100%(11)100% found this document useful (11 votes) 30K views44 pagesAsme B16.9-2018
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here.
Available Formats
Download as PDF or read online on Scribd
Factory-Made
Wrought
Buttwelding
Fittings
eosic
(Oru cs
SaASME B16.9-2018
(Revision of ASME B16.9-2012)
Factory-Made
Wrought
Buttwelding
Fittings
AN AMERICAN NATIONAL STANDARD
ay BUR Cre Tacs
Be TED Ear ud Two Park Avenue * New York, NY * 10016 USADate of Issuance: October 29, 2018
‘The next edition of this Standard is scheduled for publication in 2023,
ASME issue's witten replies to inquiries concerning interpretations of technical aspects ofthis Standard. Periodically certain
actions of the ASME B16 Committee may be published as Cases, Cases and interpretations are published on the ASME website
under the Committee Pages at http://estools.asme.org/ as they are issued.
Errata to codes and standards may be posted on the ASME website under the Committee Pages to provide corrections to
incorrectly published items, orto correct typographical or grammatical errors in codes and standards. Such errata shall be used
fon the date posted,
‘The Committee Pages can be found at http://estools.asme.org/. There isan option available to automatically receive an e-mail
notification when errata are posted to a particular code or standard. This option can be found on the appropriate Committee
Page after selecting “Errata” in the "Publication Information” section.
|ASMIE isthe registered trademark of The American Society of Mechanical Engineers.
This code or standard was developed under procedures accredited as meeting the erteriafor American National Standards. The Standards
‘committee that approved the code or standard was balanced to assure that Indlvdals from competent and concerned interestshave hac an
‘opportunity to participate. The proposed code or standard was made avalable for public review and comment that provides an opportunity
for additonal public input from industry, academia, regulatory agencies, and the publi-a-large
ASME does not “approve” “rate,” or “endorse” any item, construction, proprietary device, or activity.
ASME does not take any postion with respect to the valid of any patent rights asserted in connection with any tems mentioned in this
document, and does net undertake t insure anyone utilizing standard against ability for infringement of any plicable letters patent, nor
assume any such ability. Users ofa code or standard are expressly advised that determination ofthe vali of any such patent ights, andthe
risk of infringement of such rights, 's entirely their own responsibilty
Participation by federal agency representatve(s} or person(s) afiiated with industry s not to be interpreted as government or industry
endorsement ofthis code or standard,
[ASME accepts responsibility fr aly those interpretations af this document ised in accordance withthe established ASME procedures
land policies, which precludes the isuance of interpretations by individuals
No part ofthis document may be reproduced in any form,
in an electronic retrieval sytem or otherwise,
without the prior written permission of the publisher
‘The American Society of Mechanical Engineers
‘Two Park Avenue, New York, NY 20016-5990
Copyright © 2018 by
THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS
All rights reserved
Printed in US.CONTENTS
Foreword... +++ , v
Committee Roster vi
Correspondence With the B16 Committee .. vii
Summary of Changes ...+++ ix
List of Changes in Record Number Order x
1 Scope... 6... 1
2 Pressure Ratings 1
3 Size 2
4 ‘Marking . 2
5 Material 3
6 Fitting Dimensions 3
7 Surface Contours 3
8 End Preparation 3
9 Design Proof Test . 5 Peony 3
10 Production Tests . 5
m Tolerances . .. 5
Mandatory Appendix
1 References wees cesses wees . 28
Nonmandatory Appendix
A Quality System Program .......eseeeeeeee . 29
Figure
et Maximum Envelope for Welding End Transitions . 24
Tables
Ss Material Groupings : 6
61-1 Dimensions of Long Radius Elbows . 7
6.1-2 Dimensions of Long Radius Reducing Elbows 8
6.1-3 Dimensions of Long Radius Returns . 9
61-4 Dimensions of Short Radius Elbows . . 9
61-5 Dimensions of Short Radius 180-deg Returns 10
6-6 Dimensions of 3D Radius Elbows .. . a
6.1-7 Dimensions of Straight Tees and Crosses 2
61-8 Dimensions of Reducing Outlet Tees and Reducing Outlet Crosses « 13
61-9 Dimensions of Lap Joint Stub Ends 19
6.1-10 Dimensions of Caps . coed 2061-tt
924-1
930-4
ant
Dimensions of Reducers
Welding Bevels and Root Face
Testing Coverage . .
Test Factor, f, Determination .
Tolerances
24
23
25
25
26FOREWORD
In 1921, the American Engineering Standards Committee, later the American Standards Association (ASA), organized
Sectional Committee B16 to unify and further develop national standards for pipe flanges and fittings (and later, for
valves, gaskets, and valve actuators). Cosponsors of the B16 Committee were The American Society of Mechanical
Engineers (ASME), the Heating and Piping Contractors National Association [now the Mechanical Contractors
Association of America (MCAA)], and the Manufacturers Standardization Society of the Valve and Fittings Industry
(MSS). Cosponsors were later designated as cosecretariat organizations.
Standardization of welding fittings was initiated in 1937 by a subgroup (designated Subgroup 6) of Subcommittee 3.
After consideration of several drafts, a standard was approved by the Committee, cosponsors, and ASA, and published
with the designation ASA B16,9-1940.
Revisions were macte in 1950 and 1955 to add sizes up to NPS 24 and to complete coverage of fittings in some sizes
‘These revisions were approved and published as ASA B16.9-1951 and ASA B16.9-1958, With the subgroup now desig-
nated Subcommittee 6 (later Subcommittee F), further revisions were begun to clarify the intent ofthe Standard, to add
angularity tolerances, and to include fittings of differenttypes (longradius reducing elbowsand crosses) and smaller sizes
(NPS 4 and NPS %), This revision was published as ASA B16.9-1964 after ASA approval.
‘After reorganization of ASA. first as the United States of America Standards Institute (USASI), then as the American
National Standards Institute (ANSI, with the Sectional Committee being redesignated san American National Standards
Committee, another revision increasing the size range to NPS 48 and revising the text for clarity was approved and
Published as ANSI B16.9-1971.
In 1975, Subcommittee F began a major revision to bring the standard up to date with current practice and usage.
Common fractions were expressed as decimals (but without intending higher precision) and metric dimensional equiva-
lents were added. Provisions for step-wise change of radius for NPS long radius elbows and 180-deg returns were
introduced. Following Standards Committee, secretariat, and ANSI approval, the revision was published as ANSI B16.9-
1978. It was updated by a corrective addendum, 816.92-1981, issued in February 1982.
In 1982, American National Standards Committee B16 was reorganized as an ASME Committee operating under
procedures accredited by ANSI. In ASME ANSI B16.9-1986, the text was revised and inch dimensions were established
as the standard.
11991, the Subcommittee reviewed the Standard and made a number ofrevisions that were included in ASMEB16.9-
1993, Dimensions for short pattern lap joints were also added,
In ASME B16.9-2001, short radius elbows and returns were added, which included all dimensions and tolerances of
ASME B16.28-1994, Metric units were provided as an independent but parallel alternative standard to U.S. Customary
Units. US. Customary units were moved into parentheses or separate tables in Mandatory Appendix L. In addition, a
Quality System Program appendix was added.
In 2003, the Subcommittee reviewed the Standard and made a number of revisions. The scope of the Standard was
changed to permit fabricated lap joint stub ends employing circumferential or intersection welds.
In 2006, the Subcommittee reviewed the Standard and made a number of additions and revisions. Segmental elbow
requirements were added, as were 3D radius elbow dimensions. Reference documents were updated,
In 2012, the Subcommittee reviewed the Standard and made numerous revisions to the design proof test in section 9
and updated the references in Mandatory Appendix I
This edition adds more specific descriptions of acceptable design methods, revises the requirements for the design
proof test, and updates the references. In addition, the U.S. Customary tables in Mandatory Appendix Ihave been merged
with the Metric tables and all tables have been redesignated. Following the approval of the ASME B16 Standards
Committee, ANSI approved ASME B16,9-2018 as an American National Standard on September 25, 2018,ASME B16 COMMITTEE
Standardization of Valves, Flanges, Fittings, and Gaskets
(The following Is the roster ofthe Commit
atthe time of approval ofthis Standard)
STANDARDS COMMITTEE OFFICERS
RM, Bojareauk, Chair
CE. Dawa, Vie Chair
Rameharran, Secretary
STANDARDS COMMITTEE PERSONNEL
{A Appleton, Alloy Stainlss Products Co. In.
ILE. Barker, Dezurik Water Controls
K Barron, Ward Manufacturing
D.C. Bayreuther, Metso Automation, Flow Contr! DWvision
W.B, Bedesem, Consultant
RM. Bojarezuk, Consultant
A.M. Cheta, Qatar Shell TL,
M.A. lark, Consultant
G. A. Cuceio, Capitol Manufacturing Co.
J. Diavanzo, Fluroseal Valves
Crane Energy
K 5. Felder, Valero Encrny
D.R. Frikken, Becht Enginsering Co.
D. Hunt Jr Fastenal
GA. Joly, Samshin Led
‘xelon Nuclear
‘TA. MeMahon, Emerson Process Management
RG Merrick, Huor Enterprises
M.L Nayyar, NICE
W.H. Patrick, The Dow Chemical Co
, Raho, CCM 2000
€ Rameharran, The American Society of Mechanical Engineers
D.F. Reld, VSP Technologies
R.A, Schmid, Canad
J. Tucker, Flowserve Corp.
FR Volgstadt, Volgstadt © Associates, In
F. Feng, Delegate, China Productivity Center for Machinery
RW. Barnes, Conznbuting Member. Anric Enterprises, ne
P. V, rag Contbuting Member, Jomar Group
B.G. Fabian, Contributing Member, Pennsylvania Machine Works
M. Katcher, Contributing Member, Haynes International
AG. Kireta, Jr, Contributing Member, Copper Development
‘Asvocition, Ine
SUBCOMMITTEE F — STEEL THREADED AND WELDING FITTINGS
1B. G. Fabian, Chair, Pennsylvania Machine Works
RA. Schmidt, Vice Char, Canadeil
Lawson, Secretary, The American Society of Mechanical Engineers
10h, Secretary, The American Society of Mechanical Engineers
A, Appleton, Acy Stainloss Products Co. Inc
GA Guecio, Capitol Manufacturing Co
1.6. Dominguez, Welding Outlets, Ine.
KW. Doughty, HEI Alloy Piping Products
LP. Bllenberger
D.R Frikken, Becht Engineering Co
P.W. Heald, Bonney Forge
D. Hunt Jr Fastenal
GA Jolly, Samshin Lie
F. Kavarana, CB, Inc
W. Prital, Erne Flings Gmbil
J.P. Tucker, Flowserve Corp.
