CALCULUS II
TUTORIAL 2                                          ALL COHORTS                          2 SEPTEMBER 2022
                                         TECHNIQUES OF INTEGRATION
1. THE FUNDAMENTAL THEOREM OF CALCULUS/POWER RULE
The Fundamental Theorem of Calculus tells us that the exact area under a continuous function f
over an interval [𝑎, 𝑏]is calculated directly using a definite integral:
                                                    𝑏
                                                   ∫ f(𝑥)𝑑𝑥 = F(b) − F(a)
                                                   𝑎
The function is any antiderivative of (we usually set the constant of integration equal to 0).
                                                                 1
Power Rule of Antidifferentiation: ∫ 𝑥 𝑛 𝑑𝑥 = 𝑛+1 𝑥 𝑛+1 + 𝑐, 𝑛 ≠ 1
Integrate the following:
                                                                                           (x         + 3) dx
                    2                                            4                         2
                                                            
                                                                                                            2
1.      i.              x 3 dx                      ii.               xdx         iii.             2
                 0                                           0                            −2
                                                                 1 1 
                 ( 3x            − 4 x + 2 ) dx
                    2                                            −1
                                                                     − 3  dx
                              2
2.      i.                                          ii.
                                                             −2  x 2
                                                                                  iii.   ∫(5𝑥 + 7) 𝑑𝑥
                 −1
                                                                      x 
3.      i.     ∫(𝑥 + 1)2 𝑑𝑥                         ii.      ∫(𝑡 2 + 5𝑡 + 1)𝑑𝑡    iii.    ∫(𝑥 + 1)2 𝑑𝑥
                                   1                                                           1⁄
4.      i      ∫ (𝑥 2 + 𝑥 2 ) 𝑑𝑥                    ii.     ∫(𝑡 3 + 𝑡 2 )𝑑𝑡       iii.   ∫𝑡      2 𝑑𝑡
                                                                                               3        2
5.      i.      ∫ 3√𝑤 𝑑𝑤                            ii.      ∫(𝑥 3 + 5𝑥 2 + 6)𝑑𝑥 iii.     ∫ ( 𝑡 − 𝑡 2 ) 𝑑𝑡
                     2 1                                         5                         1
6.      i.     .∫1       𝑡2
                              𝑑𝑡                    ii.      ∫2 (𝑥 3 − 𝜋𝑥 2 )𝑑𝑥   iii.    ∫0 (𝑦 2 + 𝑦 4 )𝑑𝑦
                     1                                           9                         1
7.      i.      ∫0 2𝑒 𝑡 𝑑𝑡                          ii.      ∫4 √𝑥 𝑑𝑥             iii.    ∫0 (6𝑞 2 + 4) 𝑑𝑞
Page 1 of 4
                    5                                   4 1                            2
8.       i.       ∫0 3𝑥 2 𝑑𝑥                 ii.     ∫1       𝑥
                                                                𝑑𝑡             iii.   ∫0 (3𝑡 2 + 4𝑡 + 3)𝑑𝑡
                                                          √
                        1                               21                             2 1
9.       i.       ∫ (𝑦 + 𝑦 + 1) 𝑑𝑦           ii.    ∫1 𝑥 𝑑𝑥                    iii.   ∫1   𝑥2
                                                                                                𝑑𝑥
                                                                                                 1
10.      i.       ∫(4𝑡 + 7)𝑑𝑡                ii.    ∫(𝑥 + 1)2 𝑑𝑥               iii.   ∫ (𝑥 + √𝑥) 𝑑𝑥
2. INTEGRATION BY SUBSTITUTION
The following formulas provide a basis for an integration technique called substitution:
                        𝑢𝑟+1
      A. ∫ 𝑢𝑟 𝑑𝑢 =      𝑟+1
                               + 𝑐 , assuming 𝑟 ≠ −1
      B. ∫ 𝑒 𝑢 𝑑𝑢 = 𝑒 𝑢 + 𝑐
              1                        1
      C. ∫ 𝑢 𝑑𝑢 = ln|𝑢| + 𝑐, or ∫ 𝑢 𝑑𝑢 = ln⌈𝑢⌉ + 𝑐, 𝑢 > 0
Other identities:
                                                              −1
                                  𝑎. ∫ sin(𝑎𝑥 + 𝑏)𝑑𝑥 =           cos(𝑎𝑥 + 𝑏)
                                                              𝑎
                                                   +𝑐
                                                               1
                                  𝑏. ∫ cos(𝑎𝑥 + 𝑏)𝑑𝑥 =           sin(𝑎𝑥 + 𝑏) + 𝑐
                                                               𝑎
                                              1
                                        ∫          𝑑𝑥 = ln|𝑎𝑥 + 𝑏| + 𝑐
                                            𝑎𝑥 + 𝑏
Page 2 of 4
Integrate the following using Substitution:
                                                                                     1
1.      i. ∫(𝑥 + 4)5 𝑑𝑥            ii.∫ cos(3𝑥 + 4)𝑑𝑥               iii         ∫ 1−2𝑥 𝑑𝑥
