0% found this document useful (0 votes)
378 views24 pages

Relations Notes 1

The matrix of a relation can represent a relation containing elements from two sets A and B. The matrix has rows indexed by elements of A and columns indexed by elements of B, with a 1 in position (a,b) if aRb and 0 if not aRb. For example, the relation R defined on sets A={1,2,3} and B={a,b,c} by R={(1,a),(2,b),(3,c)} can be represented by the matrix: a b c 1| 1 0 0 2| 0 1 0 3| 0 0 1 The in-degree of an

Uploaded by

anushka chaubey
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
378 views24 pages

Relations Notes 1

The matrix of a relation can represent a relation containing elements from two sets A and B. The matrix has rows indexed by elements of A and columns indexed by elements of B, with a 1 in position (a,b) if aRb and 0 if not aRb. For example, the relation R defined on sets A={1,2,3} and B={a,b,c} by R={(1,a),(2,b),(3,c)} can be represented by the matrix: a b c 1| 1 0 0 2| 0 1 0 3| 0 0 1 The in-degree of an

Uploaded by

anushka chaubey
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 24

EM2

Relahisn oset and Latice


Relaigm: et A and B be 2 pon-eMpty Le&
Ae AXB u Ris a slkatian Arom A n B
ORe AXB and ab)e R L ay a Rb_lais
elattd to8)-

04aiau a a Rb.
RCA XA i alaha nA
inbtd m AoA

AXB A: (,2) B (3,)


AXB (,8),(1,4), (2,3), (2, 4)

Ex A-ab,cB to B: 1,22{diteumia ekhau

S(aCa,2) ,Co,D,Cb,2)

A XB aRb
G R (a),(a,2),Co 2)
R Axb ab
aksb
Lin) Ra= &Cc, 1, c,2) (C,)r a Rub
)Ry2 9Cb,2) Ry EAXB
a Rgb
> ) Re = RaEAx

An is alo0o3 a9Ol atiou_


| Domain_andkange f Kelatian8
omain ut A,Bbe henpty 8eh aRb
2then domain ofR is a 9ubset _of A
t Damain of R 2alab) 6 R_

Rarge Kage af Ri a ubset of B_


ieRame o_R lblab) ER?_

n vehee_oRela~io

let_R_be a HelationAem A tn B Hun thenuRe d A_


is collecbidn of_all (b,a)_Suth Hhat (a,b)LR. dundkd byk

R b,a) Cab)ER
R (23), (1s)3 SC3,2), (5,4)
a A 12,5,13,R doliaad by xRy i 2sy-
R2L2).lL3),A,),e,2.(2,42,S,)}
R C2,0.(3,),4,)(3,2) Cu,2) (4,3) }

in wods R 2MRy f yk
uSbe a claktan_sn N_ inego1s, &uch that
t u 13
S (ab)| a,b EN, a+3h =13 F

MAx valuo of = 13_min 4


max alua o yE 4 2-3b

Laluss ,2,3, 4
paudhag ?10,7, 4

(D,D,(7,2), CY,32,(1,)
8 ),(2) (3. (M,D
y: 13-
3

u RAud be sllouu Radan o A 23


2) (2,3j (3,1) (3132
SC2,3),Cu3),(2,1D,3,3)3
Ro9 as),(3,3)
R1 D ,U2),23)3.D(S,3)03) 21)}
3 2,2) (2062)X

AA D1,2) (13) (2) (2,2)2,3,e0,N:3E


AKepePAENdatiou KelationS
Dioaphs A is finiE Lek and Re A
Ra _Can paaek
Druo a Anall sclo o eada elundutg A
Dro an asbaO Col edge M
uoKA a; Ao ai i aiRa
A Su23,4?
R ),L,2,(2,1,(2,3) GD,8,,(,1)

find uhkia

R a,),(s2,G.),4a_
.
* The madx _of a4Alakia
u can kpaeLent_a yelattau COnkinlaa Mauda elo4,
A a a2,ag-
B:hbabz b
nin a_Matx Ma LMi leeaA

Mi ai,b)CR Le Rbj
0 4 Cab)_ R iic aiR b
R C ,(230,(3,2) ,C33)
2 3 B
A$ 2 3 Me

B 2 3
3
A

M, 0 1 JA3
I4
TOTO
2
B-b ba bgb
Rab2, (aba)b) bs)(aab),@bsl_
XDepnatians
In-deore Let Rj8 a ulahion on A %aEA_Men
in-degau o a £AB tha nunmbe o b
Suth Haadt aRb l n0-b ðeR
Out-dagnee: lat Ris a elakoM @hA_ Hha outdog4R
aA_ tha no ab 2u6h tha
a
aRb ie no qblab kR