GT Walden, Wolseley
IM. M. Zaid, Jacobs Engineering Group, In.
D. J Lafferty, Alternate, US Drop Forge CoCORRESPONDENCE WITH THE B16 COMMITTEE
General. ASME Standards are developed and maintained with the intent to represent the consensus of concerned
nterests. AS such, users of this Standard may interact with the Committee by requesting interpretations, proposing
revisions or a case, and attending Committee meetings. Correspondence should be addressed to:
Secretary, B16 Standards Committee
The American Society of Mechanical Engineers
Two Park Avenue
New York, NY 10016-5990
http://go.asmeorg/Inquiry
Proposing Revisions. Revisions are made periodically to the Standard to incorporate changes that appear necessary
or desirable, as demonstrated by the experience gained from the application of the Standard, Approved revisions will be
published periodically
‘The Committee welcomes proposals for revisions to this Standard, Such proposals should be as specific as possible,
citing the paragraph number(s), the proposed wording, and a detailed description of the reasons for the proposal,
including any pertinent documentation,
Proposing aCase. Cases may be issued to provide alternative rules when justified, o permit early implementation of
an approved revision when the need is urgent, orto provide rules not covered by existing provisions. Cases are effective
immediately upon ASME approval and shall be posted on the ASME Committee web page.
Requests for Cases shall provide a Statement of Need and Background Information. The request should identify the
Standard and the paragraph, figure, or table number(s), and be written as a Question and Reply in the same format as
existing Cases. Requests for Cases should also indicate the applicable edition(s) of the Standard to which the proposed
Case applies.
Interpretations. Upon request, the B16 Standards Committee will render an interpretation of any requirement of the
Standard, Interpretations can only be rendered in response toa written request sent to the Secretary of the B16 Standards
Committee.
Requests for interpretation should preferably be submitted through the online Interpretation Submittal Form, The
forms accessible at http://go.asmeorg/InterpretationRequest. Upon submittal ofthe form, the Inquirer will receive an
automatic e-mail confirming receipt.
Ifthe Inquirer is unable to use the online form, he/she may e-mail the request to the Secretary of the B16 Standards
Committee at SecretaryB16@asme.org, or mail itto the above address. The request for an interpretation should be clear
and unambiguous. It is further recommended that the Inquirer submit his/her request in the following format
Subject: Cite the applicable paragraph number(s) and the topic of the inquiry in one or two words.
Edition: Cite the applicable edition of the Standard for which the interpretation is being requested
Question: Phrase the question as a request for an interpretation of a specific requirement suitable for
general understanding and use, not as a request for an approval of a proprietary design or
situation. Please provide a condensed and precise question, composed in such a way that a
yes" or “no” reply is acceptable,
Proposed Reply(ies): _Providea proposed reply(ies) inthe form of Yes" or*No,’ with explanation as needed. Ifentering
to more than one question, please number the questions and replies,
Background Information: Provide the Committee with any background information that will assist the Committee in
understanding the inquiry. The Inquirer may also include any plans or drawings that are
necessary to explain the question; however, they should not contain proprietary names or
information.
Requests thatare notin the format described above may be rewritten inthe appropriate format by the Committee prior
to being answered, which may inadvertently change the intent of the original request.Moreover, ASME does not act as a consultant for specific engineering problems or for the general application or
understanding of the Standard requirements. If, based on the inquiry information submitted, itis the opinion of
the Committee that the Inquirer should seek assistance, the inquiry will be returned with the recommendation
that such assistance be obtained.
ASME procedures provide for reconsideration of any interpretation when or ifadditional information that mightaffect,
an interpretation is available. Further, persons aggrieved by an interpretation may appeal to the cognizant ASME
Committee or Subcommittee. ASME does not “approve,” “certify, “rate” or “endorse” any item, construction, proprietary.
device, or activity.
Attending Committee Meetings. ‘The B16 Standards Committee regularly holds meetings and or telephone confer:
‘ences that are open to the public. Persons wishing to attend any meeting and/or telephone conference should contact the
Secretary of the B16 Standards Committee.ASME B16.9-2018
SUMMARY OF CHANGES
Following approval by the ASME B16.9 Committee and ASME, and after publicreview, ASME B16.9-2018 was approved by
the American National Standards Institute on September 29, 2018.
In ASME B16.9-2018, the US. Customary tables formerly in Mandatory Appendix | have been merged with the Metric
tables in the main text; the tables have been redesignated, Mandatory Appendix I deleted, and the cross-references
updated accordingly. In addition, this edition includes the following changes identified by a margin note, (18). The
Record Number listed below is explained in more detail in the "List of Changes in Record Number Order” following
this Summary of Changes.
Page Location Change (Record Number)
1 14 First paragraph editorially revised
1 15.1 References to Mandatory Appendix II
editorially revised
22 Revised in its entirety (17-1543)
Section 5 Revised (17-1543)
624 In subpara, (c),“3D" revised to "3D radius”
(07-1543)
a Section 9 Revised in its entirety (17-1543)
Table 5-1 Added (17-1543)
8 Table 6.1-2 Formerly Tables 2 and 1-2; illustration
within table revised (17-1543)
10 Table 6.1-5 Formerly Tables § and IS; General Note
editorially redesignated as Note (1), and
Note reference added to the illustration
uw Table 61-6 Formerly Tables 6 and 1-6; in ttle, "3D"
revised to "3D Radius” and in 45-deg
elbow entry for NPS 30,°964" mm revised
to "946" mm (17-1543)
23 Table 8-1 Formerly Table 12; Note (2) revised (17-
1543)
24 Figure 8-1 Editorially redesignated from Figure 1
28 Mandatory Appendix Redesignated from Mandatory Appendix II
‘updated (17-1543)LIST OF CHANGES IN RECORD NUMBER ORDER
Record Number changes
17-1543 Revised Table 6 title from “3D” to “3D Radius" in the Contents, Revised the Foreword
Revised section 2.2 in its entirety. Revised section 5. Revised "3D" to “3D radius" in
section 6.2.4 Revised section 9 in its entirety, Replaced the figure in Tables 2 and [-2,
Revised “3D" to "3D Radius" and "64" to"946" in Table 6, Revised the wording of Note
(2) in Table 12, Revised “3D” to “3D Radius" in Table I-6, Made multiple revisions in
Mandatory Appendix I(18)
(a)
ASME 169-2018
FACTORY-MADE WROUGHT BUTTWELDING FITTINGS
1 SCOPE
1.1 General
This Standard covers overall dimensions tolerances,
ratings, testing, and markings for factory-made
wrought buttwelding fittings in sizes NPS % through
NPS 48 (DN 15 through DN 1200).
1.2 Special Fittings
Fittings may be made to special dimensions, sizes,
shapes, and tolerances by agreement between the man:
tufacturer and the purchaser.
1.3 Fabricated Fittings
Fabricated laterals and other fittings employing circum-
ferential or intersection welds are considered pipe fabrl-
cation and are not within the scope of this Standard,
Fabricated lap joint stub ends are exempt from the
above restrictions, provided they meet all the require-
ments of the applicable ASTM material specification
listed in section 5,
1.4 Relevant Units
‘This Standard states values in both SI (Metric) and US.
Customary units. These systems of units are to be
regarded separately as standard. Within the text and
tables, the US. Customary units are shown in parentheses.
‘The values stated in each systemare not exact equivalents;
therefore, itis required that each system of units be used
Independently of the other. Combining values from the
two systems constitutes nonconformance with the
Standard
The designation for size is NPS for both Metric- and
Customary-dimensioned fittings. Fitting pressure rating
associated with the connecting wall thickness of
pipe of equivalent size and material,
1L5 References
5.1 Referenced Standards. Standards and specifica
tions adopted by reference in this Standard are shown in
Mandatory Appendis I. It Is not considered practical to
Identify the specific edition of each standard and specif
cation in the individual references. Instead, the specific
edition reference is identified in Mandatory Appendix
1. A product made in conformance with a prior edition
of referenced standards and in all other respects
conforming to this Standard will be considered to be
in conformance.
1.5.2 Codes and Regulations. A fitting used under the
jurisdiction of the ASME Boiler and Pressure Vessel Code
(BPVC), the ASME Code for Pressure Piping, or a govern-
mental regulation is subject to any limitation of that code
or regulation. This includes any maximum temperature
limitation or rule governing the use of a material at
low temperature.
1.6 Service Conditions
Criteria for selection of fitting types and materials
suitable for particular fluid service are not within the
scope of this Standard,
1.7 Welding
Installation welding requirements are outside the scope
of this Standard,
1.8 Quality Systems
Nonmandatory requirements relating to the fitting
manufacturer's Quality System Program are described
in Nonmandatory Appendix A,
1.9 Convention
For determining conformance with this Standard, the
convention for fixing significant digits where limits
(maximum and minimum values) are specified shall be
as defined in ASTM E29. This requires that an observed
forcalculated value be rounded offtothenearestunitinthe
last right-hand digit used for expressing the limit. Decimal
values and tolerances do not imply a particular method of
measurement.
1.10 Pressure Rating Designation
Class followed by a dimensionless number Is the des-
ignation for pressure-temperature ratings. Standardized
designations for langes per ASME B16.5 referenced in this
Standard are Classes 150, 300, 600, 900, 1500, and 2500.
