0 ratings0% found this document useful (0 votes) 17 views178 pagesMeenakshi DSTL
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here.
Available Formats
Download as PDF or read online on Scribd
: th inser UU ieee op eee
ae ee ee
* GOA ee B any well oleptred collect’on of abinttnct:
On distin ubaidie eeme a well af med callactlon
meon that thee exist a nule wth sthe help
of, which,
we should be able de * wthether any fm del belong
aD on nok de the collection Under 4bme Apeipie yale
The, Auk oL Atuclents un a class
The Ak months dn a year
Ae £4, 2, 33
¢ y
henenat captt af etre ABic. xv, 2 ee one used do
denote “sets and dk elements ey fowercase Leer
Abe age
|
- = ete:
| = Etements op a ate
1
\
A={4,2, 3) ah objects th a ace ane catted elements
ch mmembeu
The alitinct cements mean ve element Sa supeated
The Dott uishable ymeam shat giver any check em element
fy etthed dm the set ox not in sh Ack So the clemente
4 Oo Atk must be dintinct ond dating wlaholele —
The Ayrnbel € Cepatlon) 3s used so Encieate belong: to”?
it A Tas dhe Elemente}: wee A then maymbeltratiy ws onthe
Lea
The Aymbol ££ D used to tholends ft does not below to
SL 4 ds not an clement > ack A then Aiyrobellcalhy,
wh watt - oo
uga
* Syrnbols ie
Noe Alahunal Mumbon 9 = Te, -- 4d
T or 2 = Sek of Engen = § weet Ao Ata}
ZF = sek Of Pooikive eeage
set op Negabioe tnfeqou =
R = sek ep Real Nrambua
Sek oh Rational Numbeu Guwhow wo q FO)
See ay Comploc Rumbo,week anut mwene a ty amt pe yd IS AMY
fsewryl
fe bey
“Id] @y (WOU Ga WO
- me pxvamndne y ar Pr Je grou
.
youu)
pre oT V Re ur que ame Te Haque ay
: rs fo, ary pounpxny
PUP YT rv ur Hwuay pune 15 requ ay
“2 Py 4 ‘ON Pounpwo) Co) FAS to Pysjougo wns °
4 TS 4, aad hy *
{ pqoydyo vege vp peon Oo ek EXP LD
‘pabauy annyol ure Uo op
1%}
vo
Lega yompou wma uo mR Dey L
wo j
ENO uwNEEK I xy ag |
[hex anax: boy |
{rovatoh-2 f= = a yieyp cg fewiy ey
air ayy o@pywcs ay obs
Rrodart o Puno re By pon ghar nepeee>
PY eb Owe ou pou nur Uy ~j weet PTE Ve.
i ‘oben
amir pomp be oy
dmtatyia'e y
NY Mange 34 M09 S2qoydyo wes ~, Reon to ay aL hS,
9 ) oxen PmMMAdy I~ _UWAPO?
tuner Ry peaponp
HUI WI VE POWRUL MUI Uy weet sayeay
abun mae |
aK
wag gE we
wo ped be
suanoh epi py «
MIMAYL wo UoyOTRWTKY «Oo
stuf semy hg
ae wv OY
Pedr no Re
“3 ugyvzuavewday yw x,Tre ack \ aibou kn @ Trdia,
° THY te Se TH a ret wontch 2s nok frit dy called
Inpinte Sek
Sq sek of Makanol Mumbew:
, Sing elton Sek f- 8 Ae which contatu only A element
Ja called Simgetton set”
{ wi ycnee AL KENG
Toy
© RUA sek my Bwpty tory Voth Set A aet which contatr
RO om Zeno elements
eg 8
A
is catlecl Meath Aeb
THE Ack Bs cunoied by h wa fb.
Condinalt ey null ae Ay qturaye Zero
* Equalt ek, (oR) BK Sea i by A ord Bos
quo by 4 8 {oR Equal est ae we
Mee
gory, Aement of ack A ta Om element ef Board
every clement ef AB & an elerwnk ofA” The
4 “hos ata Rend & one denold by '>
A=. <
“ree EES
= i ns a me = ©
A B Ay and only %
* Equivalence set tT Am element eft nek ican be par fae
ene do ome maping™ with the olemenle ef
anvther set then. wo Atta ane Cabieel equivalence sed
TA Ss demoted, by wor eye
(a a
TL tne clementi af At ane aame Aron tas
eg uivolint — 4et
™ Subsek % det pane & be feo non. ernply acts | The ae A
b aume g 8 44 andl ony th! Ueveny clement
Set AB an element of cet B
Subset ih denoted by “oe.
sy mbottalty , ACG Heid » xen = eB,
vneure ay
As Lijas
Be £4,2, 33,
Hes, ASE
A ds contatned dy 6'* Supersek i 1k Sa denoted “2"
Tp ON da Aube o} Bo then , 8 ks aupunet 5 A
B2aA
froportly a Subset:
* ik che “Acbiel o)
7 AGB & BEA
" HY ASB Re BES
e AGk
a then ® A= 8B
then ASC Ca & obo sulsset of CD.
