CHAPTERS : ST “TReory
A Ad ing ctledvew of Bbjecbe Rick ore kmorm as elements oF
tnembers. Etemenlo a Ack” can be
Sack as numbers
noo, shrdenke "Bickel code debe ads te te teak ofa ad ao w
box Bok teleian cleitala i
ejecta imikde Te box. Tuot ao a box
a carpi» a dd Cam be emp ly 90 well.
We dangle He enhly
on gw in de ack tn ow Sele monty a whe
rele ales irl aa Jton seb. Note Rok, a tugkton
fn differ I ag ——
a ee MEGS ee ae
anal ig bbl differen rm Te book
tat : ates we ent Ak
Perereh. lading i ae “Tel tonal teat
ww
2 Rosie Me Ties + In His onthod , we mtte a ak ty list
ee
i) B= 74,2)... a
ii) C= =\ ak ee ll Bs-MS Shderda tn NSER-Ke
Al berks vv tellSER-K Urey,
w) IN=.? Capt. es
) 24> 4 thatie, y
=
are aT can be wile ao rslec. a lkdatlenys wast
i) SeT- 2 Nefiep: | tite mutha ive dasoribe = by
: @Acsonb ug te pobutine p te leuk ONLY schisjied byt Tem
i) At Sk ob real mminbig Wr bebweon 0 Ord 4
= ee y
iit) =
? -f Py: pez, eM qe G94)
wite S
°= Ua i 224).
Deiwhew 14. Set)
Ak tot hwo hr wller Ie ab. We
dunt He enbly ad : ata aA
wowenbly cere i Fi ae ae nae
FAD. Note Het, pb rottsame an fy. [oY
Pail ab tla fone foe be eae
pfwlaw 1.43 (suaset)
BEE Heal We ae Reb A aodat of B dnl
“4 ASB, 4 aN element of A ty alos an denent of 8.
Define 4.4.4 Eavatity oF set)
be feo Ade. We samp Feeney ae
A= °5, tay CES We ay pnt of R
aloo a
DeRnitiow LIS CPreper SugseT)
@bbe A,B be too Ada, We cog Rob Ain a prabercanleack of 8,
‘i CB ASB, VR ASB ond APB, oI her
rardo, Anleaek of ® chmark sf #
ee ee fea
woe aw A
Exomable 1.4.6.
T) ew sede Are Sa, 24, B= je Rb Bat2.=0 4
{aer/ 22-384 Dead Y
“Ten, A=B, ize BEC.
ii) tN oH We oe
Seton 4-2 | Obermhona m Sto"
ere porate alee
oe San op B fn A@
le 4.2.2.
— Pot, 2.8, 4,5) B= [14 & 4.
i) AUB= 4 4,2,3,4,5,6,4 KAB= } 23,5) 6,9
i ee [4451695
ii) A\B = 42,354
Ww) B\A =
ey
feet Dk sh tem
Anis BNA
» ADB
ii) Nee HB AAB=BAA, hue te Rame symmchic
pene
“Theorem 12+
A,B, © be tree sels, Th,
i) Associakiwly . AU(BUC)= (AUE)VE y ANNE) =(4>8)NC
ii) Dishtbukiwks? AM CBUC)= (ArB)ULANG)
Av (BAD = (4UB)N uc)
tn) Corsrnnkodnckiy [AUB= BLA, ANBABAA
Peet
Exereae
DeRwlew 12:5 CDisoint Sets)
israel ee:
Wage ea hla eo
eae eee t
Detethcens LB
CompleMeENT)bib > be The Sumivaal eb and Wb ASX. The umblmenk,
at KChtakin, 2X) nokta d 2a cote
ASt= XNA =f xex[agday
Remark 2% De trporlend defre the universal det
rian mm mde te be able © talk obmt $e conblerenk
ttteg! Nae ses a
heorem [-2..8 CBE Hera ate Las)
Leb X be te vndverscl sb and ib ABS X. Thy,
2) WBA (Av By = ASN
i) CAMB) = AX UBS
Proof: i) bb 2€ (AUB) * = Tgeeea XN (AVE) . Ten, 2€X od
AUB. Terefre, a6 A and x€ BZ xEXA od
mere a Be > xe ABS. Tanne,
ae X\B =
(AvB8)* Ss ASoBt.