                3                                                          1
2.      i. ∫1 (9 + 𝑥)2 𝑑𝑥          ii.∫(𝑥 − 2)3 𝑑𝑥                  iii. ∫0 (𝑥 + 5)4 𝑑𝑥
                                       1
3.      i. ∫(2x − 1)7 dx           ii.∫−1(1 − x)3 dx                iii. ∫ sin(7x − 3)dx
                                               1
4.      i. ∫ 𝑒 3𝑥−2 𝑑𝑥             ii.∫ 7𝑥+5 𝑑𝑥                     iii. ∫ 2𝑥√1 + 𝑥 2 𝑑𝑥
                    4𝑥                     sin √𝑥
5.      i. ∫ √2𝑥 2          𝑑𝑥     ii. ∫                𝑑𝑥          iii. ∫ 5𝑥√1 − 𝑥 2 𝑑𝑥
                      +1                       √𝑥
                     𝑑𝑥                                                         𝑥3
6.      i. ∫                 2     ii. ∫ 𝑥 4 (1 + 𝑥 5 )3 𝑑𝑥 iii. ∫ √𝑥 4                  𝑑𝑥
               √𝑥(1+√𝑥)                                                          +16
                    cos 𝑥                  1       𝑥3
7.      i. ∫ (5+sin 𝑥)2 𝑑𝑥         ii. ∫0                 𝑑𝑥        iii. ∫ 5𝑥 2 √1 − 𝑥 3 𝑑𝑥
                                               √𝑥 4 +12
                                                                           5
8.      i. ∫ 𝑒 cos 𝑥 sin 𝑥 𝑑𝑥      ii. ∫ 𝑒 𝑠𝑖𝑛𝑥 cos 𝑥 𝑑𝑥            iii. ∫0 𝑥 3 √𝑥 4 + 1𝑑𝑥
               1                               1                           1      5
9.      i. ∫0 𝑥(𝑥 2 + 1)5 dx       ii. . ∫0 𝑥√𝑥 2 + 1dx             iii. ∫0    (5𝑥+1)2
                                                                                       𝑑𝑥
               2      𝑥+1                  3 𝑑𝑥                                  1      5
10.     i. ∫1      (𝑥 2 +2𝑥)2
                              𝑑𝑥   ii. ∫0                           iii.        ∫0   (5𝑥+1)2
                                                                                             𝑑𝑥
                                               𝑥+1
3. INTEGRATION BY PARTS
Recall the Product Rule for differentiation,
                                                   𝑑           𝑑𝑣    𝑑𝑢
                                                      (𝑢𝑣) = 𝑢    +𝑣
                                                   𝑑𝑥          𝑑𝑥    𝑑𝑥
Integrating both sides with respect to 𝑥, we get
                                                             𝑑𝑣          𝑑𝑢
                                       𝑢𝑣 = ∫ 𝑢                 𝑑𝑥 + ∫ 𝑣    𝑑𝑥
                                                             𝑑𝑥          𝑑𝑥
Page 3 of 4
        = ∫ 𝑢𝑑𝑣 + ∫ 𝑣𝑑𝑢
Solving for ∫ 𝑢𝑑𝑣, we get the following theorem,
                                      ∫ 𝑢𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣𝑑𝑢
Use Integration by Parts to integrate the given functions
                x cos xdx                    x e                                    e
                                                   2 −x                                    x
1.      i.                            ii.                  dx                  iii.            sin xdx
                x e dx                       x       1 − xdx                         x sin xdx
                     3 x
2.      i.                            ii.                                      iii.
               x                              sin                                   x
                     2                                 2                                   2
3.      i.               cos xdx      ii.                  xdx                 iii.            ln xdx
                xe                           x                                       ( ln x )
                         3x                        3                                               2
4.      i.                    dx      ii.              ln xdx                  iii.                    dx
               (x           + 1)dx            ( 5 + 3x ) e                           x ( ln x )
                         2                                       −x                                    3
                                                                      2
5.      i.                            ii.                                 dx   iii.                        dx
                xe                            te                                     (1 − x ) e dx
                         −x                        1−t                                                 x
6.      i.                    dx      ii.                dt                    iii.
                t ln 2tdt                    x       x − 6dx                         x ( ln x )
                                                                                                       2
7.      i.                            ii.                                      iii.                        dx
                 3
8.      i.     ∫0 ln(𝑥 + 7)𝑑𝑥         ii.    ∫ ln(𝑥 + 4)𝑑𝑥                     iii.   ∫ 𝑥 2 ln(5𝑥)𝑑𝑥
9.      i.     ∫ 𝑥 √𝑥 + 2𝑑𝑥           ii.    ∫(𝑥 − 1) ln 𝑥 𝑑𝑥                  iii.   ∫ ln(𝑥)2 𝑑𝑥
10.     i.     ∫ 𝑥 ln √𝑥𝑑𝑥            ii.    ∫ 𝑥𝑒 −𝑥 𝑑𝑥                        iii.   ∫ 𝑥 2 (2𝑥)𝑑𝑥
Page 4 of 4