge3tt, 1 Se 17, S@ £428 [on gg, 388 | 2 — < cos EE 2 FD TSO OOS Dt which is she ‘required Fourier series, ¢Halt Reinge,,.. » Feeniex ses arg. - Range Cosine SevieS : 20 jos Fore Gey Senne: esi va an f ) ae - Viet | te Ceantix 4 eee where: ba = 2 — Pind the. tal}-range! Sine: “peites ‘of 40> 1 to {o,/) The. touster gine gevtes of tt) | o (6/4) ig qhen by ‘foyer = 22 by tts see. b= Shay enamt a aft STOMA hy. Cg acon =A 2. wel ces t) = 3. CEO ~ bal? s when n fs even TOO "Bey when nts add thence the T senjitied fourster seviog fs 4ea) Sapte &in Pt Come) = 2 pant) heey t= A(ate Tag ato STE 4b SPOTef the h COR ine Series ay oot on in the tonal (0/2) i ae | 2 gortes efes? | os Tal 1-2 4 Loess (7) | 50: ! | |pen A= Affe +8 ngs a, afin ye a(t} roe 2 iL ee 0 “fh aos LU mn an = at cos mde ee “eee so l i pr): “ye Jo? eto : Fal] fio. ntT=0) Fl cit ay Cs fo A : | a te 0 “even Qy = lw tp nts sod... a! ugg, te “che values ofa 1 oie AL eng ON hee a Se -) 0 y) we get 8. Fok . ‘gir top Ak ‘cng B44 OS ihe a om i ee fia) = Z bot OT 6" Aces Then by = Pf 4) &o - fat da ppt ee dL z) OTN hes at CSF)2 afin O18 iy) pe Pe af yt 8 gubgtttating (9 to&) we a qe See or Laer 7 fel wee Mee ae Nod the 2 cosine sextes® or #2) » 2184) fy) 04% Za cea Races an, of, the herfer + we 1m # ter et ‘The voqpst ved ovis 88 of the form ila) -.% + 2, C68 ia’C "tex. —¥ O whdite. a - 4 fs cos AA. “Afra e os ATH om "CG J=2) © nT d : , fe 2) cos" ran oe : eg oat ae & et daing foteqration by parts |” a ah F ayo > =a nr oe ~ galt ‘] ie when nis even Oye 0, when nf odd and ao 3tei- dts af, | fay ‘the. vanes eat) we got ile xs tt) I gre 2-16, fee ee4. eos wi oS aT, 83 o. ie uv 1 coS a’ i T+ Se puto () we gee ptr ae} ta 3 2d (csr einen tse casaT +, art boson. -) ale a 2d te = ee bier - ot Sgegthey). ye vee rm “ a db = or 4 se pte fied the fouster extos tor 4). Sata tn 0223 and wud <4) rs the fourfer sine gertes he itd= at tn the. interval, (od $ qhen, by Hu) = = b,ein( 2) ce ye HE. bp. 5 fowtee = 9 foe» CR), my cas aH af e) ae (2): pa 21) ow | oe z a “ape 3 etd -cos(e! Bi nile stig Bes) fe emia Bese laa i} by = eeeash even 1 bien] eae spents odd.————— ntti SSE SOT Te Hen i) i - 1 HE 2g {at fh. sees +8 C8) Tthis the “ty trol fourfer: gine series. Prgevalls ttheoven): Foomula! L Puan! a J Festan at [ahz 2 ‘cabsee)] a we Knows the Hourrtes gerier of-fC\)In the . fnterval C4, £) tS P Fei) =90 4 2 (agpes HE t bolo mt) _»@ voheve. : ; ee Og= pone, { ee Efe a > 6 bo=} ae ded a Mi dx a F Mutbyng @& by tx) we ge | Gea: So4e0-+ Zeotidos Tt g 2 fe)" STI 39 lu egrating 6 a oe fe debs Prot 12 ger peat date Se a 2 teas mT ay if Sb. “flow om pi 30 “4 (2) ( becoines fi eae 1 OF 4 Slds+ soso so “Thi FS the parsevalls (théoreny:dorrnuda.gy oe (atelf rage