0% found this document useful (0 votes)
169 views5 pages

Calculus 2 - Tutorial 2

This document provides a tutorial on techniques of integration, including: 1) The Fundamental Theorem of Calculus and power rule for antidifferentiation, which allow calculating definite integrals using antiderivatives. 2) Integration by substitution, using common substitution formulas to rewrite integrals in terms of a new variable. 3) Integration by parts, recalling the product rule for differentiation to evaluate integrals involving the product of two functions. Ten practice problems are provided applying each integration technique.

Uploaded by

Albert Cofie
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
169 views5 pages

Calculus 2 - Tutorial 2

This document provides a tutorial on techniques of integration, including: 1) The Fundamental Theorem of Calculus and power rule for antidifferentiation, which allow calculating definite integrals using antiderivatives. 2) Integration by substitution, using common substitution formulas to rewrite integrals in terms of a new variable. 3) Integration by parts, recalling the product rule for differentiation to evaluate integrals involving the product of two functions. Ten practice problems are provided applying each integration technique.

Uploaded by

Albert Cofie
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 5

CALCULUS II

TUTORIAL 2 ALL COHORTS 2 SEPTEMBER 2022

TECHNIQUES OF INTEGRATION

1. THE FUNDAMENTAL THEOREM OF CALCULUS/POWER RULE

The Fundamental Theorem of Calculus tells us that the exact area under a continuous function f
over an interval [ a , b ]is calculated directly using a definite integral:

∫ f ( x ) dx=F ( b )−F (a)


a

The function is any antiderivative of (we usually set the constant of integration equal to 0).

1 n+1
Power Rule of Antidifferentiation: ∫ x dx=
n
x + c, n ≠ 1
n+1

Integrate the following:

1. i. ii. iii.

∫ ( 5 x +7 ) dx
2. i. ii. iii.

3. i. ∫ ( x +1 )2 dx ii. ∫ ( t2 +5 t +1 ) dt iii. ∫ ( x +1 )2 dx

( 1
)
1
4. i ∫ x+
2

x
2
dx ii. ∫ ( t3 +t 2 ) dt iii. ∫t 2
dt

5. i. ∫ 3 √ w dw ii. ∫ (x 3¿ +5 x 2 +6) dx ¿ iii. ∫ ( 3 2


)
− dt
t t2

2 5 1
1
6. i. .∫ 2
dt ii. ∫ ( x 3−π x 2 ) dx iii. ∫ ( y 2+ y 4 ) dy
1 t 2 0

Page 1 of 5
1 9 1

7. i. ∫ 2 e dtt
ii. ∫ √ x dx iii. ∫ ( 6 q2 + 4 ) dq
0 4 0

5 4 2

8. i. ∫ 3 x dx2
ii. ∫ √1x dt iii. ∫ ( 3t 2 +4 t +3 ) dt
0 1 0

∫ ( 1y + y +1 ) dy
2 2

9. i. ii. ∫ 1x dx iii. ∫ x12 dx


1 1

10. i. ∫ ( 4 t + 7 ) dt ii. ∫ ( x +1 )2 dx iii. ∫ ( x + √1x ) dx


2. INTEGRATION BY SUBSTITUTION

The following formulas provide a basis for an integration technique called substitution:

ur +1
A. ∫ u r du= r +1
+ c , assuming r ≠−1

B. ∫ eu du=eu + c
1 1
C. ∫ u du=ln|u|+c , or ∫ u du=ln ⌈ u ⌉ +c , u>0

Other identities:

−1
a . ∫ sin ( ax +b ) dx= cos ( ax+ b ) +c
a

1
b .∫ cos ( ax +b ) dx = sin ( ax +b ) + c
a

Page 2 of 5
1
∫ ax +b dx=ln|ax+ b|+c

Integrate the following using Substitution:

1
1. i. ∫ ( x +4 ) dx ii.∫ cos ( 3 x + 4 ) dx
5
iii ∫ 1−2 x dx
3 1

i. ∫ ( 9+ x ) dx ii.∫ ( x−2 ) dx iii. ∫ ( x +5 ) dx


2 3 4
2.
1 0

1
i. ∫ ( 2 x−1 ) dx ii.∫ ( 1−x ) dx iii. ∫ sin ( 7 x−3 ) dx
7 3
3.
−1

1
i. ∫ e ii.∫ iii. ∫ 2 x √1+ x dx
3 x−2 2
4. dx dx
7 x+ 5

4x sin √ x
5. i. ∫ dx ii. ∫ dx iii. ∫ 5 x √1−x2 dx
√2x 2
+1 √x

dx x
3
6. i. ∫ ii. ∫ x ( 1+ x ) dx 4 5 3
iii. ∫ 4 dx
√ x +16
2
√ x ( 1+ √ x )
1
cos x x
3
7. i. ∫ dx ii. ∫ dx iii. ∫ 5 x 2 √ 1−x 3 dx
( 5+sin x )2 0 √x 4
+12

8. i. ∫ e
cos x
sin x dx ii. ∫ e
sinx
cos x dx iii. ∫ x
3
√ x 4 +1 dx
0

1 1 1
5
i. ∫ x ( x +1 ) dx ii. . ∫ x √ x +1dx iii. ∫
2 5 2
9. dx
0 0 0 ( 5 x+1 )2

2 3 1
x +1 dx 5
10. i. ∫ 2
dx ii. ∫ iii. ∫( 2
dx
1 (x +2x)
2
0 x+ 1 0 5 x+1 )

Page 3 of 5
3. INTEGRATION BY PARTS

Recall the Product Rule for differentiation,

d dv du
( uv )=u + v
dx dx dx

Integrating both sides with respect to x , we get

dv du
uv=∫ u dx +∫ v dx
dx dx

¿ ∫ udv +∫ vdu

Solving for ∫ udv , we get the following theorem,

∫ udv=uv−∫ vdu
Use Integration by Parts to integrate the given functions

1. i. ii. iii.

2. i. ii. iii.

3. i. ii. iii.

4. i. ii. iii.

5. i. ii. iii.

6. i. ii. iii.

7. i. ii. iii.

Page 4 of 5
3

8. i. ∫ ln ( x +7 ) dx ii. ∫ ln ( x + 4 ) dx iii. ∫ x 2 ln ( 5 x ) dx
0

9. i. ∫ x √ x +2 dx ii. ∫ ( x−1 ) ln x dx iii. ∫ ln ( x )2 dx


10. i. ∫ x ln √ x dx ii. ∫ x e−x dx iii. ∫ x 2 ( 2 x ) dx

Page 5 of 5

You might also like