0 ratings0% found this document useful (0 votes) 51 views22 pagesWeek 3 DM
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here.
Available Formats
Download as PDF or read online on Scribd
ee Nn ne OR Ease: fein d
furdamtnrttols of Set théary
trliodiclion te Soi Théany
> A set 4am ungdeed Wleation of object.
> Gbgectt 1 nB+ names, aman Ae-
_, Report ation i 3= {2 $EF
Ve gdexing on the collection GF HAE objects:
Lloret of 2
5 aha cbpecte 27 9 *
members of se-
of pelted tO Oe
ox o- £2,45F
Mali? = g es
ene Cie ase ara
ct pushes Reps LE =
443 a 2 gofjall mtegau bls tt 107
Reuusertilion st 4 Ling corners
eS oe aa
Set buthlee supease7 OLE
ae grew, n>! £ netooFSubsets £ tyalily of Sa
Subset of a Set
Suppare 9 29 aso & gore
7S a dubset BT 4 every element ¥
3 ake an element 7.
“3B
Gy aes vx(xes —s ef)
Paper Subset Gf Q Set
Suppase SLT ace 2 20h
> 34 0 peeapoe gubset ¥ 7 & every element
BS & ahoan chment fF but tau 4
an element of 7 ushirh & met an
tlment of 8+
SEF =( Vx (ees = xen) lan (“ETA xes))
Super Set af Q Bet
Suppese 227 aco 2 goty
~ $4 a eupesot 7 4 evecty elament BF
alee an Chrnent Wf G-
cei
taualily of Sets
> Tass gets asa equal if they contain the
SOAMé oh nent.Clcays thao Lscspoctive te Value hy -
Meu, OSE bees Rake
&o, xeg —s REO ee inertia. E&* any oa
herpes, ¢cas.Re CR ae RR gc ge oa
Fxwaocko
Stak Tow exe Fate zs
4 fa3 - $25 © Sat )
hee
ero2 ot ee
@e set o
ee $23 a
fat © $92 F
Powrere Sot
+
The pawese set Gag sen Gy aay set of all
Bubsots SS ges.
> ft & denated by PCs)
example: G= £2,4,52
3-0 4, #24 83% Ssh $aa3 SaoF $2.94 , $2395?
Cosidlimaldly 2 Comtesion Poteduckr
Ccoscinallly af 2 ok
. apa
> The Candin atily of 0 sot ts the x ca
As Cot Clements fn th0 sofDs: Ret rT yaa”
> 1S] denobs casclinalsty of g.
exam ple:
S> Sa,3,52 S-£235,49
Is) = 9 /B)izak
* lenyaty Set]
oO
% [Emouy Ser, Perpty S42) _ 9
x] S23] a
Wx, rs) =,
Gedened a - Tuple
> The Heed n-tuph & Iehined as an asdegud)
Mestisn of Clement
CAD Sytem
SG ea) as $2,534
Cactegian Pecoduct
het GL bo 2@ sots
TAO Caskesian prwciet EL7 % defined ag
Sie es) ee bertexample ~
Go S97 35 Qnd 7 = SLYF
SXT= Eli x), C19), (2,2) (2,4), (3,0), C58) 4
fixes t en, (RAN G3) 1g.) ly,2) (9,3) $
Casudlina bil, & Casteon Puwdot
y
(own: 2 829 as0 fiinth sole ther
Isx@l = Js) xf
Poceeh - Case (i) Let S27 bo mbn-e-mpty sobs
Perce Ex, eee LAspagn =
SxF = Say) Cita) a rr _
Cx, 4,) 1 (iggy _~- 6%8Gn), one
bem, Hr), CXmy a) 1 ~-- (Xm, Yn) 9 pee yh
Hence IgyG] = AA
NC)
Tl=n
4 /sx97) = (3) x¢t]
seers, Nr eee eeeBra) =o «= Js) xi]
oer sd 20. Ty yy, --- un§
USE vo Eg. ia)
Be TD Lemon Pacs 2
bx7/] = 0
= Si ic oy
Cacctegian Paco duet fn ee
Casctesion Vscaduat of sole %, &, --. Sn?