2 PRESSURE RATINGS
2.1 Basis of Ratings
‘The allowable pressure ratings for fittings designed in
accordance with this Standard may be calculated as for
straight seamless pipe of equivalent material (as
shown by comparison of composition and mechanical
properties in the respective material specifications) in
accordance with the rules established in the applicable
sections of ASME B31, Code for Pressure Piping. For
the calculation, applicable data for the pipe size, wallas)
ASME 8169-2018
thickness, and material that are equivalent to that ofthe
fitting shall be used. Pipe size, wall thickness (or schedule
number), and material identity onthe fittingsare in lieu of
pressure rating markings.
2.2 Design of Fittings
2.2.1 Acceptable Design Methods. The design of
fittings shall be established by one of the following
methods:
(@ mathematical analyses contained in nationally
recognized pressure vessel or piping codes (e.g,, ASME
313 para. 304.2 for elbows and para, 304.3 for tees).
(2) proof testing in accordance with section 9 of this
Standard.
(©) experimental stress analysis, such as described in
[ASME BPVC, Section VII, Division 2, Annex 5.F with val
dation of results, Hydrostatic testing can be used to vali
date experimental results.
(@) detailedstress analysis (eg, finite element method)
‘with results evaluated as described in ASME BPVC, Section
VIII, Division 2, Part 5 with validation of results. Strain
measurement, photoelastic testing, or hydrostatic
testing can be used to validate calculated results.
2.2.2 Design Thickness. To meet design or manufac-
turing requirements itis expected that some portion of
formed fittings may have to be thicker than the pipe wall
with which the fitting is intended to be used. The math-
ematical analyses, if used, may take into account such
thicker sections,
2.2.3 Records. Copies of English-language records of
the mathematical analysis, the suecessful proof test, or
both shall be made available to the purchaser or regula-
tory authority upon request.
3 SIZE
NPS, followed by a dimensionless number, is the des-
ignation for nominal fitting size, NPS is related tothe refer-
ence nominal diameter, DN, used in international
standards. The relationship is, typically, as follows
bw. Nps.
5 %
20 %
25 1
32 %
0 1%
50 2
6 ™%
80 3
100 4
NOTE: For NPS > 4, the equivalence is DN = 25 NPS.
4 MARKING
4.1 Standard Marking
Each fitting shall be permanently marked to show the
following:
(a) manufacturer's name or trademark
() material identification, either the ASTM or ASME
grade designation
(©) schedule number! or nominal wall thickness in mm
(@) size — the nominal pipe size (NPS) identification
number related to the end connections shall be used
(@) compliance — see para. 4.4 for standard and special
fitting marking
‘A manufacturer may supplement these mandatory
markings with others, including a DN size designation,
bbut confusion with the required marking shall be avoided.
4.2 Exceptions
Where the size of the fitting does not permit complete
marking, the identification marks may be omitted in
reverse of the order presented in para. 4.1
4.3 Depth of Stamping
Where steel stamps are used, care shall be taken so that
‘the marking is not deep enough or sharp enough to cause
cracks or to reduce the wall thickness of the fitting below
the minimum allowed.
4.4 Compliance
4.4. Standard Fittings, That the fitting was manufac
tured in conformance with this Standard, ineluding all
dimensional requirements, is certified by a prefix "WP"
in the material grade designation marking,
4.4.2 Special Fittings. That the fitting was manufac-
tured in conformance with this Standard, except that
dimensional requirements are as agreed between the
purchaser and the manufacturer, is certified by a supple:
‘mentary suffix to the material grade designation marking
as follows:
(a) “S58" of ASTM A960 applies for fittings in accor-
dance with ASTM A234, ASTM A403, and ASTM A420.
(b) "S8" applies for fittings in accordance with ASTM
ABIS.
(€) "SPLD" applies for fittings in accordance with ASTM,
B361, ASTM B363, and ASTM B36,
"Sched umber sa dimensionless number that s widely use a3
convenient designation forusein ordering pipe and itings It snoroaly
sceoited witha group of standardized pipe wal thicknestes. Refer to
|ASMES6.,0Mand ASME 036.19 or complete detalsonpipeschedule
rumbers.ASME 169-2018
5 MATERIAL
Wrought fittings covered by this Standard shall be in
accordance with ASTM A234, ASTM A403, ASTM A420,
ASTM A815, ASTM B361, ASTM B363, ASTM B366, or
the corresponding specification listed in ASME BPVC,
Section Il. The term “wrought” denotes fittings made of
pipe, tubing, plate, or forgings. For purposes of deter-
‘mining proof testing requirements of section 9, the mate-
rials are grouped by similar properties as shown in Table
Se,
Fittings made from block forgings may only be supplied
subject to agreement between the manufacturer and
purchaser, Such fittings need not meet the requirements
of section 7.
6 FITTING DIMENSIONS
6.1 General
This Standard provides for a fixed position for the
welding ends with reference to either the centerline of
the fittings or the overall dimensions. Dimensional re-
quirements for these fittings are in Tables 6.1-1
through 6.1-11,
6.2 Special Dimensions
6.2.1 Fatigue Loading. For applications where fatigue
loading isa concern, required minimum dimensions shall
be furnished by the purchaser,
6.2.2 Bore Diameter. Bore diameters away from the
ends are not specified. If special flow path requirements
are needed, the bore dimensions shall be specified by the
purchaser.
6.2.3 Stub Ends. Service conditions and joint construe
tion often dictate stub end length requirements.
Therefore, the purchaser must specify long or short
pattern fitting when ordering, [See General Note (b) in
Table 61-91
6.2.4 Segmental Elbows. Factory-made segments of
short radius, long radius, and 3D radius elbows may
be made to meet customer angle requirements, With
the exception of the B dimension, factory-made segments
of elbows shall meet all other requirements of this
Standard. The B dimension for segmented elbows can
be calculated as follows:
For segments of 90-deg elbows
B= A x tan(0/2)
where
A = dimension A for appropriate 90-deg elbow being
segmented from
(a) Table 6.1-1 for long radius elbow, mm (in.)
(B) Table 6.1-4forshortradius elbow, mm (in.)
(©) Table 6.1-6 for 3D radius elbow, mm (in)
senter-to-end dimension for segmented elbow
ingle of segmented elbow — 30 deg, 60 deg, 75
deg, etc.
When special elbows are intended for field segmenting,
the outside or inside diameter tolerance hall be furnished
‘throughout the fiting by agreement between the manu-
facturer and the purchaser. Any mismateh on the outside
or inside diameter needs to be corrected in the field by
grinding, back-welding, or bridging of weld to meet the
applicable piping code requirements. Although the
elbow intended for field segmenting must meet the re-
quirements of this Standard, once the field-segmented
elbow is cut, it is not a B16.9 product.
7 SURFACE CONTOURS
Where adjacent openings in fittings are not in parallel
planes, they shall be joined by a circular arc or radius on
the external surfaces. The arcor radius may be terminated
in tangents, Except as provided for block forgings (see
section 3), the projected profile of external surfaces of
fituings shall not have sharp intersections (corners)
and/or collapsed arcs
8 END PREPARATION
Unless otherwise specified, the details of the welding
end preparation shall be in accordance with Table 8-1,
‘Transitions from the welding bevel to the outside
surface of the fitting and from the root face to the
inside surface of the fitting lying within the maximum.
‘envelope shown in Figure 8-1 are at the manufacturer’s
‘option, except as covered in Note (5) of Figure 8-1 or
unless otherwise specifically ordered,
9 DESIGN PROOF TEST
9.1 Required Tests
Proof tests shall be made as set forth in this Standard
‘when the manufacturer chooses proof testing to qualify
the fitting design. The pressure design thickness for
critical areas of each type of fitting shall be determined
and recorded. The design thickness for ther sizes or wall
thicknesses covered in para, 9.4 shall require a similar
percentageof reinforcement proportional by size or thick:
ness, Critical areas are normally the inner radius of
elbows, the crotch of tees and crosses, the knuckle
radius of caps, and the large ends of reducers. Proof,
test shall be based on the computed burst pressure of
the fitting and its eonnecting piping as defined in para. 9.3,
9.2 Test Assembly
9.2.1 Representative Components. Each fitting type
shall be tested, except that testing of certain types of
fittings can qualify other fittings as described in Table
as)ASME 8169-2018
9.2.1-1 Fittings from the same material group that have
the same basic design configuration and method of manu
facture shall be selected from production for testing and
shall be identified as to material, grade, and lot, including
heat treatment.
(a) Examples of diferent basic configurations include
the following
{Z) elbows of different centerline radius (short
versus long versus 3D radius)
2) tees or crosses formed in full encircling dies
versus cold or hot extrusion using a pad die
{@) concentric versus eccentric shaped reducers
(4) caps of different configurations
(0) Examples of different methods of manufacture
include the following:
{G) mandrel-formed elbows versus elbows welded
from tivo halfshells versus bent pipe
(2) cole-formed tees or erosses versus extruded tees
versus machined from solid forgings
(3) conical reducers versus bell-shaped (integral
tangents) reducers
(4) caps formed by extruding through a draw ring
versus ends cut off cold-formed tees versus machined
from solids
(G) hot forming versus cold forming or using ditfer-
‘ential heating
9.2.2 Other Components. straight seamless or welded
pipe whose calculated bursting strength is at east as great
asthe proof test pressure as calculated in para, 9.3 shall be
‘welded to each end of the fitting to be tested. Pipe sections
may have the nominal wall greater than the thicknessind
cated by the fitting markings. That greater thickness shall
notexceed 1.5 times the fitting markings wall Any internal
misalignment greater than 1.5 mm (0.06 in.) shall be
reduced by taper boring at a slope not greater than
1,3. Any other unequal wall welding preparation shall
be in accordance with ASME B16.25. Length of pipe
sections for closures shall be as follows:
(a) Minimum length of pipe shall be one pipe 0.D. for
NPS 14 (DN 350) and smaller.
() Minimum length of pipe shall be one-half pipe 0.0.
for NPS greater than 14 (DN 350).