* Power Set tthe sek 9 alk possible subse of cet A
VB cated? Power set of Set A Blenoted by Pad”
Se A= Laap .
Peay = ho, ay, gay, {13},
A= 4.2.37
Maye fg,
OF, 3, g3p; tay, F438 fasabuei say»
‘ete s xq & Bet hay Sn!
i Bee ee panailste
»
Se Proof % Lek See thas on Cements
S04 Nor ol subsets Aki ng one
elements then “2.7” sutssety’ of Aine
element’ 2
my
No- Sutsrety tatyG woo element = ney
wed Subieh saniad Abnee Clement = ey
No SL Sobek staicPng wo etement = Me
We knew that og is subset of sve sek
Se. ‘Tetal noe ay Saba obs
FLe My MQ MQ ou ne My
=n
yy,
fot Mey e My Mot - ae +My
= (ery?
= (yr.
Pach - Finck fea) Yon the \piterstra seb
SARTO Mme fo, gaz}
Dona Le, Cory pele . cor do yc oye {lors}
BD a= Ld} par = fh hb}
DY A=W ay — fe sar}
Syoa 2 & m= Sar* Unton > Let A and B be 2 Aeh non-empty sels the
unten A and 8 Ss the ant 4 atl elements
hihth oe ether’ in A on th Boon tn bbe A ant 2
Gord tie Unton of A are BA denoted 4 “AUR
Tt Lb elie known! Qs Totnt on pegteal Se, A part
Symbolic :
“Fog = { xt xen ox *e8E.
eyo aS fans} Be (usd
AvGB = 4 4,2, 3, 4,53,
@ Properties 4 Union of Set ie
‘| ae Be commat adic
* (ommuctateie Properly Union
d ve AUBs BLA-
fnoo{ « det 2 © (AUB)
> xen on xe'B
> veg ox EA From eq” Q2@
> x €(avA [avs = 80a]
so. (avs) eieva) ——- ©:
du x © (BUAD
~~ KE B on KER
D MER OX XEB
> xe CAvB)
So, € GUA) & (Ava) -——@
~ Nssowtative Property 7 Onton 4 ac
¢
Absoctetiix
Ze AUB = (AUB) UO
fase} tek eC AY COVE)
> KE A om %E CBUED
KER on (CX EB on KHECD
> (Hen om EBD om XEC
> KEL ALB om XE CS
~~ x © (CAeRUC)
So
> AvCBYO & (nua vc —®
het ow € ((AvB) UC)
HK EWVB) on EC
(a EA Ox KEB) OH LEC
MER on (% EB ox K ECD
ER 0m TE BOC
ee AV CBUO
Lis ueso, (Avs) uc & AL Cand —@
faem eqn © 2@®,
Av (Bue A OB) Uc}
~ Ltempetent Poroperty # Uytton 4a ds idempotent
we AUR= A
Pasa het,x€ Av
. > xe EA On KER
2 XE A.
So, [AvA)S A —@®
te xe A
~> KER on KER
> x © fava)
So, A & (nvAan —@
Pam ean @ 2
* det A Gnd 8B be two -ten- crnply eu
ApLavaay
BrP 4.2,4s)
AUB £3,2,3,4, 53,
OA ©£ (hus)
>PB £ Cavey
4) Ace shen AvB = 8B
hee RB XE AUB
> ER om KEB
> wen om HEB CH ASB then XEN => ve B)
>a eB.
se, AUB SB —@®
We Knows that , BS ALB. —®
From @
te. A= 4,03
e Bs £4,233Bh the set aq cements vahith belony te both A anol gb,
femmen to dhe Aand &> : ;
The Enterrectian af A and B ky dened by ANB
voaliealy ,
ANB =dui xeR and x eB}
(eA £4,253
Be (4,3,55.
Ang = {1,31
® Properties Inter ection | seb
> ommutateis. Pxope tty F Gntowectsn of Seb Be Commut atria
he ANB = BOA:
Puvoft- Lee xe ANS
=> xEA and xEB.