2 8 uls
TD| 2| 2 22
CD412||

e Find 0atax laton Qd 2elaho diq


A-L2S4St=6. aRb l b uutHplo f=
R (,2,1,3)C1u,)(S),4,2),(2,4),C3,2)G)SSs

2 O LO
3 0

1D
2 2 |3 2
OD 5
Find A And its diqqph. ist Dand 0D

Ar la,b,.cdek
a lo d e

Coo 0 L Ra,a, a,b), (be) b,a),


c,ale,e) Ldb),lal,c
Lea}

A_b de
L 2 2 2 2 I
OD|2

Eind clationde degined hy digaaph ad ukate atak


A 3 ,4,5
R:§C2) ,2,2), (2,3),(8,) 4,)(5,DSY
#Path in ulation aud Digsaph3
Suppsee Hoat R n_A
A ath of Longth a inR_pemn a wb s a faite Segusnct

aR R pR

Nok i Apatta that bginh and eudblita SaML ebmut


A o_lngth nuotus elenu q A
Det neLSR aily_distinct

ConngckiuitXalaton
A latian danokd bu K and dfins.d os R ta
a patla oany ugth rom n y ihR- i3
CallLd Connaceuy sLlation. es R

Aab,cde R- Saa),a,b),b)od)eck) d
_(smpudcR and R_

Digaph R:

R abCac) b Ccb E R
Cab)(a. b,A), (b,e) ,ace)f
RS[ab)w ig a pafh q au Lungih Artm

Laab],ad,a (ae),(bc ()he,Lea (


Path d ngth 1L
2),(.6).C23) (3,3) ,4)

Kayh d lonat2 uitex 2


(23)
332222 3,3
P332324
12z 2 3 22 3,2
6 Lu 3,6
33 3 3,5

8 3 3 3,3
3 4 3 34
3 >5 3,S
3 12-328 ,3)
z]P2 y2/

222229(23
6 3 3 3222 (
b S _ 6,5

22U25.
| 3 3 1 23
Adle at

2 Y 22
Eind aisole at G

DLaL0digsaph R
R C LD 2.3) (2,40 (a,3) (3,1D 3,4)Ca,5

fiAL MA

M 2 O

M ol o o6 o 1oeo11laol OO
7otot6
vil
SD G, (1,3) 1,) (1, 5) L62
(2,0(2,2) (33) (2) (215) (26)
(3,10 (82 (33) (3D (3,)(3,6
(uD (Y2) (13 (4M) (4S) ( 6)

EnpasitionRalation
A,.c be the 8etg ARBand BSc Loe ca
deinesu laton u CoMpagitou d Rand& ltten
8.R

SoR 2 (a.c |aRb, Sck


aeACEC han. a (SoR Ja _o, ona bEB

BSa,b,et C ,z
S0R (a,c)aRb, b8 c R-CL)Laa,c)2
CL,2pa,zl} Saghn)lel
4
Mg M
b o

MoR
3
A L23,9
RaC, (3,1)13,4) Y)L2,
S?L8) (2,13 (3,1) 3,2) (4, 2
Ro3 G 3) (3,3) (3,) CLD 2 )
SAR X() C, u) (21) (3.1) (Y 2) (3) S
RROR- ac) aRb, LRe
S C1)_(3,1) (3,2) 3,3) (L)CY4)
M

Ma 2leet+
3

R KOR_?I,D(30(3,) (1), 9,2) (u3)


3
M 2ll
OE -e-A2

R F )E R
) 1,a) (3) (2,4) C3,4)
RoR )( 3)3 D38)
(u)
e'oR C01M)(2,2(2,3)(3,2)(3,3)
(Xuu)_
22 3
R o
2
Aopeatiea Rlatiana
KepHexiue:i (nn)e R_V2 E A ie nRa vnéA-
diageal xelatio 2Ra t n£A buk 2Ky t A
donoted by A A=Sma) d néA
also
eauality ulatio
3 lepLexiu
MoteiARA (x¢lExiue )AGR
ARA imeeliunAAR = ¢.

5 Non-Summatnic 2R by Ra oMe (1) 6K


AsummanMe 21Ry 4RL t_(miy) ER
Nae This is a paiicula cse c nat
Summekznc

Anh-8ummgtn 1p nky yRn


R issmet L R: R
Ris ayM eROR
R R isaui -qm i RRCA

8Taansitiuu i gER aud qz CR ta


ln2)ER

Nok: MR:MR tas R s aunitu


Let A SL2,34 Ruteiut,Sum, 9Sum,anti Bym
aRSG) _2)(2,) (2) (3,3) ENA34,y)
AA LD,22) (3,3) (,O{ 2diagoual
AC R
Ris «lLxiua.
) 8 my) ER han ER_#au n 3um
R CL,1) (2,1) ti 2) (2,2) (42 U3)3,){,
R:R'_
R

_RoR
RaRR
RO 4A R Is not AnHaum
3

M
M
Ris ansitius
Eauivaloco Rolatton
ARA
a
RIs aRx
Repoxiue
eALuLvalaaasi itis
Sumatai.c 2Ry Ra
cToaniua 2Ry&Rz nRz-

iaculaxRalatjen:
ARA e úhulah ip aRb and bRc e
cRa
Odeaune

i clLLuL
Nok:
R. AWR

) AS,2,33 RCLDC12) (2,3


A:SL)L2,2)(3,3\L
Ropuex iuA dsLuA k a AUR

mnetie deguh

Symthe-3C
gCis R ieelf
_/

@ Tansitiu cleAo
T Smallat tansitiue xlatan hat ntaius R i
tranaitiuaCLesuh
iR R
i T.congh-tmnstiueLlatiaia Can_behund
bing axihalls alaaxthm.
LWanahall's alqasithn
A S113,ut R ,2) (2,D(2,2) (4,2) (3,)
(2) C ) e R but0) LR_hono
Risnot teanStiue.