9.3 Test Procedure
‘To qualify a fitting by proof testing, the fitting shall be
tested as described herein and shall withstand the
minimum calculated pressure for at least 180 s (3 min)
9.3.1 Number of Tests. Atleastthree specimen tests for
‘each fitting, joint size, or configuration are recommended.
‘The test factor, fis based on the number of specimen tests
performed. The test factor, f, described in Table 9.3.1-1, is,
used in the computed proof test pressure equation.
NOTE: Tests of geometrically identical fittings of different sizes
And wal thicknesses that have overlapping ranges 2s described
in para. 9-4 may be combined to establish the test factor applied
toa set of fittings. For example, testingan NPS 2, NPS 8, and NPS
24 ofthe same basic design configuration and method of man:
facture would qualify fora test factor of 1.0 and would quality
fittings ofthat type from NPS.1 to NPS 48 and thickness ranges in
accordance with para. 9.42
9.3.2 Computed Test Pressure. The minimum proof
‘est pressure shall be atleast equal to the value computed.
by the following equation and rounded to the nearest 0.2
MPa (25 psi}:
specified outside diameter of pipe
test factor from Table 9.3.1-1
computed minimum proof test pressure for fitting
actual tensile strength of the test fitting, deter:
‘mined on a specimen representative of the test
fitting, which shall meet the tensile strength re-
quirements ofthe applicable material of section 5
‘nominal pipe wall thickness of the pipe that the
fitting marking identifies
NOTE: Any dimensionally consistent system of units may be
used
9.3.3 Test Media, The test shall be conducted with
water. Trapped air in the assembly shall be purged
prior to the start of the test.
9.3.4 Application of Test Pressure. A pump with
suitable pressure capacity shall be used to uniformly
Increase the test pressure through yield. Any gauges
attached directiy to the assembly may be removed and
the pressure again uniformly increased at a suitable
rate until either failure or the required test pressure
has been achieved and held for 180 s, It is acceptable
to increase pressure in the test assembly to accommodate
reductions in test pressure caused by yielding in the test
assembly.
9.3.5 Recording Pressure-Time Readings. Test pres-
sure versus time readings shall be recorded periodically.
‘This may be achieved through electronic means or instri-
mentation with appropriate resolution and range that has
been calibrated prior to the test.
9.3.6 Test Temperature. The temperature(s) of the
test fluid and components of the test assembly may
not intentionally be increased or decreased if doing so
would significantly affect a mechanical property or
response of any component of the test assembly while
it is under test.
9.3.7 Test Results. The test may be terminated if any
component (eg, fitting, pipe segment, fabrication weld) of
the test assembly loses containment. The test ofthe fitting
shall be considered unsuccessful if there is any loss of,ASME 169-2018
containment from the tested fitting before or during the
time its to be held at or above the computed pressure. A
proof test is successful only when the fitting being tested
withstands for at least 180 s a continuous proof test pres-
sure of at least the computed minimum (see para. 9.3.2)
without exhibiting loss of containment or evidence of,
cracking, fssuring, tearing, ete. in the fitting under test.
9.4 Applicability of Test Results
Itis not necessary to conduct an individual test of
fittings with all combinations of sizes, wall thicknesses,
and materials. A successful proof test on one representa:
tive fitting may qualify others to the extent described in
paras. 94.1, 9.42, and 9.43,
9.4.1 Size Range. One test fiting may be used to qualify
similarly proportioned fittings as defined in para, 9.2.1
with a size range from one-half to twice that for the
tested fitting
9.4.2 Thickness Range. One test fitting may be used to
qualify similarly proportioned fittings as defined in para.
9.2.1 with ¢/D ranges from one-half to three times that for
the tested fitting,
9.4.3 Material Grades. The pressure-retaining capac-
lay of a fitting of the same basic design configuration and
‘method of manufacture made from material in a material
{groupas listed in Table 5-1 will be directly proportional to
the tensile properties of the materials. Therefore itis nec:
essary to test only a representative fitting to prove the
design of a fitting for all materials in a group.
9.5 Maintenance of Results
‘The manufacturer shall have a quality control (QC)
program that verifies the manufacturing process and
rmaterial used and ensures that the resulting geometry
and design thickness of the fittings or joints manufactured
reasonably conform to the geometries tested. The QC
program shall control the manufacturing drawings and
maintain the QC records showing conformance to
these drawings.
Tests made in accordance with and at the time of
previous editions of this Standard are not intended to
be nullified by the changes made in this edition’s test
procedure and requirements, provided the design criteria
for the type tested can be determined.
Whenever a significant change is made in the geometry
‘or method of manufacture, the manufacturer shall either
retest the new production or show by analysis that the
change would not affect the results of prior tests.
Examples of changes in geometry that require retests,
are a change in starting thickness or revised tooling.
configuration
9.6 Proof Test Report
‘Aroport ofthe testing for each joint configuration shall
be prepared and shall include
(a) description ofthe test, including the number oftests
and f factor used to establish the target proof test
{) instrumentation and methods of calibration used
{©} material test reports for the assembly's materials
(Acting, pipe, and end caps, if used)
{(@) actual final test pressures achieved for each test
{6) length oftime at orabove the required test pressure
(see para. 93.4)
(J calculations performed
() location of rupture, if any, including a sketch or
photographs of the assembly
{(h) pressure design thickness required in crtial areas
{@ certification by the manufacturer and by a licensed
Authorized Inspector or other third party having experi
fence in pressure component design and testing
10 PRODUCTION TESTS
Hydrostatic testing of wrought fittings Is not required
by this Standard. All fittings shall be capable of with-
standing, without leakage or impairment of serviceability,
a hydrostatic test pressure required by the applicable
Piping code for seamless pipe of material equivalent to
the fitting material, and of the size and wall thickness
the fitting marking identifies
11 TOLERANCES
Tolerances for fittings are shown in Table 11-1 and
apply to the nominal dimensions given in Tables 6.1-1
through 6.1-11. Where given in the tables, the
minimum and maximum dimensions are based on
these tolerances. The listings with decimals do not
imply precision measurement, such as use of vernier,
micrometer, or electronic readout equipment.ASME 8169-2018
as) Table 5-1 Material Groupings
‘Group Ne. Material ‘Standards
1 Carbon and lowalloy stools [ASTM A234/A234M and ASTM 4420/4420
2 Austenitic and duplex stainless steels ASTM A403/A4O3M and ASTM AB15/A81SM_
3 Nickel alloys ASTM 8366/8366M
4 Aluminum alloys AST 8361
s ‘itanlum alloys AST 8363,ASME 169-2018
Table 6.1-1 Dimensions of Long Radius Elbows
Ay
res
Genter-to-End, mm (in)
Nominal Pipe Size Outside Diameter at Bevel ‘S0-deg Elbows, “45-deq Elbows,
(wes) mm (in) 4
% 213 (084) 38 (150) 16 (062)
% 267 (105) 38 (150) 19 (075)