> mEB and XEA
=> me CBMAD
So, AnB & Bon. —@
hee %© GAA
> xeB and re A
> xXEA ark xB
> xe cane
So, Boa cg aAnR ~——-@
From e9h © 2 @-
a Assoctattye Property & Tntenreuuton of seb fb
. . we. An (eacy = napa
Rnookt- ek x © BD CBE
> ER ond %E BNC
SD xeR and (eH EB and XECD
: D> XE ANB and EC:
~ me CANBAC
so, ANCBAC) & CANN. —@
pag outatt ve
het me BCA QB) Oe.
> xe@asy and KX EC-
> (we wand % EBD and we Cc.
= EA and XE (ANC)
> xe AABN
S, (AB ace & Antenne) —@Faom 9" ©a® 7 . *
AX (Bad anc
Trteuection eg ket Js Tdampotante
te. AAAS A.
het Mpa
XA and EA
mM EA
Sy Baa cA —@®
ke oxen
2 EA and XE AS
Sx elon)
2, AS ana —@
From er OO
{7 Az l4,2,33
Boe{4.asy
Aow=f 4,37
~ ANB CA
Ane cg. ’
AN >
AnU A
RSSEER AG © ROL ‘
2 a ak
Compltment of sets t- tee. be ae urtvonal
and: “Pybean e
a ak. Compliment % A da set ¢ sakning efements 4
untveusl act whith donot belong to ten AS wD E
The compbtinent aa dh dunotud A
SPV 44,2, us, 63
Ae hayes
Avs $2,3,53
Symboottealty 5 epuexeU ond x FAR
NOTES Cy oe LA AL Same. cog
Ahose dament whieh baba, so Al Bue dome vot belong he
tt as denotd »Y *n—B’ “oo A/B’.
Syrnbol'e: >
‘ “4 A-e=fxsxeA and % ¢ BY
ep AEG 12433
Bel 2.3.45}, ms
MOTEDV Boe Pa
BeBe 4a3 BooOW Fo Tee
B-A = ayy}.
{P28 LBA
* Symmetric difference 4 Sets F- het Rand B be Avo aeks
then aymmebie athencnce
pL A and @ Ss a sek font atntng oll the etements that belong
a A om B hut not both.
Te db denokd by “A © Bt
Se AKL 42, 3.4 Sh
Be hous yet
A@Bge
A®s =
AV B= Caso sured
AN BEL UY
f4,a,3e3.
CAUBY ~ CANAD
A@B= vay (AAG) = (12,364
% DMoasotnt beta ie let A and & be soo Att then. ‘ arew t
d no Cammon cement ble A and B Ahern. J ‘
ane Aad 36 be dibporne acts
ey A =k4, 23)
B= fs, 8t
H AmB sd wen A and Baw cis Joint A
* Pooper Subset s-' Let" a ond B be Ayo non: empty acta
and AEB I there Lr atleast Lene
element Sn B whtch dow not bel to R hen , A 2s catlect
prepen Subset af B end dt & Volrnoti ct bg Ser caces)
* Venn Bagram ie Venn diogram tao pletoafal
q Mepserent ation ° ats ohteh ane
ward do shows nttodZonships EAST LAeu «
The urbyeual atk La ruprtsenrted Enterfor ala seectongl
and Ub subsets. are nepacrentecd Sy Giucan ateas
atthin cba seeckangle.* fe feine Atk
ANB Gb
AvB au Ww
“| GB] ||
|
ine ine
Hae
Z
EGY
BL
* -B
a 8 uu Nilo shaded Grea means
~ &, A-B = th
a R~A -
Ack &~
woAeB
y a @e
Baw a venn © bh am ok sete A, BRC Ushene-
Rand B have common Cement \ & anc ¢ have Common
Plements Buk A and € ose disfotat
sim
& ACB, Sek Rand € orm diafoint hut E anc ¢ have
elements fn Common.
sv > ca
@F)bre cwees son
S S'@ve-ce 3
(Os) 2 Od=
RY 4) n-B-c)
D a- Cane
$4.2,3, 0,63
2 (Ava) -< 62,34,
9 CB@e) = 16,8, 4
% Arte = fied
D AaA-¢n@y = 44,274
2 macs@ed = fe, 33.
x Algebra of Sey &
. Tdarnpetert dow ft
4
4) AVA A
yANRBA-
* Cemmutabic hows. SAVB = BOR
y ANB = BNA:
woww ey
an(s@ep>
As{s2,6.3F
Bed TR
ee fed
Boc=f4,25
Aub = 41,2,3.4.6
B@c= (Be -%
wa (a-9 UU
BC = FB.
* pa sounece how F- YAVEBLC) = CAVBD LE
araceng = (anayne.