DUE 4 ATA Q® Then, SS.
Bo = The AUB. bene, 5 (AUB) <
ts ei oo 2
=e. CAva)S = AS oes
li) Usvig D. we hare. (ASU Be) (A) @D™
> G08 = Ang S[Atvayt | =@oe)*
Bs ASU ge et (hab)
> Gee (Pod.
Detowbew 1.2.49 CRwer Se
Pectin Ltt ee one EAS ntadty P(A,
KK be asd. We
in te ae of debate =P MA.
Damark | [2 10
\) Te power tek Ab ale stefan 2A
Wt) Note Hel, P(A) A fr any ad A, PEP. ®ii) be MEIN amd bE A be cack of 1 eleminbs. “Ten,
P(r) hoo ony 2% elements ( BKERCISE).
E le
aa cs OW = 1 tf ;
een Then, P(A= 74, 18 ie 1H Ay
Aw ja; by. Ten,
dips it ay, Ley, AJ
Wear nds Fe ation of Me carbs
eel
lit) bebe
porduck » bv
wit the def” of om mrdeced pair, ‘ "
be 2.2 Coimrena (oRDERENS PAR)
pg a aren bEB The eetund pair
a ba
a ond by tw Hob order
mark 1-213 ee is
wk becanocit
sortie Ont Oma bared on aw es cheng cf a.
n ae webion fam ordured
frig et Ope ae
ordured four ,
G@W= ©) Podedy ase ond ted.
oS een un wide He mcd of cre ordre pair
con efor Aefinod » We skehe tle ome “Bod Yo ask crmmenly
moed- The de v in due tb Kurd wa ket Cla2p +
Dp 1.2.14 Coppers Pig)
LE A,B We “nenembly ala ond Ub 2G A, LEB, The ached
pair (ab) b oe aire ones
te
he
teen ot pb a 2A, byes. sclet,Toa, (0)6)=Cr¥) Yard only ih t= x and boy
Froor —— (oh) GA) Me clin Siok
=X Gm: rt
Gas 4.
eT 1B aaa a as, layy =f
Sars fd ells) a a or i saa ype ic
Se afb ot ft a9 ee ne te >
a,b4 © (a,b) = 2 x i n=b=2,
Pa heey) ie MBE a
Next ao | fax _. ay fay, fab home faye fa
a "aly 24 ae ae es me gid i ta ety
Th vemoing = cre yor We hawe. by ae ba (4°)
eee “ baa yd povitig Shee
Trrefa, 4=0 and yee.
Groene. asd, to pore On left a0 aun &Kerese (Pred)
We ate mane ieady 4 inbrodun fe wetiow of Me carksviny produc.
Diieted ia C C Cr fesian Propel)
heb AY best
Gackt frobck of A ond B, cleared
by AXB_is Ach
AS,
AYES {@ b) ach, bEBY when APA BoP
p Kien Ae? o~8= 4
@le 1-2.
i) kee he f4,24, Be fa,b cy. Th
AXB = t (44), (46), (6 2, 9, (28), (A) 4.
ii) bb A = fayby. Then,
Axa= | : (46), (bya), (bY.
Sechien 13. Reddo
Mecidstst abe
hE KF FBI Ta A aky asbet Re ey
IF XX, We A is a telohew on X- Ceven a relodiow R OXY,
and & XE X, a Sat mts R- retell f 4 GER
Ie cease, Wi wile Zz
ample 4.3.2.
DWE X= [abel, Wit 1 3f onl Ub &
R&D) Gd, (D+ GS.