coblne gents): fee x 4d a Zap) yaort Ce Range Sine ere): 5 ya) a= [2 5] ind tbe comple fourior goxtes of PCa) =o tf a L& zm and fea)= PoGem) .. ee complex form 4 fone series “F ae welt giao bY» ft) = Zoe! ae ae fe atte ope? Me af’ ety, i soyh, tox “xf tite oft a sgh lt” ys “x [ee ame a) aT | (er- amen(ee “Zeosn isin ! “ate a(t) = COSNT = ey” oe, ee ttto Chin (etodlieta) ond, ee T_ gstah (m) oO EI)? ae) atx — ie “Ths the complen -fourier certes of 400 és a gtohtt So tag e™ (stom 024)fad the complen fourier perios Of e tunekion Rta) ok, he the compl a ouster serfes of tex) ool ts Gin) by ta. 2 Ch em ->@ ; neo shove Cy =k Steal dup NeOvk bt2-- where a, = Lf Tether da” pale oly Ls eater)» (Sans eel: "6 Ay (i+ Po) Jae - Tw : iT lrio) grat “ain (2 ui ool fe "eames "(cant tstom)] antes) Ha eat ene Le r)) artad) : Ahr = Stal (1-fcosnit = “eBtet) sob ran) STC) “Thus ; the. Bates orm of the ovate Serres OL fOD oR Rae + 4s) = Stohr. Serge im. ‘ a
You might also like
Fourier Series Notes
PDF
No ratings yet
Fourier Series Notes
22 pages
Maths-2 Book
PDF
100% (1)
Maths-2 Book
212 pages
1st Slide Elias Sir Math
PDF
No ratings yet
1st Slide Elias Sir Math
12 pages
Change of Interval
PDF
No ratings yet
Change of Interval
7 pages
Fourier Series
PDF
No ratings yet
Fourier Series
22 pages
Book of Fourier Series
PDF
No ratings yet
Book of Fourier Series
30 pages
Eng Maths Unit3 (Part1)
PDF
No ratings yet
Eng Maths Unit3 (Part1)
20 pages
Fourier Series (Titash)
PDF
No ratings yet
Fourier Series (Titash)
81 pages
Maths Module-2
PDF
No ratings yet
Maths Module-2
147 pages
Unit 6 RK Jain
PDF
No ratings yet
Unit 6 RK Jain
19 pages
Maths Assignment
PDF
No ratings yet
Maths Assignment
20 pages
Fourier Series
PDF
No ratings yet
Fourier Series
33 pages
Deret Fourier
PDF
No ratings yet
Deret Fourier
57 pages
Unit - 5 - Fourier Series
PDF
No ratings yet
Unit - 5 - Fourier Series
17 pages
Fourier Series
PDF
No ratings yet
Fourier Series
41 pages
Fourier Series
PDF
No ratings yet
Fourier Series
13 pages
M3 2nd Internals
PDF
No ratings yet
M3 2nd Internals
64 pages
Lesson 02 - FourierSeriesNotes
PDF
No ratings yet
Lesson 02 - FourierSeriesNotes
13 pages
M-2 Unit-3 One Shot Notes
PDF
No ratings yet
M-2 Unit-3 One Shot Notes
105 pages
Unit - 1 2 Marks
PDF
No ratings yet
Unit - 1 2 Marks
73 pages
Ali Shabib MATHS401 Chapter 2
PDF
No ratings yet
Ali Shabib MATHS401 Chapter 2
17 pages
MAT1001 ETH AP2024253000519 2024-12-12 Reference-Material-I
PDF
No ratings yet
MAT1001 ETH AP2024253000519 2024-12-12 Reference-Material-I
29 pages
BMATEC301 Mod-1 Notes
PDF
No ratings yet
BMATEC301 Mod-1 Notes
60 pages
Fourier Series for Math Students
PDF
No ratings yet
Fourier Series for Math Students
19 pages
Fourier Series - 064607