1 334 (132) 38 (150) 22 (08)
% 422 (46) 48189) 25 (1.00)
% 483 (2.90) 57 (225) 29 (1.12)
2 603 (238) 76 300) 35 (138)
2 730 (288) 95 (375) 40175)
3 889 (350) 114 (450) 51 (200)
3% 1016 (4.00) 133 (525) 57 (225)
4 1143 (450) 152 (600) 64 (250)
5 L413 (836) 190 (750) 79 (312)
6 1683 (662) 229 900) 95 (375)
2191 (862) 305 (12.00) 127 (500)
10 273.0 (1075) 381 (15.00) 159 (625)
2 3238 (1275) 457 (1800) 190 (7:50)
“ 3556 (1400) 533 (21.00) 222 (075)
16 405. (16.00) 610 (24.00) 254 (10.00)
18 4570 (1800) 686 (27.00) 286 (11.25)
20 5080 (20.00) 1762 (30.00) 318 (1250)
2 5590 (22.00) 838 (33.00) 343 (1350)
Pa 100 (2400) 914 (3600) 381 (1500)
26 {560.0 (26.00) 991 (39.00) 406 (1600)
28 711.0 (2800), 1067 (42.00) 438 (1725)
30 7620 (30.00) 1 183 (45.00) 470 (1850)
2 18130 (3200) 2.219 (48.00) 502 (1975)
Fa ‘8040 (34.00) 1.295 ($1.00) 533 (21.00)
36 9140 (36.00) 1.372 (54.00) 565 (22.25)
28 965.0 (38.00) 1 488 (57.00) 600 (23.62)
0 10160 (40.00) 1524 (60.00) 682 (2480)
2 1067.0 (42.00) 1.600 (62.00) 660 (26.00)
“ 41 1180 (44.00) 1676 (66.00) 695 (27.38)
46 11680 (46.00) 1 758 (69.00) 727 (2862)
4 4.2190 (48.00) 1.929 (72.00) 759 (2988)as)
Table 6.1-2 Dimensions of Long Radius Reducing Elbows
ASME 8169-2018
inom
id
ZG
‘Nominal Outside Diameter ‘Nominal Outside Diameter
Pipe at Bevel, mm (in) Center. Pipe at Bevel, mm (in) Center-
Size to-End, sire ton,
(NPS) Large End Small End__A, mm (in) (NPS) Large End Small end__4, mm (in)
rey 603 (238) 483190) 76(300) | 10«8 2730 (1075) 219.1 (862) 381 (1500)
20% 603 (238) 422 (16) —76(300) | 10«6 2730 (1075) 1683 (662) 381 (1800)
2a 603 (238) 38.4(132) —76(8.00) | 10«5. 2730 (1075) 1413 (656) 381 (1500)
Wynd 730 (288) 03(238) 95875) | 12 «10 3238 (1275) 2730 (1075) 457 (1800)
Zant 730 (288) 483/190) 95375) | 12«8. 3238 (1275) 219.1 (862) 457 (1800)
x1 730 (288) 422 (16) 95(875) | 12«6 3238 (1275) 1683 (662) 457 (1800)
anh a9 (350) 73.0 (288) 114450) | 1412 3556 (1400) 3238 (1275) 533 (21.00)
a2 889350) 603(238) 114450) | 14x 10 3556 (1400) 2730 (1075) 533 (21.00)
ant 889 (350) 483 (190) 114(450) | 14x, 3556 (1400) 219.1 (862) 533 (21.00)
By x3 1016 (400) 889 (350) 133525) | 16 « 14 4054 (1600) 355.5 (1400) 610 (2400)
3% x2% — 101.6(400) 730286) 133525) | 16 12 4064 (1600) 3238 (1275) 610 (2400)
and 1016 (4.00) 603.238) 133525) | 16x10 4084 (1600) 2730 (1075) 610 (28.00)
4am 1143 (450) 1016 (400) 152 (600) | 18 «15 4570 (1800) 406.4 (1600) 686 (27.00)
ana 1143 (450) 889 (350) 152 (600) | 18 «14 4570 (1800) 355.5 (14.00) 686 (27.00)
4am 1143 (4.50) 73.0(288) 152 (600) | 1912 457.0 (18.00) 323.8 (12.75) 686 (27.00)
aud 1143 (450) 603 (238) 152 (600) | 18 « 10 4570 (1800) 2730 (1075) 686 (27.00)
sea 1413 (656) 1143450) 190750) | 2018. 5080 (2000) 457.0 (18.00) 762 (30.00)
53% 1413 (656) 1016 (400) 190 (750) | 20 16 5080 (2000) 4064 (16.00) 762 (30.0)
saa 14136656) 889 (350) 190750) | 20414 5000 (2000) 355.6 (1400) 762 (30.00)
5D 1413656) 730(288) 190750) | 2012 5000 (2000) 323.8 (1275) 762 (30.00)
2010 5080 (20.00) 273.0 (1075) 762 (30.00)
6x5 1683 (662) 1413656) 229 (8.00)
exe 1683 (662) 1143450) 229900) | 24x22 5100 (2400) $58.0 (2200) 914 (3600)
baa, 1683 (662) 1016 (400) 225 (900) | 24« 20 6100 (2400) S080 (2000) 914 (3600)
6x3 1683 (662) 889 (350) 225 (000) | 2418 6100 (2400) 457.0 (18.00) 914 (36.00)
216 6100 (2400) 4064 (1600) 914 (3600)
x6 219.1 (862) 1683 (662) 305 (1200) | 24 18 6100 (2400) 3556 (1600) 914 (3600)
axs 210.1 (862) 1413556) 305 (1200) | 24 «12 6100 (2400) 3238 (1275) 914 (3600)
axa 219.1 (8.62) 1143 (450) 305 (12.00)ASME 169-2018
Table 6.1-3 Dimensions of Long Radius Returns
Pipe
size
(vrs)
4
16
18
20
2
24
NOTES:
Wa
LUZ
tacit eae
‘Outside
Diameter
at Bevel,
‘mm (in)
213 (0.4)
267 (1.08)
334 (132)
422 (1.66)
493 (1.90)
603 (238)
730 (2.28)
89 (350)
101.5 (4.00)
1143 (450)
1413 (656)
168.3 (682)
218 (862)
2730 (10.75)
3238 (12.75)
3556 (1400)
406.4 (16.00)
4570 (18.00)
5000 (20.00)
1559.0 (22.00)
6100 (24.00)
‘center
to:
center,
‘mm (in)
76 (3.00)
76 (800)
76 (3.00)
95 (875)
114 (450)
152 (600)
190 (750)
229 (9.00)
267 (10.50),
305 (12.00)
381 (15.00),
457 (18.00)
610 (2400),
762 (30.00),
914 (36.00)
1067 (42.00)
1219 (48.00)
1372 (54.00)
1524 (60.00)
1676 (66.00)
1929 (72.00)
[Note (1
Tacks
to:
Face,
mm (in)
48 (188)
51 (200)
56 (219)
70.275)
83 (325)
106 (419)
132 (619)
159 (625)
184 (725)
210 (825)
262 (10381)
313 (1231)
414 (1631)
518 (20:38)
619 (2438)
711 (2000)
813 (82.00)
914 (36.00)
1016 (40.00)
1118 (44.00)
1.219 (48.00)
(4) See Table 11-1 for tolerance fr alignment of ends
{2} Dimension 4 is equal to one-half of dimension 0.
Table 6.1-4 Dimensions of Short Radius Elbows
18
20
2
4
om
334 (132)
422 (166)
483 (180)
603 (238)
730 (289)
889 (350)
1016 (4.00)
1143 (450)
1413 (556)
1683 (6.62)
2194 (862)
2730 (1079)
3238 (1275)
3556 (1400)
4064 (1600)
as70 (1800)
5080 (2000)
5590 (22.00)
6100 (2400)
25 (1.00)
32 (125)
38 (150)
51 (200)
64 (250)
76 (300)
89 (3.50)
102 (4.00)
127 (6.00)
152 (6.00)
203 (8.00)
254 (1000)
305 (12.00)
356 (14.00)
406 (16.00)
457 (1800)
508 (20.00)
559 (22.00)
10 (2400)ASME 8169-2018
as) Table 6.1-5 Dimensions of Short Radius 180-deg Returns
Note (1) |= — 4—-|
‘Nominal Pipe Size ‘Outside Diameter at Bevel, Center-to-Center, Backto-Face,
iNPS) am (in) ‘0, (in) ‘Kemi (in)
1 33.4 (182) 51 (200) 1 (162)
% 422 (1.66) 64 (250) 52 (208)
w 403 (1.90) 76 (300) 224s)
2 603 (238) 102 (4.00) 81 19)
™% 730 (2.98) 127 (5.00) 100 (394)
3 88.9 (350) 152 (600) 121 475)
3% 1016 (4.00) 178 (7.00) 140 (550)
4 1143 (450) 203 (@.00) 159 (625)
5 1413 (558) 254 (1000), 197 (775)
6 168.3 (662) 305 (12.00) 237 (0.31)
8 2194 (862) 406 (16.00) 313. (1231)
10 2730 (1075) 508 (20.00), 391 (15.38)
2 323.8 (1275) 610 (2400) 467 (8.38)
u 355.5 (14.0) 711 (2800) 533 (21.00)
16 406.4 (16.00) 813 (92.00) 610 (2400)
16 457.0 (1800) 914 (3600) 686 (27.00)
20 508.0 (20.00) 1016 (40.00) 762 (30.00)
22 5500 (22.00) 1118 (44.00) 838 (33.00)
2 6100 (2400) 1.219 (48.00) 914 (36.00),
NOTE: (1) Dimension 4 is equal to one-half of dimension 0,
10ASME 169-2018
' sit sonmm tn
c=
— ox
Q
| B
—
a
a
! age eee
ne
: eS
1% 48.3 (1.90) ‘114 (4.50) 47 (1.88)
OS
5 a eee
ne
: So fe is
: ce eS
ee
a
; he Eee
: 0 SS
: SS
: ees
‘ ee
: a es
: Sep ee ea
: SS Ss
: ae
: omen mam
: 2 Ue
: wim ete
; re
: ee
: wns item rt
: okie
ee
2 0 USS USES
ee
+ ones zmz uae
2 SS ES ss
aASME 8169-2018
‘Table 6.1-7 Dimensions of Straight Tees and Crosses
Cone er
JT ' CZ ime fi
J i
eT
Nomina Pipe Sz ‘Oude Diameter at Bevel, Owe
i ‘nm unc vou an
"s 215 (089 25 (100 78 (10)
% 26.7 (1.05) 29 (1.12) 29 (1.12)
: es) me sets)
1% ‘42.2 (1.66) 48 (1.88) 48 (1.88)
1%, 48,3 (1.90) 57 (2.25) ‘57 (2.25)
2 603 (238) s+ a0) 403
cay 73.0 (2.88) 76 (3.00) 76 (3.00)
5 89 030 te 63 ec)
3% 101.6 (4.00) 95 (3.75) 95 (3.75)
4 1143 40) wos a} was)
; 1113 (556 sas 480) szacaa0)
1e83 (602) 113 602) nasa)
F Patee) rE roe
0 a0 1078) 216 (830 Heas0)
z 0 0299) 250 G00) 2 G0)
2 3556 (an 29 (1.0 29109
is toca ist 40s 420) 50s G20)
FA ‘ero usa 33350) 359)
% Souo (20a) 301 (500 sar 500)
a ssso (2am 906s) 906s)
ey 100 cua 422 (700 (709
26 660.0 (26.00) 495 (19.50) 495 (19.50)
| 70 aan sar nso) ins)
® eo (200) sso cae) 59 G20)
a biao (an $97 350 7350)
a soto (4a 63s 2500 635 @s00)
% stat (00) ors (2650 673 650)
i eso (saan) 7 (non neon,
a 16160 (400) 192980 ness
a 1 o«70 (200) rez 3000) mignon
ei 1180 a) 13 5200 102 4000)
G ‘tea (400) ssi (330) son 3150)
12190 (400) $09 5.00) s20 3300)
NOTES:
{() Outlet dimension Mf for NPS 26 and larger is recommended but not required,
{@) Dimensions applicable to crosses NPS 24 and smaller.
2ASME 169-2018
Table 6.1-8 Dimensions of Reducing Outlet Tees and Reducing Outlet Crosses
cc
JT \
4.