“Thew
i) aR, @ Re, bRO, oRS
\) aK 3, bRL, bR2, ofr, Ka
be X=Y be te ab of oll human by babs Sefine
Re fluyjexax| ain a
Tew a ace eB ee tae we Ry
IPrand only baba fiend y
cms XeYe IN. We ef. a rdobyr Re IN as Fells
R=] Cr MEN | Ris a cmulte ble of om. Im oformerds,
ne IN, ve hore mRn load colts if N= oa aekb X+h and th R be a rdehow on X @. RO XXX Ten,
i) ReFlexwe: Ris cald bb be REFLEXIVE if aRx —frall eX
i) S¥MMeqeic: Ris a) be SYMMETRIC. if for all mex,
aky > *
ii) Transitive: R staal! be be TRIN SITIVE. if for all 442 EX
aRy and yRe = aRe
Examble [3 i
1) We relalew defied we Exambla ii) wb reflexue, symmebic
and transitive
ii) Te rebolen defined viv Examble ili) a rePlexie, transdeve
. back on — . 0 i
iti) ee K]eY=R and Wb Ree ](yWerRxR| xy= oF Ten.
mi symmobric bok wet Age and etre,
iv) bob X= faybye4 ont Riz f (4/6), (be), (4a), (b 6) J
hn | Ris Symmebdc, transitive but wt mfexue .
V) bb X=Y=IR and lb wo defeie-
R= t @peRxR| az y3
Fo Gers ee
Nia, i) Ry is reHerwe, transijeve but vst symmehic .
W) Ris transitee tub not re Plyxwe and symmelric.
vi) Envaldig Rulabirw bt X$¢ 2 . hebw define
= ACW = | GA)e Xxx | aes G,#)2€X].
Then, A(X) rePlexwe:, symmebric amd hrvasitore,
Vit) Gnapruence Modu a: fob X=Y=Z and Wb nGIN
jhwo define =
m= { (bezsze| des (ba) }Then, Sn is rePlexwe ,symmubic and transifeve
Defioow 1.3.5 ( Eavivarens Revlon)
luk X44 relodow von X is said b be am EQUIVALENCE
lahew on X Ub ~ is reflexme, Symmobic and transite
Futhemore, #xEX,
Lxqre Cx Ree)
he ees ane
uivalence x por ~. Ip ae fal,
We Hok @ b la re é [e] -
Eoaly ta wett 7
Xf = | fay xexy
bo dante the tet of all equivdeuce lasses ef X
Remark 1.3.6
DD Nee tek, [14 A, for oll EX. The ig becamce
ene [x] as ~w js re Hexwe +
i) Net the, & Lel- le] UY see]. Indeed if
te a dee a cid “da Ve aah
€ [we 7B x(. lomlarty | ove “Can
yee ia Ea Terefon, — [a]> [el "d
Examble | 3%
i eee het X4 A and UE
? a ACH = [Owe Xxx] ey.
“Then, an ulyrlence rediaw on X. fe Her ,
ees onan =
Cal= fgexl yr = feexlgny ~ bo
Thefor, inj io te qu mente tas f hy fer all Ke Oe
amd
hou = 1 Pose x].ii) ms Neduto a
hat me IN :
on as Tales Wi og Hob fr che
eet , ne fy ny =dlivtdes-Ch— a |
hen, Sy On
equecclence relobiew wu Z. lel wo
wad le eq udvrdeuce classes. beh al Z. We
[a] = jatkn [kez
“t.
cdlainy
G).
, le te S:=jatrkn| kez]. bbb
ag ee as _ } +kn| ee cal
a=
7 a dindes b-a ,
i Pot, ewe k CX, (b-a) -kn > b= — os
Le] as: Gonvurzely , bE S. Then, b=attn,
(es Armas ved whch imptes tok, n dindes b-
Se ALS
= w. be [a]. There Oise eel aleveer.