. Tdlentity law f YAO @ A
yA We= A:
Bound law * yA UU eu On
pA Ae =o fies
° Compliment hawt guts >
ap Oo su
a Avut= U
yAnAt > &.
Swveliatron baw & (AD SS As
2 Distribute haw &
@ Prove that unten >
oy ae and vice - voud - ‘
AvCBad = (AVB)ACiAveD
Ag caved = HOB) VL CAND
Pasw
Pas
Av (Bad = CAVD A CALVO.
kee 2% € CAL [BNC))
= LEA or KECBN)
— KER OM WEB and VEC.
deb fs dbtbubde oven Jatuuect=> (ken om EB) and (KER
(ee ABB ond CREA LCE)
=
x € Ava A CALCD ©
Se, ALLEN) E (ved a
Lek x6 & CavBy A CALEY
=> x € Cavs) and % ElAvC)
> WER on %EB) and (EM om x EC)
=
on “ECD
ER on EB and LEC.
>» KER om XE BNE:
*E ALVCBN
(Ave) mn Cavey & AL (BAD —O
trom egm © 2
S>)AL CBN Cavan CaAuC).
Se,
Pamve AN (BVO = (ANB & CAND
Erno hee ox © AA CREE)
=> xe A and %~e(Bve>
> KER ah KREB on HEC
(xen and xeB) om (xen and XC)
sce Ne) om RECLAME.
> ee Gand) uv CAN
Se, Ao CBve & lAnsyv CAdc) —O
bes (ANB &G CAALD 3%
XE CAND 9% — KE CANDY
(re Biand KEBD om (HEA and 1EO
xmER ond (%EB om KEL)
REAR and WE(BLOD .
xe A ACBL)
> fanee (R08 a An cen —®
Pom et OLD”
SlAn CevO: = CAABL LADD
rbiUuyoes me gee os
2» Hows =
Prover- Avex = AS Mm Be
Poshr- La xe CAvBzE-
=> «x ¢ (Ave)
> x FA and nes
> KEAS and WE Be:
> x ELAS 0 Be)
So, (avey® a tatgety —O-
her xEAS my Bo,
Pe EAT and EBS
=> x AR andl x EB
=> x ¢ (ALS)
> we CAVES
So, (AS ase) & ALHS—O
' From ar O 2G
>| one = oe] « *
(Anas = AtU Be:
Lek mE CAABS
> wv ~ HARB)
D> xe w oma HB.
D> xEA on nEBS
> xe ATURE
so, (anays © (AS vet)+——- ©
Let, mm xe ab oR’!
=> ne AC om WE BS:
=> x ga om “YB
> x £é CRAB)
> xe (Anee ,
So, CAtu'pes clang s -—-@
Brom ean 2a |s sae shat (R= Be = A-CB UCD
xe (A-B)—c
xe CA-B) and x ©
&e a and x ge Bdand Bee ‘
HEAR and (x fe and «¥ 6) .
HEA and (% ¢ (Ben)
x € A= CooL)
1 ABH S AR Cnve) —O
fee, KE A- Cove)
D> we A-and ux ¥ vy
xen and ( EB and Me ¢)
(ea and x ER Ord HEE .
7 x © AB and UFC
Dx © CAHB-€ :
SS, A-CBucy & (n-ey-e. —@
Prom eqn @ 2D ..
2 |(a- 8) a Cpve
Prove thot:
0
(A= ByACB-AY
~E CAB A CBHAD
7 KE Cars) ond x € CB-M
> (x € a ond xf B) and Uwe B and eA)’
D> (een ond HF AY and (xEB ond x KBD
= x CH and x eb. ye
Let,
> xe. *
se, (A-One oO, —@
fet te We -Knovs hak is subser “ab every Act
e © e-wAatB-AY ——O
fom @ 2G
slla-ma Co-m = 8
S Paowe that A- cans = (a eS
iss, xe AS CANE
wen and “x € EOD 5
xen and Lx ZA Om 4 ¢B
Cen ard EAD or (HEH [ard «Ae
«eR on mae Ca-8>?
ue “bv CA-B
we (R~BD
Se, n- tao & (A-8) —O
ye ousHN RL andi nt ES
me PUCA-B)
Xe b on * ECA-BD.
med Om LEA and x GB-
(% eA and w AD OF CHER and «£8.
KER and Cx EA OA HEED
EA cand 2 CANS)
ae AH CAND,
lea-@ © An cAagsy —@®
grub bors
co
> [AEBS = AT AG]. Per OO.