§ X¥S9xX--- XS, See --tn) /£,65, , t26%, ---, 4n€SnhSet Opesationg » Vout 2
Ht Univesceal got, » contiine atl abjoak
unde
fo Cons deoxahan
G2 i ‘
fe Union Opexatnn
Oe
OA Ret rer > ® thee union JB &
the
set contavning all eChments that axe ethe
i ea ey
V9, 3 luB= $x) xepv xa?
Remask ¢ oO sp Spout uf both OLB
tin fact, 28 4 the amollart ech @Oaee
V0, 8
> (408 2 9) nave 28)
cb ie
nC Untesrcscation Speuatox
[estaere set AL 8 thee mtoucetdo MoB «
the got Contacning all emenk that ae
Birmuttancgusly f 9 2 tn B+
YAB + AnB=Px] xenrn ves}ROM AAS ha. Bi piey mere ee
lin fact, % the AO at eRe
¥AB: lang SA)a (AB
uss gow 6) 2 a) ann dajaint % theix
“H03 cotin fg enpty
An @ = p
Sect Opexakion, . Poser 1)
Set Diheeance
> Fox sote BiB he LY fprxaneg of Aen
er the. St? of gece
enOF ono in but net B.
4-B-= Py) *1% CP arg gy
2 Sullsiiea >xes)f OQ
A
> Als called :
ee Cor lente Wy, Bia eee.Inclusion - txclugion Potin ople
‘Thegem - het 92GB bo 29 Minile wets
‘hon 1908) = 19) +/@}- !98)
Poroot
Suppese (AnB) = we
19-B)- p and /4-Al=9
'Al=
1A-81 + IAB)
de ae tOC
181 = | 6-Al + 1978]
= QO +
[@vB) = 19-61 + Ie-efo 998)
ah 0 Gees
— ae PP a Qin} oct At or
ee
= Pt +4 toe
ae
= 191 + 16! - 1878)
Sf Complement
~ he unteswe of da&cauue Can itself be
GrB‘Vesud og get, call it U.
bthon the contoset eleasly defines U, we eo goad
ease ig em fA au, the complement & A
2a (=)Be ful 1dA4
Got Tclenketes . Red T
Set Tdentities
Ddentety 1Qu8B : dug= A
Anu =A.
Doméngtion lave + 4AuJ=v
and -¢
Tdempetent Lous: yg -d
ANA= A
Daxble complement : (f) - A
Commutative Lauss : AvG- BuA
An®- BoA
Assccrative haus: pulaycl- (Avaye
ArB,c) - O28) nc
Dis bubuttive louse: gylerc) » (av8)n lguc)
An Buc) = (AnB) u CAac)
i_ OE —
De PI09G An's 1Oes % Chex
ahs en i
AuB = An® hes.
dnb - AvB Lot
Abu
Pocouing Set Palerelilies e
> fhe equality of 2 sot, PLB ca? PEOUae
by & methods: en
d Prove ACB L BLA Sepesately
» Use a mermbesaship table
Shous that Anbve) = Posy loc) |
Recesh : we prove €h2 aslalorn ent hy housing
AnlBuc) S nae (Bc) and
Absume %e AalBuc)
| We Knaus that weA and eithen eB ox wer
|
| (nB)v(Brc) < AnlBve)
|
Casel: EB , thon Ke lAnB) , 40
2c € LAB) uv CAac)
Case2e mec, then wxelAne), do
xe (AnB) uv (Anc)
ihesafest, xe (Ange (Arc)
“hesufase, pntonatees lara) wlAnc)
4et us thes @ArBe l#ne Ba lhucf
; e “xe Gna)e (Ane)
We Kn eu thot
Gees mi eS (Ang) ther wen g xe
Go, & en) pg WE ( Buc)
42, xe AnlBveJ
Cag S
sea ; OAT as, then xen @ LEC
80, xen 2 xElBuc)
za, Coen (Buc)
Hence Go) ulAgc) co Anbvc)
ees la ey, (AcS = Pn laec)
Set Zdentbies : Pnst-DLet x be an axbebeasy ele
XK wy 0x may 4 be in A
x i ihe, « an B
xen ZEB x~ElAvA) weloB) wea
i T q Fp 5
2 ie Fi R PF
G a R Fp D
ee F 9 a
AvB= AnR
a enekalived union
Un mien: 9, Aa. = a t= (CCA Ae
flex
P en : °
het rca a cone at t
” ”
Se ee ee
& ic
WED
|Gonexalixed thn Trt exes cation
Bimasy intesscelion opealase : ANB
- Qo nt osescokion: Pi AAgn— A Mn i =(C. (Anhao Un)
Valin = 7) pe
cer
Pox infencls 3s Ng
RQ .