P|
jaa
Us +
Nominal Pipe Size
‘Outside Diameter at Bevel, mm (in)
Genter-to-End, mm (in)
curs) Run Outlet tum, € ‘Outlet, [Note (I)
keh 213 (088) 173 (068) 25 (1.00) 25 (1.00)
ann 21.3 (0.84) 13.7 (0.54) 25 (1.00) 25 (1.00)
We yn 26.7 (1.05) 21.3 (0.84) 29 (1.12) 29 (1.12)
Wen 26.7 (1.05) 17.3 (0.68) 29 (1.12) 29 (1.12)
eae 4032) 267 (1.05) 38 (150) 38 (150)
aaah 334 (132) 213 (08) 38 (150) 38 (150)
Wer thet 22 0.66) 34 (032) 190.88) 20.89
VAX 42.2 (1.66) 26.7 (1.05) 48 (1.88) 48 (1.88)
Theta 122 (1466) 213 (0.0) 480.88) 48 (199)
Tenth nt 493.4490) 22 (166) 57 225) 57 (29)
Leen 483 (1.90) 33.4 (1.32) 57 (2.25) 57 (2.25)
eaten 493 (150) 267 (105) 57 (25) 57 225)
Vex tan 48.3 (1.90) 21.3 (0.84) 87 (2.25) 57 (2.25)
2aeahy 60.3 (2.38) 483 (1.90) 64 (2.50) 60 (2.38)
2raat 03 (238) 922.66) 64 50) 57 (225)
2x2x1 03 238) 334 (132) 4 250) 51 200)
2x20% 603 238) 267 (1.05) 9 250) 46075)
By x Wynd 73.0 (2.88) 60.3 (2.38) 76 (3.00) 70 (2.75)
2h 2x Vy 73.0 (2.88) 48.3 (1.90) 76 (3.00) 67 (2.62)
Bex 2 01% 730 20) 22(166) 76.200) 64 250)
Bx Weed 73.0 (2.88) 33.4 (1.32) 76 (3.00) $7 (2.25)
aaah, 909 (350) 7309 206) 96 (338) 93 625)
axan2 09 (350) 603 (230) 06 6.30) 76 (300)
3x31 889 (350) 483 (1.90) 96 (338) 73 (80)
Sx3a1h 88.9 (3.50) 42.2 (1.66) 86 (3.38) 70 (2.75)
BY x 3x d 101.6 (4.00) 88.9 (3.50) 95 (3.75) 92 (3.62)
B+ ID 101.6 (4.00) 73.0 (2.88) 95 (3.75) 89 (3.50)
Beata n2 1016 00) 03 (238) 95 (75) 23 (25)
BAx SK 101.6 (4.00) 48.3 (1.90) 95 (3.75) 79 (3.12)
Anan sy 114.3 (4.50) 101.6 (4.00) 105 (4.12) 102 (4.00)
ant 1143 (450) 889 (350) 105 (412) 93 (258)
sear, 1143 (450) 730 (289) 105 (412) 95 (78)
axan2 1143 450) 03 (228) 10 (412) #9 @50)
antatls 1143 (450) 483 (190) 105 (412) 85 (38)
a3ASME 8169-2018
Table 6.1-8 Dimensions of Reducing Outlet Tees and Reducing Outlet Crosses (Cont'd)
‘Nominal Pipe Size
‘Center
‘End, mm (in)
(NPs) Run, € Outlet, M [Note (1)}
5a5e4 1413 658) 1143 (450) 124 (480) 117 (4.62)
52528 1413 6.56) 101.6 (4.00) 124 (400) 114 (450)
Sa5ea 1413 656) 88.9 (3.50) 124 (488) 111 (438)
Sx5x2% 1413 (656) 73.0 (288) 124 (489) 108 (425)
5u52 1413 (5.56) 603 (238) 124 (488) 105 (432)
ores 168.3 (662) 1413 (556) 193 (562) 137 (538)
6x6x4 168.3 (6.82) 1142 (6.50) 143 (562) 130 (5.12)
6x 643% 160.3 (6.62) 1016 (4.00) 143 (5.62) 127 (5.00)
62603 1683 (6.82) 88.9 (3.50) 143 (5.62) 124 (488)
62 642% 1683 (6.62) 73.0 (2.88) 143 (5.62) 124 (475)
ex0x6 21.1 (862) 1603 (662) 170 (7.00) 168 (6.62)
Brees 219.1 (8.62) 141. (6.56) 178 (7.00) 162 (638)
anaes 218.1 (8.62) 1143 (6.50) 17 (7.00) 156 (612)
B08 3% 219.1 (8.62) 101.6 (4.00) 170 (7.00) 152 (600)
10108 2730 (10.75) 219.1 (862) 216 (850) 208 (8.00)
10x 10%6 2730 (10.75) 1683 (6.62) 216 (250) 194 (762)
lox 10%5 2730 (10.75) 1413 (556) 210 (850) 191 (750)
101064 2730 (10.75) 1143 (450) 216 (850) 184 (725)
lex i2¥10 323.8 (1275) 2730 (1075) 254 (1000), 241 (950)
eee 3238 (12.75) 21911 (862), 254 (1000), 229 (300)
12x 1256 323.8 (1275) 168.3 (662) 254 (10.00), 219 (682)
12x 125 3238 (12.75) 1413 (556) 254 (1000) 216 (850)
e142 3555 (14.00) 3238 (1275) 279 (11.00), 270 (1062)
11410 3556 (14.00) 2730 (10775) 279 (11.00), 257 (1042)
e148 355.6 (14.00) 219: (B62) 279 (11.00), 248 (9.75)
e146 3556 (14.00) 160.3 (662) 279 (11.00), 238 (938)
16x 16414 406.4 (16.00) £3856 (14.00) 305 (1200), 305 (12.00)
16 16 = 12 406.4 (16.00) 3238 (12275) 305 (12.00) 295 (11.62)
16x 1610 406-4 (16.00) 2730 (10.75) 305 (1200), 23 (11.12)
16x 1688 406.4 (16.00) 219.1 (B82) 305 (1200), 273 (1075)
16 16% 6 406.4 (16.00) 168.3 (662) 305 (12.00) 264 (10.8)
18x 18416 457 (1800) 406.4 (16.00) 343 (1350), 330 (1300)
las 114 457 (1800) 3556 (1400) 343 (1350), 330 (1300)
1x 18 12 457 (1800) 3238 (1275) 343 (1350), 21 (1262)
181810 457 (18.00) 2730 (2075) 343 (1350), 308 (12:12)
181848 457 (18.00) 219.1 (B62) 343 (13.50) 208 (11.75)
20 = 20+ 18 508 (20.00) 4570 (18.00) 381 (15.00) 368 (1450)
202016 508 (20.00) 40644 (16.00) 381 (15.00) 356 (14.00)
202014 508 (20.00) 355.6 (14.00) 381 (15.0) 356 (14.00)
4ASME 169-2018
Table 6.1-8 Dimensions of Reducing Outlet Tees and Reducing Outlet Crosses (Cont’d)
Nominal Pipe Size
‘Outside Diameter
evel,
2
Center-to-End, mm (in)
(NPs) Run Outlet Run, C ‘Outlet, M [Note (1)}
20 20=12 508 (20.00) 323.8 (1275) 301 (15.00) 346 (13.62),
202010 508 (20.00) 2730 (1075) 381 (15.00) 333 (1312),
20208 508 (20.00) 2191 (862) 381 (15.00) 324 (1275),
22422420 559 (22.00) 5080 (2000) 419 (1650) 406 (16.00),
22 «22018 559 (22.00) 457.0 (1800) 419 (1650) 394 (1550),
22422 «16 559 (22.00) 4064 (1600) 419 (1650) 381 (15.00),
22022414 559 (22.00) 556 (14.00) 419 (1650) 381 (15.00)
2222 «12 559 (22.00) 238 (1275) 419 (1650) 371 0462),
222210 559 (22.00) 27309 (1075) 419 (1650) 359 (16.12)
2424 «22 610 (2400) 559. (22.00) 432 (17.00) 432 (17.00),
24424 20 610 (2400) 508.0 (20.00) 432 (1700) 432 (1700),
24024 «10 610 (2400) 4970 (1800) 432 (17.00) 419 (650),
2424 «16 610 (2400) 4064 (1600) 432 (17.00) 406 (16.00),
2424 a 4 610 (2400) 355.6 (1400) 432 (17.00) 406 (16.00),
24024412 610 (2400) za (1275) 432 (17.00) 397 (5.62),
24x24 «10 610 (2400) 273.0 (1075) 482 (17.00) 384 (5.12),
262624 #660 (2600) 6100 (2400) 495 (1950) 483 (1300),
26 «26» 22 660 (26.00) 559. (22.00) 495 (1950) 470 (18.50)
2626 «20 660 (2600) 508.0 (20000) 495 (1950) 457 (1800),
26426418 «660 (2600) 4570 (1800) 495 (1950) 44401750)
26 «2616 660 (2600) 4064 (1600) 495 (1950) 432 (17.00),
262614 660 (26.00) 355. (14.00) 495 (1950) 432 (17.00),
26 «26412 660 (26.00) 322.8 (1275) 495 (1950) 422 (16.62),
2828 «26 711 (2800) 600. (2600) 521 (2050) 521 (2050)
28 «28 «24 71 (2800) 6100 (24.00) 521 (2050) 508 (20.00),
2028 «22 711 (2800) 5590 (22.00) 521 (2050) 495 (1950),
20 «20 «20 711 (2800) 508.0 (2000) 521 (2050) 483 (19.00),
28 «2818 711 (2800) 457.0 (1800) 521 (2050) 470 (1850),
28x28 «16 711 (2800) 4064 (1600) 521 (2050) 457 (1800),
20«284 14 711 (2800) 3550 (1400) 521 (2050) 457 (18.00),
28 «28% 12 711 (28.00) 323.8 (1275) 521 (2050) 448 (17.62)
3030028 762 (3000) 71109 (2800) 559 (22.00) 54 (2150),
03026, 762 (30.00) {6600 (2600) 559 (22.00) 546 (21.50),
30 «3024 762 (2000) 6100 (24.00) 559 (22.00) 533 (21.00),
3030 «22 762 (30.00) 5590 (22.00) 559 (22.00) 521 (2050),
30 «30% 20 762 (80.00) 508.0 (20000) 559 (22.00) 508 (20.00),
30«30 18 762 (30.00) 457.0 (1800) 559 (22.00) 495 (1950),
30.«30« 16 762 (30.00) 4064 (1600) 559 (22.00) 483 (19.00),
303014 762 (30.00) 55.6 (14.00) 559 (22.00) 483 (13.00),
asASME 8169-2018
Table 6.1-8 Dimensions of Reducing Outlet Tees and Reducing Outlet Crosses (Cont'd)
‘Nominal Pipe Size
‘Outside Diameter at Bevel, mm (in)