S: oe is dock ii
We ww Find tle dichmct equi vrlence clases. We chain
Hok
(*).
We GD w_ twow [> Re fast cleb we claim
We pee @® lh fut skh
sTeP 1. al per
2), joy @)}
Lemma 1.3.8
be X4+ A, Lb w be an equivrdence rlehen on X and Wb
HEX. Then, exahy on of He followers, hotds
eee ee,
it) Cela lyf
Freer: LF AD betde , temty 1B) lcs nef hed. bbw spoon
Habit) doo wt bot. We sholl chor thot hotds
®Simca ii) deca wet hob, — Le +4, lew 26 (zl o[y.
Then, ZX and a= Usurg the Sym ana hamnsitely
ets we have need There’ se xe [y]. at i)
Remark 1.3.6 htds oVed
5 eae A at igs yw. D f
teow |-3.% CParh ION OF Poet).
hak Xt 6. A ib a otlechow ee
Hisjotrt —nen- fee es :
Sythe t xy jAifie 17 vabads ft, acid d be
D Ate Ae allie
WD A Oa = Ale jedan 9]
er oie km wear ae
B 2/310 |b X=R. Tew,
Vy ie TERY wa eee f WR.
it) {Er o), [2 2) 4 parkbeen R.
we) Ve 0, at ey 2 eo) 4 9 arto § KR
% Vay a pabhon f R.
fee a cf equivalence relohens lies vv he lang
bee Theorem [3.11 (Eauivavence Reval 2 Prd Tion)
yee: Ter -
1 wv is aM
tre tlechiow
uirrlence celabiow on X, then X/v
parkitiew of X
ib dichindk equecrdemte claseas fx -ferms aw
1) Coverzel Jq Ai fie 14 vo beohiicow of X Tew Hore
exist de rare = Ben . on i.
®= F- prifie zy
Foor bee 9 fait teeth be te dt & all dihkinck equevalen
eee ce gh \e 3 i opie
ie ifyriet):
m4, X= UL], i follos thek x- VE]
Lemma (3.8, can Ca $ frall Jer vib if
yl ae ee le
am We we Hk F:4 Ay lie b a parkh
4 x. oe Paci aes oc aa
we S
ee “sy i only it for ome iL, xy ge Aj -
“Then, a “a reFtex me and symm To ter. Tove
ee 7 7 amd 4g F Ten, for Fe
v pe Ai ood ye Aj
Terefore, ae And. Sina AS an pairwiae jel ee ub
lozas Senn, 9 2. Aj WRtdh io
were ‘fe Rn se en oe
heb 2€X. Ton, Hore axils exadly oe 1EL uk tok
xe Aj. Note tok
I= fyexleyey ~ Tgexlae ay A
Tecfor, Vg afr] Ai [iL yy whrde bres le —,
@echo 4 Fonebiena
ee widton 441 (Fenelon)
heb X,Y 4
raobrw ROXXY between X and ¥ is sacd
i EX, tere exist a vnU eY
mart 4ayeR aa we SA Taé
Kis te dpmasiv of Rand 4 Y.
¥ te
Examble $4.2-
heb Xi= fa,b,e4, Y= fd, 2
D Res | Coy, Cha, (4 9
i) R= £@D, 09, Gs
it) Ratt
furckow
7 2), (4D), (ez ot a Guchrw
eB e Ie 2B atrw . a
Coda a tw
i, Tee
+ Feschiow
Notedveny bA3
hE Mea A amd lk ROXXY be a . We mile Rix Ye
donrtt th fimdhew. foreach xeX we mele R(x) b denote The
ygue 4e for whi (4 Yn)JeR
Ine Pets nude, We cam wake the fimckons in fxample 14.2
as Fellows
i) REX—3¥ 4 defined as RiO-1, R(b-2, RW-2.