aang Sats act Bit thins
> Sot 2 : an
BM cre) ay 07 unbadesud catlealop
g elemerr x.
ecu Ney Biking
SSP
POR On wadese ox
i: C40 Chmont
“rivessal gor 2
> Elemente t9 Ln0 Bcght—ta-let wacdose tn the
4d Stungexample
v= $a, Ac, de £.9,h$
A-~ $9594
B- Sc.ohj
eG Rhona eC OF: vich
ieee (ea fnaTng | le) ST] ref a pay
eee ey >] offre)
7 (anita [RON ows / ata] ken fre] oR]
> Set spemakons Who v,0 £ complement
can bo
Aten lithed by Derffaserninng logic
Opeiakans an “ehe Cates ponding bt Cbergs
Set Opec atang Lg Opesations
An B A AND
SZ A ORB
%
"4 Comper)
A-4
A Awa (compen))Pp ton te Functeore
rea ary fob o¢
a7 we
te ikese Dita ns
Wea» amenet ag
£804 ofp mons
say thata fundlion
S59) ral Ravello elese
exacth, one Chmernt YT t0
8.
Some Function Fece) Ratogy
Se ois pee
Flad=y Baa some xeg 2 aa
mec Comain sf £,
eo a the. CO Coram ag ead
See Soreage: gre
wurden £,
ox 4
the Pre-x,
usher Lou) ( please Bx) mean: the Las 056
Lh Cp Coc The Ceébing £2 a: i
es
techy ose Ye i
[a7 (cecbing Ox) means the Ermatlost
~72H0D ose 9G
ie
= 0) Sie a
ea
[3.9]. 4
Eafe
eae
Neate
aes ee, ey
cs oa by Lex
rn CE ee ZB
-x] eee Teoyh
ath sms tla £ eb) poke all a bin
& €qunabyt @
F(a) = Pb) implies a-b fac 2h ab ty g
Dp
PBF AK? 2507 4 inyective if L only y
tla)> #6h) implas 2-56 Gee AY ab i 8.I —<———— hl ., ae
Cer 0LP ck
he
> Only one ehment ¥
ee the
mapped ta Any gitern one elayne Y
Hange
ca -o77€
> Infectwe 6" ava ee eae
Suspoclive Functions yt yo
04”: a go £7 7 a ; on, olorent
Pee bens
por eveny ic
nes with feel” ante I
ee fn BO us
A Bee bud
rg oe Le
burgection ° eee 2 quel @
=. (he wange g a
Codema excng)
ont Oe tne set Ba a
a eee
oe ole we the ger 670 Ca
piece of it
06": 4 fre & «sar te te beclve
b2 only 2 & bath ene-ta- eve £ ents-
> tf 3 ako ed bijeckin ot Oo ia
Coregscas DONAENICE «Fumcbion Opesatora : Aaset 2
Real- Valued Functions
> 4 6” that bas oefthoc R wu one Y Lb
tubgott as 48 srnge & clda sual
Valua hi ere
Function sgperatores
fet £92 ROR
C79) t. RoR. ehexe
Grau- Fi +90)
€xa) s RoR usheewe
Gxg) x = ri x9
Function Compestl apeuatnoe
cal Tee ee r BY 2) fg Bs)
we ae ee
> The campuoathan YL denated by Log
Be 2 deh cd by
regia) - (90a)
fog + A 30.
> the image BY Sundest € & Bmply the
Set *
Ca ey “77092 wf the chore ag ¢
Fumetion Opesotauy - Paset D
Gdentitly Ferpteon
het A be gq set:
the tolon Life 6" on # & dehned as
pt A> A ethew Flx)\ =9 VxeR
> 1p & bath one-ta-bne 2 fants f7.
ee
f: 38> te aq ayedtie 4”
> He inverse 4” of # i the 4” that Adiigne
@ on ehment ¥ ef the unity eben! xES
buch that #lidu=y
> 4" donates the Snowe L£” of #
Fy) =% whan tld =y
@