‘Conter-to-End, mm (in)
(NPs) Run ‘Outlot Run, ¢ Outlet, M [Note (1)}
0x30 12 762 (30.00) 3238 (1275) 559 (22.00), 473 (18062)
30x 3010 762 (30.00), 2730 (10275) 559 (22.00), 460 (18:12)
32x32430 813 (32.00) 7620 (30.00) 597 (2350), 584 (23.00)
3232428 213 (32.00) 7110 (28.00) 597 (2350), 572 (@25)
3232 «26 813 (92.00) £660. (26.00) 597 (2350) 572 (2250)
aea2024 213 (32.0) 6100 (24.00) 597 (2350), 559 (22.00)
aoe azer 2813 (32.00) 559.0 (22.00) 597 (2350), 546 (2150)
325 32~20 813 (92.00) 508.0 (20.00) 597 (2350) 533 (21.00)
9232018 813 (32.0) 4570 (18.00) 597 (2350), 521 (2050)
923216 813 (32.00) 406.4 (16.00) 597 (2350) 508 (20.00)
axa 213 (32.00) 3856 (14.00) 597 (2350), 508 (20.00)
34 34 «82, 864 (34.00) £8130 (32.00) £635 (25.00) 622 (2450)
343430 864 (34.00) 7620 (30.00) 635 (2500) 610 (24.00)
3340 28 864 (34.00) ‘7110 (28.00) 1635 (25.0) 597 (2350)
434126 864 (34.0) £660. (26.00) (635 (25.00) 587 (2350)
md 864 (34.00) 6100 (24.00) 635 (2500) 584 (2300)
a 34022 864 (34.00) 559.0 (22.00) 1635 (2500) 572 (2250)
3434420 864 (34.00) 508.0 (20.00) 1635 (25.00) 559 (22.00)
334018 864 (34.0) 4570 (18.00) 635 (2500) 546 (2150)
3x34 16 864 (34.00) 406.4 (16.00) 1635 (25.00) 533 (21.00)
36+ 36004 914 (3600) 18640 (34.00) 673 (2650) £660 (25.00)
36% 36 «32 914 (36.0) 18130 (32.00) 673 (2650) 648 (2550)
36 «36» 30 914 (36.00) 7620 (30.00) 673 (2650) 635 (25.00)
3636 «28 914 (36.0) ‘7110 (28.00) 673 (2650) 622 (2450)
3036 «26 914 (36.0) {6600 (26.00) 673 (2650) 622 (2450)
36x36 «24 914 (36.0) 6100 (24.00) 673 (2650) 610 (24.00)
36 x 36% 22 914 (36.00) 559.0 (22.00) (673 (2650) 597 (2350)
3636 «20 914 (36.00) 508.0 (20.00) 673 (2650) 584 (2300)
363618, 914 (36.00) 457.0 (18.00) 673 (2650) 572 (2250)
36x 36 «16, 914 (36.0) 406.4 (16.00) 673 (2650) 559 (22.00)
30 «38 «36 965 (38.00) 9140 (36.00) 711 (28.00), 711 (2800)
30x 3894 965 (38.00) ‘8640 (34.00) 711 (2800), 688 (27:50)
38x 38032 965 (38.00) £8130 (32.00) 711 (2800) 686 (27.00)
38» 38% 30 965 (38.00) 762.0 (3000) 711 (2800), 673 (2650)
an 38 «28 965 (38.00) ‘7110 (28.00) 711 (2800), 648 (2550)
30 «38 «26 965 (38.00) {660.0 (26.00) 711 (2800), 648 (2550)
a3 24 965 (38.00) 6100 (24.00) 711 (2800), 635 (25.00)
303822 965 (38.00) 155900 (22.00) 71 (2800), 622 (2450)
3838 «20 965 (38.00) 508.0 (20.00) 711 (2800) 610 (24.00)
303018 965 (38.00) 4570 (18.00) 711 (2800) 587 (2350)
16ASME 169-2018
Table 6.1-8 Dimensions of Reducing Outlet Tees and Reducing Outlet Crosses (Cont’d)
Nominal Pipe Size
‘Outside Diameter at Bevel, mm (in)
Center-to-End, mm (in)
(NPs) Run Outlet Run, C ‘Outlet M [Note (2)}
40 40+ 38 1.016 (40.00) 965. (98.00) 749 (2950) 749 (2950),
40 40«36 1 016 (40.00) 9140 (9600) 749 (2950) 737 (2800),
40% 40% 34 1086 (40.00) 660 (34.00) 749 (2950) 724 (2850),
4040 «32 1016 (40.0) ‘8130 (9200) 749 (2950) TL (2800),
40 « 40» 30 1 016 (40.00) 762.0 (3000) 749 (2950) 698 (2750),
40% 40» 28 1 016 (4000) 7119 (2800) 749 (2950) 6753 (2650)
40 « 40.» 26 1046 (40.0) {6600 (2600) 749 (2950) 673 (2650),
40« 4024 1 016 (4000) 6100 (24.00) 749 (2950) «660 (26.00),
40 « 40» 22 1.016 (40.00) 559.0 (22.00) 749 (2950) 648 (2550),
40 «40 «20 1 016 (4000) 508.0 (2000) 749 (2950) 635 (25.00),
40 « 40» 18 1046 (40.00) 4570 (1800) 749 (2950) 622 (2450),
42142 «40 1067 (4200) 10160 (40.00) 762 (30.00) 711 (2800),
4242 38 1067 (42.00) 965.0 (98.00) 762 (30.00) 711 (2800),
An A036 1067 (42.00) 9140 (3600) 762 (30.00) 711 (28.00),
ABAD 1.067 (42.00) 640 (3400) 762 (30.00) 711 (28.00),
A242 1067 (42.00) 8130 (92.00) 762 (30.00) 711 (28.00),
4262 «30 1067 (42.00) 762. (3000) 762 (30.0) 711 (28.00),
Ax 42 28 1 067 (42.00) 711.0 (2800) 1762 (30.00) 698 (2750),
42142 «26 1067 (42.00) {6500 (2600) 762 (30.00) 698 (2750),
2420 28 1067 (42.00) 6100 (2400) 762 (30.00) 660 (26.00),
42242022 1067 (42.00) 5590 (2200) 762 (30.00) 660 (26.00),
4242+ 20 1.067 (42.00) 508. (20000) 762 (30.00) 650 (26.00),
saan i8 1 067 (4200) 457.0 (1800) 762 (30.00) 648 (25.50),
AD AD «16 1087 (42.00) 4064 (1600) 762 (30.00) 635 (25.00),
eee) 1118 (44.00) 1067.0 (42.00) 813 (3200) 762 (30.00),
Aaa 40 1118 (44.0) 10160 (40.00) 813 (32.00) 749 (29.50),
eee’) 1118 (4400) 965.9 (38.00) 813 (32.00) 737 (29.00),
4 46 1118 (44.00) 9140 (2600) 813 (32.00) 728 (2850),
anaes 1 118 (44:00) 8640 (34.00) 813 (82.00) 724 (28.50),
eee) 1118 (4400) 8130 (32.00) 813 (3200) 1 (28.00),
eso 1118 (44.00) 762.0 (3000) 813 (32.00) 71 (28.00),
A444 28 1118 (44.0) 7110 (2800) 813 (32.00) 698 (2750),
A 44 0 26 1118 (4400) 1660. (26:00) 813 (32.00) 698 (2750),
ae 6h 28 1118 (44.00) 6100 (2400) 2813 (32.00) 698 (2750),
Maeda 22 1 118 (44.0) 5590 (22.00) 813 (3200) 686 (27.00),
4 44 20 41118 (44.00) 508.0 (2000) 813 (32.00) 686 (27.00),
4646 1168 (46:00) 11180 (44.00) 851 (3350) 800 (31.50),
46 «46 «42 1 168 (46,00) 1067.0 (4200) 851 (33.50) 787 (31.00),
46 «46 «40 1168 (46.00) 1 0160 (40.00) 851 (3350) 775 (30.50),
4646430 1168 (46.00) 965.0 (98.00) 851 (3350) 762 (30.00),
yASME 8169-2018
Table 6.1-8 Dimensions of Reducing Outlet Tees and Reducing Outlet Crosses (Cont'd)
‘Nominal Pipe Size
‘Outside Diameter at Bevel, mm (in)
‘Conter-to-End, mm (in)
(NPs) Run ‘Outlot Run, € Outlet, M [Note (1)}
Won 46 +36 1 168 (46.00) ‘9140 (36.00) 1851 (3350) 762 (3000)
46x 46004 1168 (46.00) 8640 (34.00) 851 (3350) 749 (2950)
46146432 1168 (46.00) 8130 (32.00) 851 (3350) 749 (2950)
404630 1 168 (46.00) 7620 (30.00) 1851 (5350) 737 (2900)
46 «46 «28 1168 (46.00) 711.0 (28.00) £851 (33:50) 737 (29.00)
16246 «26 1168 (46.00) {6600 (26.00) 851 (3350) 737 (23.00)
46146024 1168 (46.00) 6100 (2400) 1851 (3350) 724 (2850)
4646422 1168 (46.00) 559.0 (22.0) 851 (3350) 724 (2850)
4848 46 4.219 (48.00) 11680 (46.00) 889 (35.00) 838 (33.00)
aaa 1.219 (48.00) 11189 (44.00) £889 (35.00) 838 (33.00)
4049 «42 4.219 (48.00) 1067.0 (42.00), 1889 (35.00) 813 (3200)
40x49 «40 1.219 (48.00) 1.0160 (40.00) 1889 (35.0) 813 (3200)
an 4938 1.219 (48.00) 9650 (38.00) 1889 (35.00) 813 (3200)
4048 «36 1.219 (48.00) 9140 (36.00) 1889 (35.00) 787 (31.00)
404004 4.219 (48.00) ‘8640 (34.00) 1889 (35.0) 787 (31.00)
40248 «32 1.219 (48.00) £81390 (32.00) £889 (35.00) 787 (31.00)
4048030 1 219 (48.00) 7620 (30.00) 1889 (350) 762 (3000)
4848 «26 1.219 (48.00) 7110 (28.00) £889 (35.00) 762 (30.0)
49x18 « 26 1.219 (48.00) £660. (26.00) 1889 (35.00) 762 (30.00)
84824 1.219 (48,00) 6100 (2400) 1889 (35.00) 737 (29.00)
4a 40 022 41.219 (48.00) 559.0 (22.00) £889 (35.0) 737 (2300)
NOTE: (1) Outlet dimension M for run sles NPS 14 and lager s recommended but not required
18ASME 169-2018
Table 6.1-9 Dimensions of Lap Joint Stub Ends
Note square
Note (1.