PDF
No ratings yet
Fourier Series - 064607
43 pages
Class Note-1 - 044240
PDF
No ratings yet
Class Note-1 - 044240
14 pages
O 5C 27neil AdvancedEmgineeringMathematics 286th 29 Solution Part02
PDF
No ratings yet
O 5C 27neil AdvancedEmgineeringMathematics 286th 29 Solution Part02
306 pages
Mathematics III
PDF
No ratings yet
Mathematics III
122 pages
Fourier Series
PDF
No ratings yet
Fourier Series
81 pages
Fourier Series Analysis
PDF
No ratings yet
Fourier Series Analysis
23 pages
Fourier Series
PDF
No ratings yet
Fourier Series
21 pages
Maths Part 1
PDF
No ratings yet
Maths Part 1
25 pages
Lecture Notes Unit 4.1 (Part 1)
PDF
No ratings yet
Lecture Notes Unit 4.1 (Part 1)
8 pages
Tema 6 (Serite Furie-Vazhdim)
PDF
No ratings yet
Tema 6 (Serite Furie-Vazhdim)
26 pages
Fourier Series
PDF
No ratings yet
Fourier Series
74 pages
FALLSEMFRE2024-25 MAT1001 ETH AP2024253000519 2024-12-13 Reference-Material-I
PDF
No ratings yet
FALLSEMFRE2024-25 MAT1001 ETH AP2024253000519 2024-12-13 Reference-Material-I
24 pages
Fourier Series and P.D.E.
PDF
No ratings yet
Fourier Series and P.D.E.
53 pages
Fourier Series
PDF
No ratings yet
Fourier Series
3 pages
Chapter 5-25-12-2009
PDF
No ratings yet
Chapter 5-25-12-2009
43 pages
Fourier Series & Transforms Guide
PDF
No ratings yet
Fourier Series & Transforms Guide
17 pages
Fourier Analysis (Mark)
PDF
No ratings yet
Fourier Analysis (Mark)
125 pages
Abu Yousuf (Fourier Series)
PDF
No ratings yet
Abu Yousuf (Fourier Series)
86 pages
Notes Fourier Series PDF
PDF
No ratings yet
Notes Fourier Series PDF
73 pages
Fourier Series
PDF
No ratings yet
Fourier Series
11 pages
Math 2280 - Assignment 13: Dylan Zwick Spring 2014
PDF
No ratings yet
Math 2280 - Assignment 13: Dylan Zwick Spring 2014
23 pages
Mod 1 - Part 1
PDF
No ratings yet
Mod 1 - Part 1
24 pages
Fouriermethod
PDF
No ratings yet
Fouriermethod
24 pages
Fourier Seies RK Jain
PDF
No ratings yet
Fourier Seies RK Jain
82 pages
Fourier Series for Math Students
PDF
No ratings yet
Fourier Series for Math Students
10 pages
Fourier BS Grewal
PDF
No ratings yet
Fourier BS Grewal
22 pages
Unit-IV CV&T Version - II
PDF
No ratings yet
Unit-IV CV&T Version - II
41 pages
Lecture 3
PDF
No ratings yet
Lecture 3
24 pages
M3 2020-Module1
PDF
No ratings yet
M3 2020-Module1
15 pages
CamScanner 11 26 2023 18.12
PDF
No ratings yet
CamScanner 11 26 2023 18.12
16 pages
SSRP Unit 2
PDF
No ratings yet
SSRP Unit 2
25 pages
Fourier Series Lecture 1 23-2-2023
PDF
No ratings yet
Fourier Series Lecture 1 23-2-2023
21 pages
Chapter 2 Fourier Series and Transform
PDF
No ratings yet
Chapter 2 Fourier Series and Transform
14 pages
Fourier Analysis
PDF
No ratings yet
Fourier Analysis
8 pages
FSTT Unit I
PDF
No ratings yet
FSTT Unit I
37 pages