0% found this document useful (0 votes)
96 views4 pages

Calculus II: Integration Techniques

This document provides an overview of techniques for integration, including: 1) The Fundamental Theorem of Calculus and power rule for antidifferentiation. 2) Integration by substitution, using formulas to integrate expressions involving e, sin, cos, and rational functions. 3) Integration by parts, derived from the product rule, to evaluate integrals of products. Examples of integrating using this technique are provided.

Uploaded by

Albert Cofie
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
96 views4 pages

Calculus II: Integration Techniques

This document provides an overview of techniques for integration, including: 1) The Fundamental Theorem of Calculus and power rule for antidifferentiation. 2) Integration by substitution, using formulas to integrate expressions involving e, sin, cos, and rational functions. 3) Integration by parts, derived from the product rule, to evaluate integrals of products. Examples of integrating using this technique are provided.

Uploaded by

Albert Cofie
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 4

CALCULUS II

TUTORIAL 2 ALL COHORTS 2 SEPTEMBER 2022

TECHNIQUES OF INTEGRATION

1. THE FUNDAMENTAL THEOREM OF CALCULUS/POWER RULE

The Fundamental Theorem of Calculus tells us that the exact area under a continuous function f
over an interval [𝑎, 𝑏]is calculated directly using a definite integral:

𝑏
∫ f(𝑥)𝑑𝑥 = F(b) − F(a)
𝑎

The function is any antiderivative of (we usually set the constant of integration equal to 0).

1
Power Rule of Antidifferentiation: ∫ 𝑥 𝑛 𝑑𝑥 = 𝑛+1 𝑥 𝑛+1 + 𝑐, 𝑛 ≠ 1

Integrate the following:

 (x + 3) dx
2 4 2
 
2
1. i. x 3 dx ii. xdx iii. 2
0 0 −2

 1 1 
 ( 3x − 4 x + 2 ) dx
2 −1
 − 3  dx
2
2. i. ii.
−2  x 2
iii. ∫(5𝑥 + 7) 𝑑𝑥
−1
 x 

3. i. ∫(𝑥 + 1)2 𝑑𝑥 ii. ∫(𝑡 2 + 5𝑡 + 1)𝑑𝑡 iii. ∫(𝑥 + 1)2 𝑑𝑥

1 1⁄
4. i ∫ (𝑥 2 + 𝑥 2 ) 𝑑𝑥 ii. ∫(𝑡 3 + 𝑡 2 )𝑑𝑡 iii. ∫𝑡 2 𝑑𝑡

3 2
5. i. ∫ 3√𝑤 𝑑𝑤 ii. ∫(𝑥 3 + 5𝑥 2 + 6)𝑑𝑥 iii. ∫ ( 𝑡 − 𝑡 2 ) 𝑑𝑡

2 1 5 1
6. i. .∫1 𝑡2
𝑑𝑡 ii. ∫2 (𝑥 3 − 𝜋𝑥 2 )𝑑𝑥 iii. ∫0 (𝑦 2 + 𝑦 4 )𝑑𝑦

1 9 1
7. i. ∫0 2𝑒 𝑡 𝑑𝑡 ii. ∫4 √𝑥 𝑑𝑥 iii. ∫0 (6𝑞 2 + 4) 𝑑𝑞

Page 1 of 4
5 4 1 2
8. i. ∫0 3𝑥 2 𝑑𝑥 ii. ∫1 𝑥
𝑑𝑡 iii. ∫0 (3𝑡 2 + 4𝑡 + 3)𝑑𝑡

1 21 2 1
9. i. ∫ (𝑦 + 𝑦 + 1) 𝑑𝑦 ii. ∫1 𝑥 𝑑𝑥 iii. ∫1 𝑥2
𝑑𝑥

1
10. i. ∫(4𝑡 + 7)𝑑𝑡 ii. ∫(𝑥 + 1)2 𝑑𝑥 iii. ∫ (𝑥 + √𝑥) 𝑑𝑥

2. INTEGRATION BY SUBSTITUTION

The following formulas provide a basis for an integration technique called substitution:

𝑢𝑟+1
A. ∫ 𝑢𝑟 𝑑𝑢 = 𝑟+1
+ 𝑐 , assuming 𝑟 ≠ −1

B. ∫ 𝑒 𝑢 𝑑𝑢 = 𝑒 𝑢 + 𝑐
1 1
C. ∫ 𝑢 𝑑𝑢 = ln|𝑢| + 𝑐, or ∫ 𝑢 𝑑𝑢 = ln⌈𝑢⌉ + 𝑐, 𝑢 > 0

Other identities:

−1
𝑎. ∫ sin(𝑎𝑥 + 𝑏)𝑑𝑥 = cos(𝑎𝑥 + 𝑏)
𝑎
+𝑐

1
𝑏. ∫ cos(𝑎𝑥 + 𝑏)𝑑𝑥 = sin(𝑎𝑥 + 𝑏) + 𝑐
𝑎

1
∫ 𝑑𝑥 = ln|𝑎𝑥 + 𝑏| + 𝑐
𝑎𝑥 + 𝑏

Page 2 of 4
Integrate the following using Substitution:

1
1. i. ∫(𝑥 + 4)5 𝑑𝑥 ii.∫ cos(3𝑥 + 4)𝑑𝑥 iii ∫ 1−2𝑥 𝑑𝑥

3 1
2. i. ∫1 (9 + 𝑥)2 𝑑𝑥 ii.∫(𝑥 − 2)3 𝑑𝑥 iii. ∫0 (𝑥 + 5)4 𝑑𝑥

1
3. i. ∫(2x − 1)7 dx ii.∫−1(1 − x)3 dx iii. ∫ sin(7x − 3)dx

1
4. i. ∫ 𝑒 3𝑥−2 𝑑𝑥 ii.∫ 7𝑥+5 𝑑𝑥 iii. ∫ 2𝑥√1 + 𝑥 2 𝑑𝑥

4𝑥 sin √𝑥
5. i. ∫ √2𝑥 2 𝑑𝑥 ii. ∫ 𝑑𝑥 iii. ∫ 5𝑥√1 − 𝑥 2 𝑑𝑥
+1 √𝑥

𝑑𝑥 𝑥3
6. i. ∫ 2 ii. ∫ 𝑥 4 (1 + 𝑥 5 )3 𝑑𝑥 iii. ∫ √𝑥 4 𝑑𝑥
√𝑥(1+√𝑥) +16

cos 𝑥 1 𝑥3
7. i. ∫ (5+sin 𝑥)2 𝑑𝑥 ii. ∫0 𝑑𝑥 iii. ∫ 5𝑥 2 √1 − 𝑥 3 𝑑𝑥
√𝑥 4 +12

5
8. i. ∫ 𝑒 cos 𝑥 sin 𝑥 𝑑𝑥 ii. ∫ 𝑒 𝑠𝑖𝑛𝑥 cos 𝑥 𝑑𝑥 iii. ∫0 𝑥 3 √𝑥 4 + 1𝑑𝑥

1 1 1 5
9. i. ∫0 𝑥(𝑥 2 + 1)5 dx ii. . ∫0 𝑥√𝑥 2 + 1dx iii. ∫0 (5𝑥+1)2
𝑑𝑥

2 𝑥+1 3 𝑑𝑥 1 5
10. i. ∫1 (𝑥 2 +2𝑥)2
𝑑𝑥 ii. ∫0 iii. ∫0 (5𝑥+1)2
𝑑𝑥
𝑥+1

3. INTEGRATION BY PARTS

Recall the Product Rule for differentiation,

𝑑 𝑑𝑣 𝑑𝑢
(𝑢𝑣) = 𝑢 +𝑣
𝑑𝑥 𝑑𝑥 𝑑𝑥

Integrating both sides with respect to 𝑥, we get

𝑑𝑣 𝑑𝑢
𝑢𝑣 = ∫ 𝑢 𝑑𝑥 + ∫ 𝑣 𝑑𝑥
𝑑𝑥 𝑑𝑥

Page 3 of 4
= ∫ 𝑢𝑑𝑣 + ∫ 𝑣𝑑𝑢

Solving for ∫ 𝑢𝑑𝑣, we get the following theorem,

∫ 𝑢𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣𝑑𝑢

Use Integration by Parts to integrate the given functions

 x cos xdx x e e
2 −x x
1. i. ii. dx iii. sin xdx

 x e dx x 1 − xdx  x sin xdx


3 x
2. i. ii. iii.

x  sin x
2 2 2
3. i. cos xdx ii. xdx iii. ln xdx

 xe x  ( ln x )
3x 3 2
4. i. dx ii. ln xdx iii. dx

(x + 1)dx  ( 5 + 3x ) e  x ( ln x )
2 −x 3
2
5. i. ii. dx iii. dx

 xe  te  (1 − x ) e dx
−x 1−t x
6. i. dx ii. dt iii.

 t ln 2tdt x x − 6dx  x ( ln x )
2
7. i. ii. iii. dx

3
8. i. ∫0 ln(𝑥 + 7)𝑑𝑥 ii. ∫ ln(𝑥 + 4)𝑑𝑥 iii. ∫ 𝑥 2 ln(5𝑥)𝑑𝑥

9. i. ∫ 𝑥 √𝑥 + 2𝑑𝑥 ii. ∫(𝑥 − 1) ln 𝑥 𝑑𝑥 iii. ∫ ln(𝑥)2 𝑑𝑥

10. i. ∫ 𝑥 ln √𝑥𝑑𝑥 ii. ∫ 𝑥𝑒 −𝑥 𝑑𝑥 iii. ∫ 𝑥 2 (2𝑥)𝑑𝑥

Page 4 of 4

You might also like