I) Re XY bh defied as
Rw- RW-1,R©@-4
Definition 44
XY ¢ and ll F2X—>Y¥. Thea, we say Rot
DX is fe demain of
Z = i i te =
wy) ea h AE x) is
y fw= {4@ say a te ee E-
Remark aa Not dot F(x) CY. fice
ella
opExample | 4-6
Dd eva —_ ON, heb XY +p ond ot PCY We define
#@)> pf , For all 2ex
Note Hot f (= 145 -
i) Ipenrity Fusco: ht X4d. We define DA: x—X as
Ta, Ke @Q=%, forall xEX -
Note Hed, ra ® + x.
1D Iwcrusion Funcion: he XY¢ 4 with XY. The Panchen
C2 X-39Y defined as
t@=x feel nex:
So Glen te clwcuea Seasttey
iv) Mepuivs oncfion: Define Il: RR ty
ik x Bo,
Ini Ay eco
vy) PorynomiAlfoncion: kt mE Iv {ry and lb a,
with A, FO hate define - ps ROR by
p@= Fads (rant rae , prall xe.
jee
We say Tok f is
peal ioe C
hE X,Y; Ub ate aan AB beter Fmchons
We say
: re
5 te toe fis pad bg BFE iF
iB 10= fe for all xEX
Example 1.4.8
i) Defue fi N—? 4, oi Lee et
®
7 Am EIR
tat ae eh degreewn:= N, forall ne IN
ey ee ae
Then, even themngh F(n)=4@)=n, frrallmeIn, ffeg we have
fta as domains apd eae dif ferent et
it) Define #: RR, gq: R— [ee by
Toga? For oll ER
eT tg as erdomains of f ond aoe dif ferent, Nowe Hak
F(R) = gC) = [2 .
Defewhon 14.9
hob X¥4 dit PX. We say Hak
fam ; f =. ee iL frall zi ex
) Cue-ane A ie te cne-cne /inje
(a) #_ Fl) Shanever- 4yF ao
D On fade Fe ante angele sh POD-¥_ a fo
each YEY, Here exist 4 such Hoe f@-y.
iy) ties aden fi bijsclae F is both we hig ouhs
Remark 410
het + RR. “The,
Lama iF the raph off imbersccbs ene hevizental dog bie.
ii is ove-one i fle h imlertecte hwvizcontak bme
: ae : a i ie » sc haigbe
Ww is bij: rei ey S + b
— pet ga rhe
£ Je LAU
Sh: bok be defied as
P-L, forall E000.
Then, Ft is one-one but om wrt onto. Note Hak f(G))= (1,00).
@W Mb fe RR ke defined as
f@:= 23, fore llacrR
Thea, f is a bijeciow
i) bee IR R R— [e~), h: [2 2) |e) be
Pak Sees Le eal
fare x, fr all xER,
Gis fr oll xE R.
Sin = fr all xe Lys)
Then, Fis neither one-one ner oule t Is ons out snob one-cuc
and his a bijeckow
iy) bet ¥bER, itha#o. and Wt f2 RIOR be defined as
F@:= axtb fr al ser.
Thee, fix a biyechon
Whe YEP ond UY YEY Defthe FX ty
fw- Ye pr al ze X
w) is one-one 1} and only X is swoleton
2 ps onlo oe oul inks ian
9 fis bjedwe 3 and ie ib Xan Selon
Defiewhew [Ald (Guobuition of Fuchiows)
kt YYZ Ff oe i ol op ne
con if fonction ae f Xz
chine * (¢pDOr ¢(#@) » af peeExamble [41S
) ht Fig: RAR be defined ac
f@®:= Jey t@= x2) For all wER
“Then,
(et) = #(f) = ge) = 82, fraliner,
Cre @ = Fee) = $U2) = 2%, fir ab xe
Neti Henk, pe £4 fog
i) ee NEaN a bret, Mia eek yp, 2a
Alecia naz mT : (3 in
f@-«> €e:=f, toy
qe =1, aint, Ur
Tee $f: X—> Zz iv
#Ne) = ¢( #(al) = 419 4
fA f= 3-4
DO> Fe) = 4-2.
