Unt-T Fourier Seríes
Qeiodie Fundion'
      4funetíon to) Soid to be a                     priode fanebon
                                                         apositive
   for all n, forT) f)
                                        .
lonstant.
            kost     ke of T for ohich the Above pstion
 pald             Galled the peviod ot fo)
  {x +2      sin(1+x)- sinx =fo),
  1(xt 41) - Sin(a x)-fo) =Sinx
Sinx      ia a periodie functin ith period,
Cosn          a                  with period gT
                periodi function oit
tonx     i      Periodi funetion with pero d T
 Diichlet Conditions :
                                   Said to              divichlet Gndrtlons
        the                 Gondtions   are   Satifed."
                                                in
(:)      ).           Single Valued finide
                                                           (e,e12l)
G) g)                 Contiauous oo' pieiser tontinusus in
                                                maxima ond
(G) 4) has              & finite number f
       hinima       in (C, c4 3)
                 geiodic uncfion oih       pmid
 f       o) is a
                                then it Gn be
    Satsfies Dirichtet Gorditions,
ond                             ineoluig        Sine and
                    an infnite Seris
Gusine
                        for the function foJ in
         Fouríe Sries
Ihus the Fouvíer Seriea
                                       n=
 uhee
           an=
  Notes
                                       founier ocffients (a
  ) The onstants Q,, ansbn
   ti fulers Gnstant
     The       Formua   we   are   Sed to fnd aan          are
     Galled Euler's fomula
) Dirichlet Conditíons    not           but onlg
  Sufficient for the xisence of Fouvier Seiey.
        the    inteal
  the
          folnier Series igen by q0
                         is o,fu) or) (-1,TU)
    hen
                                      "basinn
                        2/
  khere
                        27
              On
              bn         fo)Sinnude
                                                  to   0.
5) he Fourier Sjes, of o)
                             IS   'poindt of Coatinity
                                         ipoint    adiscontint
                                                  the RHL LHL
  Ahre   Ha) fa) ae
     the funchon to) ta
   o                                                        at
                                                             ath
                                            Q- hh
Root      Meon Squane             e
                              lue (RMs
                                he inteital a,bi
   Ret )
   lt              be dfioad in
  then        MS lue
                        b-a
Parse val's heotem:
                                    10)
             the    Fouríey Series
                                                   Conespondg
                                                      (G,cas8)
  then
                                                                 n
Bernoullr's Fomula
                    -u +u'V
   kere      ,      ,                          ,         so on
Note' Bernozili'5. fermua s teplid hen                               one
   of     terms inside              a                         and chose
Note
        e Sinbvck                   (a Sinbx            blosbn
       SinnI =0               n    is     an
                                  n s an
                                                   indyger.
 ine           -0s29
                             Cos = It(0s2
  SinA osB- Sin(At6) + Sin(A-RB)
                             -6)
  Cost (os& = os (A16) +os(A
                              2
  Sint Sinb            Cos(A-6)- asA 48)
obtaín the Fourier Series of thefundion,
   f ) = -x in           o,aT) intval
                                      dex<i
    FS     for   the given funion in,
         o) ao
                        hl
                                        bsinrx
 where
    u'    -l                 V=SinNX-Gsn
      Bentoult's dormuda
   anm-2) Sinnx - Cas(rm)2
                                        Jo
                      SinGnt)
       91
bn
                          dussionvd
     u': -I
                               - Cosank ,-Sinnr
                                   n
            Beonellis fomala.
                  (-)osnx Sinnx
                                            n
                                Gs (onn)            Si ont).
