0% found this document useful (0 votes)
30 views23 pages

Relation

The document discusses various types of relations in mathematics, including properties such as reflexivity, symmetry, transitivity, and equivalence relations. It provides examples of relations using sets and discusses operations like union and intersection. Additionally, it covers concepts related to relational algebra and matrix representations of relations.

Uploaded by

pk890q
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
30 views23 pages

Relation

The document discusses various types of relations in mathematics, including properties such as reflexivity, symmetry, transitivity, and equivalence relations. It provides examples of relations using sets and discusses operations like union and intersection. Additionally, it covers concepts related to relational algebra and matrix representations of relations.

Uploaded by

pk890q
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 23

Date

Relatim.
Relatie au clied Catianuaducr
Ba, b,c}
AXB: PU,a),C,5)[1, c),
(a,a),(2,b), (3,)4
and B etug emty et, hn

RSAXB
AXB f,b), aeA and bE B
Aa2} and B:sl, 2,
R,*fCID, Ch3), (2,D2,2)

ulatiou
RCR
st hmax- AX&

Totalm= no
n0-
S, Aclationy
eemnta et
n: no- lements
3
|PDale:
age No:

Binay

erAand t
eloment
eond elemn

ARS= fo,1), Ca,2),Cha}


Page i0
Datr

Relaioy

R AB
dunstud by ARB
ExanLble
det A=

AXB: (x,D,z,D, (a,)ay2,y)


(a,), (z,,

RCAXB

’ R X

Smpoyton Tesms
Ca,b) eR,thenit ii natd hy aRB

ReAxB.
Page No:
Dale:

A1,2,3} B(2,?
R- fl2), CÉy).

Donia
The der fac ila,b)e R
the doman
Dem (R)
Tu deMa o a Relatieut

The aer§ bEB: Ca, b) eR e abne aeB

AXB =2,),(2,), (2,s), (3,4), (2,5), (4,5!


Domainf 2, 3, 4
Set Oeatous on Relatiou
Union

Ohtseotion R ond S:

(Rn

Complemant:
2

R= ARB,S= cRO

Rifca,x), z,), (4,)}

Ro ARB
S=
|Paqe No
Date

RUS

Matai Reveentalisu al a Relatibu

A:2,3,43
A=$L2,9,4

R:jh),U,), (,9, (2,3, (2,9,(34)}


Main kepuuntaliou
| 2 3

M 2

H
Ri a Rolatiou uam 4to B dcn thar aRb
Matix
A), 2,3, 4}
Bf,u, G,8,9 Y
R: fCi,D, ca,4), (3,a)}
2, 33
4,93
Rolato Mahs
46 q

3 89
Fate ho
Date

felatioe
0 Rejexiudelatiou -

Asulalou R ulexiue
elemen ae A, aRVa,ie

A fa, by
R,e fa, a), (b, b)} Rg >flb,b) (a,Ca)y
b) b.o)
Rz (a,a), (5, b), Ca,b)
’A2,3y
), (2,2), (9,3)y

Rs fCa,b), (b,a)y Sreutue


A=fl,2,s
Rysli), (2,2),(3,D,(i,3)} K1jlexuin
Rg: , ,(2,3), c2,1)) Sunle

Ra(3,), c4,s), (1,) s ne7tiwiie


hg 0,), (2,2),(3,3), (4,), (r,)y

lemnt atA,oaeCa,a) R
aymmaldi Relation CaRb ten bRa)
aynmut
eu
if
fatians
lune) aRb then b Ra. sf

R U,2, (2,D, (2,), C3,1)

Rs 022, (2,2), (2, )}

fL (2,2), (3,) tiu ymmaba

(some)

Puhneubs aRb nol bRC then aRce


3t folsuu thara selatin
hne exoh elemunte a,b, ce4 duch
aRb
Page Na
Dale

touúvalentr ielatiou

symmethie tranailiue.

diicble by

diuibl
Xuctagu 3-2-l, 0,1, 2,3-.}

elatou

aRb 213X9
bRa 16 X5

-3)
Dafe:

TAaniilut
aRb,bRC
tien aRc

Rz
3m

3t3
3(m+n)
Page Ho
Date

tantily klaica

Llenity uelatuou uche


Aelateel to

2
2

I,RS,D, (2,2), (3,3


Nist dcenti suelatiou ou dek A Daubles

Relation

Rellexiue Relatiou ’ A elatòu Ron sert

f (o, a) ER fo ale aet


A
et AA: l,2, 3}
elato
R:A 2
3

element Auoud de elated to


ulatd to
SU
Page tir
Dale

Mandoto
Re fC,) (9,2,3), C,D(0,)} Rifeeut
}0D, (2,2), C3,3) sdently Rejozu
ser A doublets
dementa
etue odued ban Cobti cna)

nod be ldentily
dlentity elaiou u uu
mat
R
Re fa),(2,2) (3,)?
Ri),(2,2), 3,5),4,y
RC,D, (,2) 332, c2,2)3
R u , ) (1,2),(2,2)}
R (,D(3,)3
(empty ulaligu
R-D, (2,2), (s,3
ymmtt Rolatia

ulale ou seA l,2,3 y called


4

1f (a,b) ER>,a) eR

A=1.2,3}

Idom

R3), C), (3,9, (2),(2.2 symabie

RX
uivae Relatiovv
)Ca, whe not uile ies
eR,)
4R (6.) and CRo,b)
bc
(9,b)
R
2,33 AEder
C2,),I,DY
tte Not
R=
3Not
ihua Co,c) cb,c)Rfa,b),
)ek (a, ’ eR
Cb.c) b)eR4 Ca,
A
Belatiba anaitiu
Bet
Dale
'ane No
Dale

R
TAanelu
R CL,2, (3,)} Transiliu
a, b
R:
R= AXA (Uniuat)
bfoanauu

A=fl2,34

X
Ri U), (2,2), Ci,3, (3,
R: fc), C2,3), (22, C3,2), (2,))
R= C2?), (2,)
R=fi2), c2,D, (,3, (3,D)

Al2,3 Dewkled pass tsanain


Rz ,1), (2,2), (3,5), 4,3), (2,3)Y x
R f ) , (2,2), (4,,(3,)y x
Ri 2),( ) 2,), (3,2, (a,2Dy x
Trani tiue
(22),"C,D} Transilie
/Pane N
Dale.

kquvalance Relae
helatiou
wela
tycuuitiuu
Shaw that Rlo.b)a 2diudu
l, 2,3 4, S,,6, , 8, 1} giuenby
equivalnee elatou
eruvalener Relaioin (R,s, T)

fo al a eA 2
Diuibu
(a,a) eR

oder (a, b) eR
ab= Diuieible bu 2 - 2mre

b,a) eR
traratie
i (a,6)ER (b, c) eR
det (a,b)eR
b-C 2D
Pagu Nu
Date

abtC 4+2p

(0,c)eR
Hince, t anditfue
Paoe ho

Dale

Yactica Qualow
+he
4trheitiu.
elatios a agorit,"yomté
RulatiouR

R-{l3), Ca, c),(,3), cA,112,(S9


1,D ¢ R eAauipli)
3) ¢ s
A CI,3) eR

ER Cb,c)
(9,c),9) ¢R
Nor traiu
C1,
)} (3,2), f!2), SoR:
ff.s), sos (a,1) C3,S,s),
2), Re
Ro
Bos RoR, SoR) (Ro
soR, Ros, find
(3,),(0,3)} (2,s),
Qic4,2),
2,2)y (3,),
RaCl22,
2,Rosef-y,4,),
} (9.j),
os. oupute
Ca,4)y (2,p), CL,4), f0,p), R=
P4AY B
,2,33 tzanhls
sy e,c) AXC
and Ca,Oe e
-Lowe
B,be Ros
ueee
RoS The
,e
Bx Bto MOW latipu the
AXRC
Bie, to uDmA tuóu ula th
esotA er
Relatiud CompaaloandcnNo A,B
)VI/
Ruh, SoR4

R fC)0,9, )

Ros fC1, 1), (2,), (,)3


Seki f C2), (2,),
Ro(soR): Ro fci,), (2,,
0ate

Patial
Au said to be an
Qidor Relalisn
uiymmlaie Traniile .
xiu,ie, (a,aeR,ae A
R
ntiymmahic ,iet a, beA and
Riu trailiue }e tob.c et and Ca, b)ER
and b,ocR Hen
Ca,)eK
y A l,2,3
X

Anti
RejloriasTrnetiu
Synbu

Ky} CD, (22), ( 33), C1,2), (2,D3


Rajaziua, Autisyumatac X
Ry,), (2,2), (3,9 (i,3),(2,3 Anty me
trliymnte-X
Page Nr
Date

A ja, b,c}
Ch, b), Ce,c),(a,D, C6, a)')
R: f(a,a),
Rejtaire k-- aRa
ntiey mmcie i- X
set 'A' uiapatinl adii.
POSET:A alled Pose
RelationR olinLdl on

Ez Afl,2,3}
(2,22, (o,3),C,22, (a,1), C), 3),)
R fi
ToraneiiL

You might also like