& A ond B ane two Ack, shen (ANB) V CANES
Nace nue) ane equat so ? aBS,
Lang vo CRO MAD ‘
> An[eo 4% _T By visribubie Lewd
m~ AO cey complirnant bow J
7 A Tey raentig, Lav]
AO CH AvB> :
=> (Aa wad -¥ CAN®) [ Diatat buble Law
> Ww vu (ans) . Tey vompttmant rans]
> Age {By Tdanttty low J.
at Ack then prove
& tL Rand B one Foo subset on uuntvors
a gortowing -
4) AHR = BA YR ony 4
2 A-B = A Ay mdeb g.
A+B
Hoe A= 8B shen A-B = BOA
ha ET
SB Xe AR ond HB
2 ~ee and x FAR
Pe (BAD
So, (A=B) & Bea —=O-
Lek x & CB-AD .
3 eB ard “x A”
> wen ana x & B
> xe LA-®
Sop (RAD S(AT DB —@O-
Frm © 26.
3/078 = Bauy
% (A-B) = (R-AD shen A=R.
x © (BAD “
-> ye B and x A> , —@©
xe (AB) :
> nen and xn fe. “©
ty” © LH can be equal’ only voten Aas.
(2
Sons shea 8-8 SB ren ANB=h
Se Pe :
> ee A mond xe | . coe
kek, An B eo?
=> x © Caney Tee :
Xe CRB) AB LA Ba Ay
xe A-B and wes.
Wen ond xg Rand eek.
HEA land Cx ~-B and rE BR
wen and xP:
xe And
xe ey,
: ant srdngcttels oun sauretion
Sco, ANBES oo — kes oR oe
Bak, we Enow thet > is auth of oveuyiat 2B
Wo
“o¢ ¢ AaB —-®
trom gs @ *G-
Tans @ Med AOG~A
hea, ee AWB ¢
> new and xFB-
> xca co anos oD,
S$, AS SA — QO.
wk» X EB :
> nen ond HHL. fe aos =e].
A xe CAH BD
so, ag ars =~@
From © & @
OR)
H troB) =o otshet, % & CA-BD
xe care oh
Dwele) ex xe CAOBD
~D (4ER ond % BD PR CXEA and % EBD
2 eA ard we Bom CHE A and LEB,
SD xe A and CxER) aed KER)
D> new ande KECBLED
> wxeA ad xev
> meeny)
5 4eA
s, a-B £A —O-
1 * Cartesfan Product +
‘axe
= f Cay: «eB and yesy Lt
eg ondeed Pom + A= 4033
Re Labs.
ARB © Cavers cy, Coed, Cad C207, C207F
BxA = { Caray, Carn, Casa: bdr, CO» b29}
j Oaderd Pol i Tt doo pow ah obec ne using
Ane shoo . componedbt Cin Sper Se @acen
am the ondened pal CY) 2% ah tre, LY Component
and y ts se Aetond component *
Comiden stwo aes A and B . then cantestan proce
Aand Bk trod é aun? ard Wb abe Act
ey a possible wrdened wth Gay) Lotth WEA anc yee
Symbottealby »
AAB= & Guy) Boece ond gees
MOTeT Axn we PRRA
® Mulbt sek ft muted ore seb nihene Ort element appee
mone than one-
Se A= L454, 22. 33
masa fe wan alo be wonton as-
ES aa ee
route The mulupiic® an’ etement, tr a
¢” multiioet ipl do be the nee a
Ema an elemant appears tn rncuttto e€
S tye muutiepltoty Yt
goby maaeeng |
don ,
» 3.NOIE
Apel ype ef multaek dn chit the
fy fy fueaay ethonent Ek ene coe
vraltty ¢ PMecbartatt Conclinality a Mubsieet de equal
: te te conciina lity 4 corvnetpondirg
(oR
Candin Mubicoct 2s olethed as the Conotinall fu
Comes, dead Att: Assuml Pot alt the clennende La
istinct th F the tel mautioet © :
Se candinaltly of muilixeet A = Caxdinattty q cosmmpondiry sera
Sf A= {45,4 2,3, 5)
Pe fF 4.o3d
rece
Ae
Candinality a Mutieet A= 3. 4
Creation uta Muddvaets
RAL As £34, 2b, 1c}
Be {rea debs bdy.
unten 9 mubtseh » CU) I
(A vay-= faa, ab, be, HAY
Tmtecetion of Mubltack CA) # ANS = {aa , sab} me
diheenee C8 A BEL tea, ack dee}
Sum Cr t- Bea © § 4d}
AtBe { sa, wh, Ac, baz,
ALB iy Ake rnuttingd yohow he multtplicdty yf a”
Clement is rmaxPruim y de mater pier tits 4# A
and Be
eG AUB = {B.a, 2b, Me, od}
Trlersectin
preps
AOR tn athe mubttoet whee the multiplidty J
commen element ia minfmurn ef et rautkepiictttes 4h
A ond &-
ee ANB RL reg, Shy, . :
Di}eente te Asa the rm alkisec shee the meliipeit ty 9
an element fs equa 39 voatatplectig a terrae aan
A minus roulstpedttyy se net an B, eB Atpeace
pootetue bux Seb Yequi
te tro SY dhe Pehifquunet de zy
and negatbe-
ee A-@etbayte, Bey
B-A = hbed} .