                                       -(r-o)so         Sino
                                                n
                                       20
     b,       n
       9          h   n
  K)=e               in (o, n)
Fourier
 Garier    Bevies fol         he gven fn in
 fo«)            4S 0nCosnx
Ahene     Q, =
                                  +{-te"e)
    oith     a=-,bn, e
                         t
                                 ntJ
 ba
                                    (asinbx , beosbu)
                   Sinna - nlosn)
               (-Sinetx -
           n-ne
                 n't
      X    -21                 -s)
          20
4) 6) -        in (o,n)
                                                        nt|
       3
                                       2Sinnx
an
                                                  dv   cOSNK
                         )-o)            u'=2x
 an
       n                                          Va = -Sinn
                                                         ns
             4) Sinnxdx
bo
           20
                                       u-x2r dvsin n
              x sinnyd                 u'=X
                                             0-(osnx
                                                   n
                                             V, -Sinn
                                                          n
             Cosnx 4 Sinnx x
 1
                                                 V,CoSnx
                n            n2
                                  n3
                     t0+2
     x 4T3          n=   n
)   fa)xSinx
        6) = Qo 4an Cosx 4             basinn
                              ISinsdx
                              + Sinx
                                                u'eV:
                                                   Vi-Soy
                       Sin Gina) Snn)
                yo
           9t          x Sn(+nx t Sinl-ndk
                                                    nt|
                                       V -Sn(4n)Sin-a)%
                     Gs(4n)
                                        4 Sin(4n)*, Sinl-a)
    -                                      (-n
        (4) (1:n)
       -
           7
               -1)",   (ts9 *P
psag
     b, = A
ba            Lf60 Stnnxdx
                 xSnx   Sinnd
                21
                     (os(-n)x - (os(4n) dx
                                2
          u'|
                     VSina-n)x
                        , -Gsl-x         Gslranlk
 bn
                        Cosl-n
            -2,       an
                                      9
                                  9
                                                                the
          Ffnd the fourler 3eriés a perhod                       A
           inteval         o,m)
       Henee dedue that I-t;t                 4
     Doo fourier Seriy
                       fouier Seria f the given fuancion
            Kroo that
                            (Gorntinuous pót) in O
                                  Sin)
                                                                      -Sin+.
             4
                                          FS   in        ,i1)        henee
)           ).-x(T -x)
      deduce the Sum f
    (0)
                                          ()        92
                 92
  -|F
                               &T3)
                               3
                                                             3
                                             ( )Gsnl
        u'                              V    Sinh
         u'    -2                                                -Sinny
                                        V,= -os n                    n
                                                    n
  Apelying -bonoulls phmila
an
                           (EH-2)03nx                   + 2Shny)20
                                                    n
                                   ne       +o)-(o+M-9.  h
 an=                - 20
              -4
               n2
                                 ,
        (Coninuous point) in 9
        9u9
(p-a)
                  d    sinnK
                  V= -Cesnx
                          n              n
                              nt
Aerirg Benols faamlo,
                                     n       n Jo
 b=
           n-I
                      (hsnx+D
       3
           4S!Cosnx
      33
        (Continuous   point ) in 9
    x-7
 f ) - 32_          , Cosnx
           2n92
             34
  2
(i) Rt X=0    (disontinues; point) in D.,
                                 ne)
                      3
  (
              'o (A-o)
                                 tot
                                       k2,6)(o )
                   -2n)
      9
                  -44
                         ...2
A)Fnd the   Fouriex
     ene dedue              8   "
            97
                 xdu
                       (M
                       +(
                     do'sosndk
                     V=Sinn                      u'
Ay Bin vulis piiple                                       2i
                                     (er-)Sinnk.. (oshy
                                             n        n
         n                  n
an=-4        n
                            odd
                 n
                       is   even
         fa) Sinnrdx
                                    2u
                                    (-)Sinnxdy
                      du = sinx dy
                                n
                      V, =-Snn
                           + Snn
                  n                  no               Sinna
                       4 Sinni
                                              Sin n
                                                 n2
                                nn
     n       n
bo Ma
             -4                      n=eyen
     h ,3             n'
f)       4 n=i,   -4 Gsnx
             n-3           n?
4
               TT4 4
                           n
     9
    ool:
) -)   e    in (o. n)
Ahoc
       Q= 1,b= h
 on             n
           nt
                                    eSindx
                     Sinbxda   oyg(aSnbx- brasbu)
                ax
           al, bh
                           n@un
              e   ()
              n
bn n -ae)
                       e          n(
ttence
                  3                    3
         TI
         6
                                                  n
           u"   9                                     -Slan
                                             ,
                                                                      24
An                                                                Jo
                e')- (                       (o       h2
                                    n2
     ant
                Jo) Sinnw dx
                                         4
                    x)'Shnsdk
                                                           -(osnx
                    u (T-x)                                   n
                                                           -Sinnk!
                    u'- 2(-) = -2(u-)
                                                             Cosn
                                                                  n
                Benoull    kontm.
                                                      n
              4
b,=0
                       ni
                            Cosnx
                          point)
       x= 0 ( discontinuo
                       +3       tosnx
       - It6)=
 ?MaM
              4.
                        poit)
                       Casny
                            Cosnx
                   E
                   n
         |2