Definition [4.4 C Joveese of 0 Bustin) z
bok X,Y4 DB and Wb fF: XY be a bijechon The inverse A
is te poli pon defined as met
P'(i= %, whee y= FO, foralyer.
Remark 14.15
Note tat, ae is well-deFin ed. because 5 is both one-one
and onto. “The onto-ness of ¢ is required b define $4
ab each porné of Y. “The one-one of 7 is yequred so Hof
4 (ill tatiomataceeemcagh mall le xackly one poert in X
xkamble Abe
i) ht Fe RR be dered ac
aeeia xX? all xER
ft ioe. ao; 7 =
Ppaye 1 forall eR
hb abe R with apo. and Lb Fr RAR be defined ac
f):= axtb, for all aer
Tey, fT RoR i
M@):= 45h, fo all yer
“Then,
Ti be Xs= fay by CY Y= TL, pV ond Uh PROT be
Acfined 4s
Hor, FOR b> HOry
Sha) coaster St
fea, F(prab Pee
“Terrem |.4.1F
ke YY$ A ond Ut ey be a bijechon Then
flef.= D4 -on Xf fle tym
FrooF. Byercise
Theorem |AIe
het X,Y#FA and Wb fF: XY, get, hi YOOX be
Adv Rok
Pr My i a Ty Cx)
Ten, Fie a bijechiw and phe fel
heat Bae prove Te tenem in Tree sleps. Ie the fact ep, me
STGeEM, ; is ocue~ome -a a
to Do é Cea) z Kye oe Ho:
we Gi = (nef) @)- Tdy &)= 2,
yn ax rae) = be iD) one —— as
STEP2 . fis owls
Indeed, Ib ger “Then, US ing (#) ag ain,
flee = ( GDM: 3 tay (= ¥
Fe)
Seb 4 and cheh 2 chow thot ic a bijechow . fence,
rt YX a le the rien esr thot
SsTEPa . Jp Sbne re
Indeed, it Potter fon Tencmy b4% Hew and a that
io Fe p= (T%> F Je c= fre me “eTdy= Fu
Thesrem |. 4.1% O*)
= hetde = Chel fe ft)> Chef) ft= Paty ft =f"
There | AF a
trence, we haye proved Tok fee
Definition (41g eee Inverse bmage)
fea: and Se ae ne we define
Ing & op ®.BE
i) the fete imege of 8, FIGs frex |f@cey
@®1.4.20
7 cS — FINS Y ond ftB)CX
ii Hob, w Defewlion |ANF (ii lo.
stand. oe a a9), ee
4 ad, te mre of F need mt fleay= ftE@a Fo.
BEBE Remark |.4.23
Note Roe jim
Ne
awe cmrst say tok FAO 8)= Fo t(B)
example is relerend ints coulexte brn @usides
a map fEX—-Y¥ thet is—noé one-one. Then, there exist
2p %EX Such tek y4% and F@)= FH). kb wo
Acfin
i fu} ond B= Jud.
hen, pz Ff(A08)> S fan *® = fPE0]
Which ian|Ac.
Prook: 1) As A, BC AUB, we home F(a), $B) S F(AvB)
ms thok (4) U4C8) < an (Conercel dU
= FCADB). Then y = Fle) for rome 2x6 ALB. [F
EA, tan ve re if XEB, Ton qe FCB) . Therefore.
¢£ (A) v F(B)- 2, (ADB) < ° F(A FCA) -
Stocefoe Flow) = HAV FCB.
Sima AONB A , we have F(ADB) © F(A). Similaty,
welone f(AOBD< F(8). Therefore, FAB) FA) FB).
i) Ftcevn) = Ftcovf@) — (Bercie)
Usiig the