0% found this document useful (0 votes)
50 views51 pages

Discrete Unit 1 and 2

discreate structure hand written note

Uploaded by

gouravghoshi786
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
50 views51 pages

Discrete Unit 1 and 2

discreate structure hand written note

Uploaded by

gouravghoshi786
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 51
‘Glog|o2 = itt (Set, Relation 2 function) __A___.wett__ define __ collection of clase or a bE. is called a aaa Include ip the Bob es _ bn SP ol Ae Ree eee DEE Ee. -2 -lal= Whole. a ae Zot = Th ESAS = Ration A NPE — ste sia R= Real “Mo. on Comple No Cx tiy) _k_ Represent _- i. Tabulow __form_ox Roaster fom yo CE. ET ore ee a 2. Set _puilder [Property form A= tx xs 4 £ 02 ¥ Dillesont bypes.-of Sets. 1 Null Fempby 1 I Noid Sot. ati 3 Finite Sop nies seh Tae ieeb A Tnfinite. S goth a ee (iron aS ora alte ee Ps, Subset = lok A pnd Bion oh sit - ~ every __elernent of Ais also—— _on___elemont nf BR. then" A_is___ called _ Subsek of 8 Mia a nce [aca yxcal i ne Fl - Set — = 7 o Proper “subsok__ = ee ie _ond_ ne 16 sn 2 ————_.__Seb__jhen_A__is called Proper. “Subset: ol ig ihe exist atleast ‘one _eloment 8 5 —_——__lohich.._does- noat_¢€ A at oA AGA SL Ha fiat, fish, tat ee es _# Operation secre —L_Union of ge a i SB bed Da oa ee ee Y) A= thea eh aies at a ——Drample = oy hie s fo Sa ee Tee i a se ee la eat Ss oe ean cede Eat on phe 2 5.__Digeit. a melee nO mey ad oo KOE ES Ear EGE Ae -Diference “al. of hoo so eal Sel anol tah ad prego Me This Set. + Paoperties Nae Set perce pa Commutative low = = >. Associative — tow (4) 8) equal Page = gy | Av( ue) = = (Aua)uC Leo d. (b) A (@nc)= an) ne 3__Tiempotent to ae eae reer hice eae BSE Annee we _4__Dishibutive S ‘lh Anfang = (ans) Canc) : a Av (ane).=_ (av) aie + Difference eee De Heagon i A= (ane) = -8)uA- ¢) ~ n= LB0e) = (AB) (0-¢) eRe IEE (Aue) = Ane Be) ane ee = x_€ (Ave) : = Re 0 St : ae ees Pes nde et Xe Ane! tA GY xd ea —-{Aua) fang ana’ £ ‘Cava € poe X EA ond x 6B Coe x4 A onor x ¢ 9 og Tom eq YY and (9) (Ava) Now Poot An (auc) (nnsyu (anc) Yo Pool AN(Boc)_ ¢ Cona)u (aac) lot x © An (Bbc) x © A cid x © (Buc) TEN ond (NER oF KE 3) ‘ (XE A andre B) ov (ren and TEC) x © (NOB) ov x € CNne) x (nna)uCnne) An(Buc) & Chine) u(anc) ——()) vo Proof (ANB) UCANc)_¢ AN (Buc) ler % © (ANA) OCANe) | = x €(nne) ov xe Canc) XEN and 268) oF (* €A and x €c} x (Nand B) om x © (Mand) xe A and (Roc) : xe An( Buc) " 20\9}2002 + Principate _ oh inclusion __ ~ ne of 09 (Ana)u(anc) £ An(avd. — & —Taom WY and GL nee —_antave) = fone) on es om ‘exclucton. aan ea eset a ~ tang) = Tf ms | Avsve! = [AL+ IBl4_| \c=lansl — tact lind — + | Ansnc) aon) erg we Ol eee os : res ae “lel = Ianpl —— tae a a Be _Bucl = Janel =-_Jal+ Iel+tcl- lencl- Janel = _\Al+ I8l+ leL- \encl- lantevol = ial+ \eista- ~\8ncl- -lianenu taro pied Ge GA Lane) canes] a =" _Jal+ |l4 Icl=_Iencl- Hinnets + lane = = _Jpl+ jelt tcl=tenct~ 14 nats lane!- anne cee ay = lal + lel + bet Ipnct = INnal~ Tan! = * Tangne! —Nenn— Diagsam-_ —CA-B) ss > 1A Aa APL = Als Leffel - LArnpsl + La.aana, 1 Ordered Paix (a,b) 9 Cortiscicin — Product of — two Sets Ax (8c) = (axa) n(Axc) (ee eA (Cane TEA, NE C8nc) XEA,(YEB ond. Yec) (XEA, YOR) and (LEA, VEC) XY © AXB and (xy) © Axe . (ay Lax a) nCAxc) Ax(Bnc) © CAxa) (Axe) lets Gay) © Bara) ptaxc) aotet ‘ xe (Ar mY ecax) vo and (YEA » YC o) (x,¥) CON¢ ) Va ee (au) € fy | Cod © vx (89 (Axa) nfaxc) © Wx(ane) — &) From. &y- GW) and (2) Gs Se NaS 24\og|22 13 _ Relation ~ “tek A and B__be- hoo ee ie a a is Rasch of @ cross “AAXB denoted - hye pe = Ate x