acne
Ate dg the multtoek vhene murleip tes: gan
Alement Ss equal so Rhea mulel pel ep an
clement dn both muleizes & and pS
ea, Raw S
tera, Fb, be bddaes ta, Bb, mad,
find oy
PUB .° 2D PAB, 2 PHO, 4) O-P. 17 PH
POO = f wa, Bb, trey add.
2 P08 = { 3-a, 3b}
3) P-9 { ta, eked
yy o-P = {a-d}
=) Pro = § Fra, Gb, we, eas.
* Set Inclusion Exclusfon Pobnetple
Counter Prince le
up
EB) = “O aypencans) —®
wLED = nUBA) + ACAD ~O
NEAYED. = a fA-®),
Lea) +nean®
Por de values ef W CAB) Rn CB-AY nop,
pom eam Ox dn er @-
| RERUBD = nen = REA ABDSH NEED = NEAT x VE?
REALE) = nica nee) = ACAOWS
Coroll
pace boca
ne LAvgHE) = HERD A Aeay se NEO nERAB= NCAAD =“ NCHS
4 n€ansac)
Pnoor kee BUC eB
ACA BD = MCAD + PCB — HCA DBS
= oneny * NCB = ACA CBLO)
= ontay + NBA NL — MCEACD ~ H(A ss bire
= pear t nape nce — MCRAE =
+ nflaceracanc)
REA NIB FACT MEBOD = MCEAOBY NTS
+ 9 Cangncys& 40 Lecturers woo Intercofeued ma
ivan , 23 woe ;
fob, 2 Wen mathema-
£ amd F whhe tether. Mov
Aeckuneys vere masermatictams amd physToate $
bem be the aat mathemotidam —andé
Poe the Ae Physics
en OM) 3 as
CP) = az
find t nemaer = 2? :
Given ie
!
nome) = 4rd = 33 :
MUP) = nim en Cry — n¢rmaeD oy fo
wtmngy = nem + OCD = nEmopd pardors
asana- "330 : i
2-33
25
dacmn ed .
So, 2o Jeckuners wer both mathematyfon ond prytc
6 In a auwey sf COO TY viewers glen ths following Mformation, ;
Poo ss roa A eee rmakches. @ ay
. 25 AY wotch heciety mokche -
ZB AS wakth foot wmokches -
®) AMY wath “ertcke 4 football makche- both.
5) 4A watch otacee 2 hoot matches both
6) SFO watch hecteey foot b' matchea both.
TA) AFD dow wot voaken ahy of tht Hate game.
etd D How many people watch ot thee Enel
2) Rov vany peeple veakeh exc tty ome port
Fe, c be te ack ol ge Cdckd ofeutas
Boke He Ack of Hockey vfwoa-
Fobe he Act 4 Poot. yiewen
Gin se ne = 38s
nay = 2857
mem = ls
wena) = 38S
mw (CAR)= LO
WOHAP) = 150
meconvey = 6, =ISB = AES
- o
waves nCeonvor> = RCO oR) eH ORD mcLe nnd nit ne)
> =~ Wcnagy F HCHO BOF)
vse -2 3as H2AS FAS THOR Ns mIse F MCEOND
uso = BAs- Wes + NCEAANFD
Uso = UBD NE COROE
Cay 2 Sine: Bac
WEED ANE? Pafnctple>
= rol2» only ofcrer vferoan -
me — AC CAMD— wCCARAH -HCCHF) |S » |
= Btr- mo 20 - ME /
= ae. A |
on Houcey vrewus
nen FE CAM) + NEC ANORS — CHAE)
| eras — veo tr ao WP
1 2s
only Football
nley — PE ENED> HCE
viewer
ney — ROAD)
eos = Ws 4 2E 7 DE
= 60.
No + of pPewoems exactly, wokth = n (exactly orceer) >
NE exer woekey) *
mC ex acrty Foote)
= aor 5-66
= as
i
i & aymong four so telntegos - PP. ve
: ty thelno. oh Entes Tohich. one not cdéviatble by > rex by =
non ey te. a hich exactly afvierble bi 2
2) The noe op Ente vohich ane ure one &
Tre mol Ent 4 fm
a int
B be the Ae. ,
_. * . Sate atufatbie by >
bee; B bey Khe ACE oy. or de Saotat ble ud
.
ible &Y
tbe that ol | fiis.gim atst
nea, = | Eee) = are
49 nCAABac') =?