Mas G s_psittouS:
3
R pos.itto

Insett4 at cembinatious
lc R):2) G2-
2
G 2,3
R 22

-e e- (2
GR) Li2(1)(2)
34
Cy O no 4 sut
6

R (1)u2) L2,) C2,1) (3,d3,2)(4)(YS CY3)3


Poset
ARA panhal o da i it is etaxiueanh&unmaAtic.
And tansiti (A,R is phialb ardaed get au peI
R Replexiue
(AR)2_pesek_
Taansit ue

R Real no.s Rilatisn _n R:K:R<R

Rppexiu asa aa)


Anti gqmsmstac a,b eR a s b
and b Sa
asb
Iransuhu q,b,c ER Asb and bs
aSC

(R,S) s pc9et Sinco is patia g,do

Ran 2 as aRbip alb


hLn pesoue tu Ris pahal ad

K xiu: a¬ z ala , ala


PniauM 4E ,béz i alb ond bla A=b
ansih4g ,bcEz if Qlb and blC = ac
XCompoable Lima_Osda
CeposablkIn a Pe8et (A, <, elasmat a gaid to be
CeMpasable
Nok n a oser eus Llomnt_10Ld not be
mpanable

ineox 0de) 90 14_eu eanmaut oA mpaJabl


i t is lta adod s Chain @ totally
e41:s) GdoA
:(z,D_X_Sind 23 e B15_ist onpau
1 (A.R) is posst than (AR is a o3t.
R:_aRa -
a EA_
aR a Y EA
e: aRb bRa a = b
bRa aRb 2ab Antisum
(ii R: Rb b Re
aRe
bAa cR'b_2 cRa
oanstus
(A,R a_poset.
Hasse diagsam oa ser
oagnam-paxhal dea 0an be implikedand s called
halBe diagaaM
udhen barttal_asdes i atal sdeh its Hase
a9taiglet linsaud (Aespaudiu4pSe ig Calld1
Chain

A 2 RCII) (,29(12) (22) (2,G +


3 3
2

Hasse daigaam

1 A L2,34,2 R ckuide
R:YD1a)).1HDL12) (2,2)(24) (2,12) (33)
(312)(D2) L2,12)}
12

&3. a,bcs A= PS) Potial SaE)


DrauD ee AG)
A:20,a,b,c, ahbc, ca abe {
abe
abe

alo
betes
tooRiug
(2,2)(2,4)(3,3)6,9(
R010.2)03) (,)
3AS12,3,4

2 3

A ab.det
(bib)lhc)b,d) Ch,e) G) lc.d)
R(a,) Cac) (ad) a.e)
Cce) Cd,d) (e,e)

Quasi Ooudes
ARA,R uas1 Csdes s tuausitius and LksepLIAIL
A n 2 ic xal,-55n 201 i s a quasi slation
xelexi u -

is eftoviu
Tansiu t yyz-
Posek ia0 moplugm-
A<) awd (A,S ba too_posalsaud

13aid D iSsnGApuip4 YA,btA,aSb


fa)s£Cb) in A'
A A sisomohi3M AS qus
CA,S)a i3oMaLpic Poseks

| AI2,3.5,6,10,1S,80bB

Maantaat alb
erA PCs)uhha S fela he tu pog£t_
C

Shao A,S) aud CAC arigamaLpuiS


LA Da3)(LLe),o) (LS)(1.30 (2) (2.0a,10)30
C3, (3.) GIS) (3,30) (5,)10)(5)s30)l6)63 =
(o16)CIo 90 (IS.1S) (iS,30) (3s, 30)

Te
PaseotA- |f(3)>E
CS) 9
FLC)-
TF(10)> er

C ALpondan ASO M O p L
-
Noko Tu00 pases au aomafale4 Aasua Hase dkagas
aR D Lectiu idoutoalL Lstaptlabels
A 213, 6 uday
(A):,D1,2)4,3) LO (22) 2,0 G3)3,) ¢

(A) 4,a,ba) }

in A

f CC) =a,b
#Extexnal element ot Yoaetg
u (As) br pose aEA
Nayi aalL eluomen a k Maximal ellMoud laM Hue
0Db9uCh aat asb_
Heighus Hess Hacs e diagram
Minima elomaut louak d Hasse

Maximal 3,5
4 Minima 6

uutm
AD:D(24)ROEZ8) Q,2u)(2,us) (3,3)
(3,6)C3,24) (3,u8)(y,u)8)CY2u](, 8
(66) CM) GuEO(S,8) (8,29) (8,48)
C24,24)OY,uS)_(43, 43)}

Max
Mia 2A3

You might also like