eee ee ae _Ex= A = tia.s,9f “JaxBl= ie ge 1 oo4,af isl= 4 i AB. 100), €12),-0,4),0,8), (a0) (9,9) (3,4), (4,8), (5,0). (5.2), 4, 5.8) 9,0),,-(92), (214), (eal ST aa, Ga Gal pes Bah Domain= 14asho - Range. = 19,4, eps SS 2 Ay + merce -sielation = 1 _is_the_ _telotion_ _ oe - +e get A tp Bet then the RR" ig_a relation Bo to A anen “denoted. by a -Compasiion _-elertion - of hoo relation. : oR = 3 they exis an — _ eloment Ses oa —tohich € @ — Such thot — ot Era ‘ond. Coc-€8 $ a ce a a 2 toa Saas te) a : 1 SoR = 1 (ac) = an (1.8), (3,0) | “Bi mary ~ Relation. = Ex. Ah = tinal xn, [oe "Re et Set ylation” In Go & then Ree lice ae — Reflexive then every. element Of. Set A ot Related to self. pe et | 0) & Re g 26)00)22 eS — its ye _ Symmetric = a a, 6 eR “Ob! a R_ as —aRb_ > bRa a — k= Then, an) ota a, a, A at _ “Transitive _ = Ss eS (lent and (b,c) ¢ eR => > acd R_ an Pep ee S. = lnbe del ne ey WEE a = =i Re {Goyb) oid, Cand, Ledde Ce) — at 4. Ant Simin EERE Ra “relation : po ino Sok A then ae called _ “anh. Symmelsic if Es Leb) Rand C0) Ta ash oe ——#&=—ta Q=b and b+a ae = _aShb and. bea et xT dentity Relation — Th Ris velation— in Ae ne kis Called iclentity Relation if (Qn) GR = ash V abe R R- A= X23} : R= JO 2 bod, (3.3), G3), (az)t Ref RSG ol ee Te 8 R= f(t), (9,2), 03, 3)} Retev_ Tde-v Equivetlence velettion = “TT Ris gelation : in__ get _B then Rs calleel if equivalence, Retleai ve , Symmetric + Wansitive, 2 ]o8]22 Z ee ae — 18 ~) “Topic — aes Demorgan's Jouo = Explain. — Noviouwr algebraic 4 exh See _ Operation J Prepesty—on ee = State and Prove Disttibutive edu a = ar -No- 6 PNo-95 (145 Stucente) * Function — ox a Eee Some “Th function. —, oie 1k. necessary ne all — S-sselement of. Got Aus “tet S getateds lo js. Set B Should be 6 apt * Deflesence bho —Aunction — end wteletion Tn relatidn . if is —_AlL_element. af ice Set A Should be _ ——Nat_ecessarry ty — —mapped_loSet Boal eloment sh a . Sot A Should be ‘ eS “-anapped oo ea +e Function. ae Tame i ee De Oe he On One-One. into _. Ee rs say eaeTnine ~-—__Many-=one Onte + Onin = vonge ob 4 “oill_the a - Shin — xorg e—of_f Proper _ Subs eb to. Sek B_ = enue ee fay oO ‘Vay: toy One fon)= foe) Rares Baga CLS 2. One - One. Onto- let Nu R 89. tha Ys flo) N= log : As Fa) eee E PCat) = log ua loge, i 1 1 ‘ety Ex- Show thal dhe wheve CR). = Mapping do pop ne is one ~ one ew onto. : Xo, a _ . 7 aco ae ee ees eee Xa _ i aa Ge tae Sm saa One- One = Sok eres ee ee eng a ‘Nes _ { a ——— — X coms — an =e ee ee bt a a N me eee flA)= y Ooie beignst grjog|22 : ee as ke “Countable ond _ Finite and: aoe “oncounlable set “Antirike set Tl the cet ie infinite —4hen A Sis cattod —Countoble if “Hs elernenie ——Con_be_ Pur. ly Feerpp_onto __ rnc eh with the Set of natural _ _-mumbe' . : + Real_ “no ia uneountable “gel nna Pact thot, ine Get Tah aw a ag a lp __ Countable. is iu) oe 2 fawd= 1G») Gus, #Ou #02) ‘ -Pantial _Onler_ “aylotipn = 2 Reltentive.. Rellexdve as _Anlin Aymmelic 2 = Transitive: So ee esiehs ~ Composite. function. AG LTR 4. cons paeieiie teas ates = LS HS = 2 fig WS eta entradas” pes ya ae ae 2g lion) oe Maihonmilal eekutina Se 33 Unit- 2 Lge obrate- ‘boil ure yO tek Gr he non, ernpiy. Set then. OX = (rb) 0 € Gb dq. ois on opesntion on OE AX = where 0. is The binary. operation Srrcup _- An alpetrioie Styuchuve (61,0) tohore G1 is a “Ate N=. einply. Sek and. 0 binary wis 0 aie defined on ar is talled ol it the operation..o salicthe We ‘oltovoinr postulate ond — ( Gxiorne) 7 \\G, Closure properly = Tt “Of ‘ond fb _ E G_4hen noob. € ee ab€G > Qohe G, Va,b €or

You might also like