1 CmtoB! Oct = ncsvRvc!
. = W- ncavsvnAleut =
© RADE RED) nces = REARS) — NCAA) — MrBneY
4 ncnaancy
F Av ettce toe 32 s3-yodte
=» 30C yoy
SOC £m far) - ecAvBoG
= SOO ~ 2¢¢
yas
fa tints olivitsfete by a.
"om = weAABD — HCARO + ACADBNC OS
= 280 - B3- SF
3B tle
5 Ise
erty dtviotble
nny — n¢Aangd~n(Boc) +n CAneac)
We BB Foe le
= ug,
Onty elevia Pete by 5
MLE WE Ancd— ne BNE) HA CA OB
= leo 383 Boe le.
i
s
|
leviotle by pri a then
Mun af nfegeri ea
ble WP) +eC3) +7 (x?
mC erautly cbt!
= sorter 33
~ 232
Qo AS chéldren went © a cheus whee ty attend a mage!
prow , Comedy show and animal show." 20 a thtm
ak three Ahoi amd sr ablended axteast too AhowA. hack
Ahow Coot £ ks. The Aotatl roe ney colletkhad Foo S Find He ne
Children woho didnot athend Ahue Ahovin.
> ite | om Be the set magle “ Ahew
Go ke the Aet al Lome Aho
Poe the Aet ef Antal chow
Ter al mrorey collected ?= ® t00-
Geak per ® Ahow es ee
attended + foo ~ 140
=
Teak nas gL Ahowe
nimacoay = 20
Mer Eh thilolnen attended atleast £490 phows = or
Date Children attended. oxactly Povo Ahows + No >
alienteg olf thowe = 55°
mes of children atrended:
=> Exadty 2 Ahowes + FO FS
> Mer gq children abtended exactly 2 Ahows 7 35~ i
lees |PORNO Sy UMAR amencen EKA 2 thom = IND T USAR Tan
E = JHo- (40+
FE. = \4o-130
= 10
Nov ¢} chftdaen etl not attend ‘any gy * Ahowe
Fe — Cas +rorid
tr Ceo)
= lo
* (ountable and Uneountable See *
(eudstable opie St Fn inde ack, A Le Aatd to be
Countable’, Cnlntte on enumebachle
C sel
Ik
|
I
i
| 4h te bk epguivalent tb wk Natundl no’) *
}
4 thee exist a ene Ae ene maping wilh ss fa
i
i
i fina eq? vel a
Countable Set f A Ace A in Catted countable when ib fy
eth
sEmply on Nult ack Le A= db. on
+ Pratce | set™ “on on
* countable Infinte Aek - .
Widve ads . -
“ ~ a4 3 gt
bea tetas ¥ BR 4 & kM 7
eve natloral mois ts Countable
1) @ Show that fe det of
| pratt. pears > prynde
Www aoe
¥
. a7 a ee : eg
‘ he S/o War .
| “7, 4. heat se eee} Lago.
neay = Th aet is @untable Snir,
Le* Relattsn 2 set a and B be duo non empty sell then
. R wa metatton Jaom A te B RE AxB and
SL 3a Be Act of omclened po " Cab) where a Ge A and
wie BH th dendied y aR b w (aby CR and Wb
rect os “a js nelated Y te b
Tro ka ne sulation “bjs a and b then a Kb om
LER -omd we th seat tr a in not aelaket #o b”-
Syn betieaty,
Ref caby: aene bEB and ARbL cr (a,be*}-
va
SSG Ae {YP | Begayey, & metakfon! ® Js. ofifned
i qrom AP B fe ARb 2y “Ax = even “he - Mad
wetation R . ee
{ 3. Re axe
. AT HS,5,3N5 | Be 5,23.
: Bx CUA RD C27 0D CV,Ca.2d-965.40)5 0097,
i R= Lue, Cad, 02.29, C399, 040,08 D7
,& Ae ieee wy BS F412, 34 Phra she relation R such thak
a Rb mE are.
> An gyuesp, Ba 43,2,33
BX Be L Ca.ay, 212d, 49), C44 1 CH 2dD, ONT COA, (0.97, (0.39,
' CRY, Ct 29, CA DT
REE Coay. Cady CHA EMA EBD, (G0, CH2D CED,
Wn, © 999, 99%
@ A= {4,2,3,4} A sutotLon & as + dabfned on Set A Auch that
ORE Teo dis dfufetble by b
AR Aaa, ENT
Am C4, Ih
AYR = Cad, CL2d, CH BD, CHM, C2159.62529 C2 9d ,C2PO BN,
VB, C339, 3,49, C89), C4907, 8
cs Wd
Ro gad) 20d, 2.29, CBAds C8, CHD CWE 4
* Domain and Ranoe oy 4 Relaton *
Bematn ya Related s-Y ta tf the set cons tating
fiat elements 4} conden ed Spabis "y
arate RT bb derokd 4 BCR) 02” Bom tay
Sura Ni
y veviatiy
Bca> = {az aen and ab}
NeTe: Dead Ga-J 4 Aewond elements af orcteuel pide a}
Ptigtten RTL Lr denoted My RoR om Ran( Rd
6
Wore, R= ob
° “ompliment. | Kelatibw ty a netotfon & delferd por
fab & Stren Compliment ™ of
sy aet te ordered potas such that
= {¢o,b) 2 Ca.b) ERT
Ro = Caxny = R. en on Aed
Ro = Caxsy-R.
Une}facd en Wo aes.
TA denoted ii Ro an RY
oy. A= {4, 2,3}
B= fry
L ve) tned
R= Pomme { CHW, C,ud, G36) 3,
AXB= { cas, Cusd, Ca faeces, a, Ds
‘REV =e (AxBD- RK.
ace
f Gys7, Oo, OF1 ne
Rr ass R= f cab) : arb
fs Boe Sf Chey 7 BBCY
| fet, Rbe the mulation pom A ae and s be the ata tien
i m Bape Hhen compoattton of sulation Rand s ib a
| Naetetion: consisting sh, odes Ca,e) whene AER ancl
| EEC. proutdad “imate thew ext gome Bb EB. Auch that
| ARB’ and bRE. Tk in denoted by ‘Ras?
Syribolteally
RoS = | @.c) + FbEB, ARS and bse as
fe Peta, Betauy, ¢ sts, 2535
eco Ome) 6?
S=£ Can, C3002, af
Res = § Cusr, C0), Cay, cred}. a @ ©
B. Rand § seletfom are deptned on Sek A= Sh2,34F ant
R= £ Chay, Cm29,02,8), CONDE, 3,9, 04 3)F
S= A cand, €2,99, 63,2), Ca,39, CFD CU2I}- Find RoS & Sof
oS cyan Cay, Crd, C253) > BBB. Cay, 63,22,08.29 04
C43), CHNDF
: SeRe (Cary C2, 3 C24), 03,92 C7 Hy 03d. C429, CD, 04
Trove that Snveue e, “(Resp = Ro! ose!
Pe ket, ca,b) € CRUSIT 5
> Chay € (RUS. |
= (bay € R on Chay € S.
=> (orb) E RE ON Carby ES"
: => (a,b? ECRNUSD. O
Se, (Rusa7! & Cetus) ‘
fee, (a,b) © CR USD
D> (a,b) € RA da Cab) E So!
Chm ER om CHAE S.
Cb,a) € CRvS)
Carb) € (Rvs)7!
fo, CRF us-') & (RuSQ- ——@
foam 4" O20
> [CRvsy
2
>
2ay Prous thot (Ros4 = CRA sty, ,
Mek (are (Rasy?
(bay © cans
> (a @€ a and Wages
SO Caby © RI and (Osbre So!
3 tan © Rast.
Se Wash © Rt pel. —@
Sek Carbs € (RAM 64)
> Ca.b) € RA and Cosy $77
> Chay © R and Chie s.
> Chay Rosy
> Ca.b) & CRAM!
fy (@ os) © CRaY —@
Faom et © A@
SF RES Han, RT es -t.
Glen, RES
heb, (@, by © Rol
> Cb,a7 © Re
= Cha es
~» cae) € S*!
Res)
So, R-' g got,
© Airave that compoattiin 0] sutatiow. Joltowe the auodahiie
“ how.
Pras} (RoS),T = Ro CSTD
het Ro be a gelatin fom & A 4B 5 be a melatin
per B toc. and T be a aelation prom C to >
ket (asd) © (RoS).T. 7
= (Auch thot) Ac €C , Cac) € (RS)
Now, (4,6) € Ros
> BbeB, Cabo ER ard
Faom eqn O16,
(be) €5 and Ce,d) € 7.
= (64) €(%7T) —@®.
from 4" ® 2Q-
forbs ER and Cd) & (oT)
> (a,a) © RyotwT? —@
Se, [RoS2oT Ro C&ID --— ©
and (od) €F —@
cba es ——@©