Note (2) el The
Enlarge Section
ottep
Nominal Outside Diameter ‘Long Pattern Short Pattern Radius of Diameter of
ve Size of Barre, mm (i) engti Fin) Length min) let mim Gin) Lap, om ()
irs) ‘ns Min totes). (3) INates 2), (3) Note (SI) Note
e +228 (0.896) 20.5 (0.809) 76 (3.00) 51 (2.00) 3 (0.12) 35 (1.38)
w 28.1 (1.106) 259 (1.019) 76 (3.00) 51 (2.00) 3012) 43 (165)
1 350(179 —325(129 102 (400) 51 200) 3001) 51200)
1% 43.6 (1,716) 41.4 (1.629) 102 (4.00) Si (200) 5 (019) 64 (2.50)
% 48901955) 4751895) 102 4.0 51 200) (025) 73 (288)
2 e244 585,234) 152 (600) 64 250) ses 92662)
2% 75.3 (2.966) 72.2 (2.844) 152 (6.00) 64 (250) 8 (0.31) 105 (4.12)
2 913(35%6) 901 (2469) 152 (600) 6 (25 1903) 127 (60)
3% 104.0 (4.096) 100.8 (3.969) 152 (6.00) 76 (3.00) 10 (0.38) 140 (5.50)
4 167 (4593) 1135 (4465) 152 (600) 7600) = 104) 157,619)
s 1443 (5683) 1405 (6532) 208 (800) 76G0) 4) RCA
‘ 1713 (6743) 3675 (650) 202 (00) 9050 3 (050) a6 (050)
8 221078) 2183 (959 203 (20) —102 (400) 13 (050) 270 (1002)
a77acinois) 272300719) 254 (000) 127 (500) «13 (050) «324 (1275)
n pepo (12913) 3281 (12719) 254 (000) 152.600) ——«13(050) 381 (1500)
te a509 14170) asta ase 305 (1200) 152 (60S 13625)
16 LD (46H) 4056 15968) 305 1200) 152600) 13 (SE) 470 CRSA)
18 462018190) 4560 (17969) 305 (1200) 152(600) 13 (050) 533 (21.00)
2 518020240) 5070(19968) 305 (1200) 152 (600) 13 (050) S4 (2300)
2 565022240) 558021969) 306 (7200) 152 (00) 13 (050) «641 5.25)
2461604240) 090 (a2969) 305 (12.00) 152 (6013 (OS) 692725)
GENERAL NOTES:
(@) See Table 17-1 for tolerances.
() Service conditions and join construction often dictate stub end length requirements. Therefore, the purchaser must specify long or short
pattern Ming when ordering
Notes:
(G2) Gasket face finish shall be in acordance with ASME B16 for rsised-face ange.
(2) The lap thickness, 7, shall not be less than nominal pipe wall thickness. See Table 11-1 for tolerance
(G) When short pattern sub ends are usod with larger anges in Classes 300 and 600, with most sizes in Classes 900 and higher, and when long,
patter stubends reused with anger flanges in Clsses 150Dnd 2500, may be mecessay to increase the ength ofthe stubends inorder to
void covering the weld with the flange. Such increases in length shall bea matter of agreement between the manufacturer and purchaser,
(4) When special facings such as tongue and groove or male and female are employed, additional lap thickness must be provided and such
additional thickness shall be in addition to (not inluded in) the baste length, F
(6) These dimensions conform tothe radius established fr lp joint anges in ASME B165.
(6) Thisdimension conforms to standard machined facings shown in ASME B16.5. The back face of the lap shall be machined to conform tothe
surface on which it sits Where rig Joint facings are to be applied, use dimension K as given In ASME B16.
a9ASME 8169-2018
Table 6.1-10 Dimensions of Caps
| ory
‘Nominal Pipe Size OulsideDiameterat evel, Length, Emm (in) Limiting Wall Thickness Length, Ey, mm (in)
(nrs) mm (in) Note (1)] for Length, E, mm (in) Note (2)]
% 213 (084) 25 (1.00) 457 (018) 25 (100)
% 267 (1.05) 25 (1.00) 381 (015) 25 (1.00)
1 334 (132) 38 (150) 457 (018) 38 (150)
1% 422 (166) 38 (150) 493 (019) 33 (150)
% 403 (1.90) 38 (150) 5.08 (0.20) 38 (150)
2 603 (238) 38 (150) 559022) 6078)
2% 730 (288) 38 (150) 741 (028) 51 (200)
2 889 (3.50) 51 (200) 1762 (030) 58 (250)
a 1016 (4.00) 64 (250) 813 (032) 76 (300)
4 1143 (450) 64 (250) 1864 (034) 76 (300)
5 1413 (656) 76 (3.00) 9.65 (038) 89 (350)
6 1683 (6.62) 89 (350) 1082 (043) 102 (4.00)
8 219.1 (862) 102 (400) 1270 (050) 127 (5.00)
10 2730 (10.75) 127 (5.00) 1270 (050) 152 (600)
2 3238 (1275) 152 (600) 1270 (050) 178 (7.00)
1" 3556 (14.00) 165 (650) 1270 (050) 191 (7:50)
16 4064 (16.0) 178 (7.00) 1270 (050) 203 (8.00)
18 457.0 (1800) 208 (8.00) 1270 (050) 229,(9.00)
20 sono (20.00) 229 (9.00) 1270 (050) 254 (10.00)
2 5590 (22.00) 254 (1000) 1270 (050) 254 (10.00)
Pa 6100 (2400) 267 (1050) 1270 (050) 305 (12.00)
26 600 (26.00) 267 (1050) : .
20 711.0 (28.00) 267 (1050) -
20 7620 (20.00) 267 (1050) -
32 1130 (32.00) 267 (1050) 7 .
4 os.0 (3400) 267 (1050)
36 9140 (36.0) 267 (1050)
38 9650 (38.00) 305 (12.00)
0 10160 (4000) 305 (12.00) -
2 10670 (42.00) 305 (12.00)
“ 11180 (4400) 343 (1350)
46 11680 (46.00) 343 (1350)
4a 1.2190 (48.00) 343 (1350) :
(GENERALNOTE: The shape ofthese caps shall be elipoidaland shall conform tothe requlrements given inthe ASME Boller and Pressure Vessel
Code.
NoTEs:
(2) Length # apples for thickness not exceeding that given in column “Limiting Wall Thickness for Length, £7
(2) Length Bc applies for thickness greater than that given in column “Limiting Wall Thickness for Length, E"for NPS24 and smaller. For NPS26
and larger, length E, shall be by agreement between the manufacturer and purchaser.
20ASME 169-2018
Table 6.1-11 Dimensions of Reducers
[$$ “—
—=_
—
cree eae
= ‘um a
fe ae eee Ee on
in) id Renm tn _| 0) iam tad
Yn 26.7 (1.05) 21.3 (0.84) 38 (1.50)
nth 267 (1.05) 17.3 (0.68) 38 (1.50) Sat 141.3 (5.56) 114.3 (4.50) 127 (5.00)
eS oS ee ae (ere a
ny sas) ase) — siaon [sca ina@s) ese Gen L700)
Sit, nas) eee 12700)
Thed 42.2 (1.66) 33.4 (1.32) 1 (2.00) Sed 141.3 (5.56), 603 (2.38) 127 (5.00)
Moh atten) e705) S100
Pe CoM ca MT coe |e nee coe)
G4 gesaqee)tnasttsn 1400)
Veet 483 (1.90) ‘42.2 (1.66) 64 (2.50) 6x3% 168.3 (6.62) 101.6 (4.00) 140 (5.50)
ged 483 (1.90) 33.4 (1.32) 64 (2.50) 6x3 168.3 (6.62) 88.9 (3.50) 140 (5.50)
VAX % 48.3 (1.90) 26.7 (1.05) 64 (2.50) 6x24 168.3 (6.62) 73.0 (2.88) 140 [5.50]
Wee 48.3 (1.90) 21.3 (0.84) 64 (2.50)
sxe nastuoay sans (602) 12 (600
aes sean waaay —r6cao [evs cio) ints 69) 1560)
awh 603 (2.38) 42.2 (1.66) 76 (3.00) Bet 219.1 (8.62) 114.3 (4.50) 152 (6.00)
art faateay Sacra —pecaon) [asi zion) toneton 15260)
tre eaaesy 26708) FeC0)
rosa aranqunrs) nas (aus) 178.0)
Bax? 73.0 (2.88) 603 (2.38) 89 (3.50) 10*6 273.0 (10.75) 168.3 (6.62) 1178 (7.00)
2h 1% 73.0 (288) 48.3 (1.90) 89 (3.50) 105 273.0 (10.75) 141.3 (5.56) 178 (7.00)
heh 73.0 (288) 42.2 (1.66) 89 (3.50) 10«4 273.0 (10.75) 114.3 (4.50) 178 (7.00)
Mma neue) eam) G5)
2ety—saancia7sy 2730 907s) 208000
se% — savasy ranean —evcasy izes eenauinzs) aint (aca) 209 (80)
biz pastas cosesny mass) fiswe ——sennqiny) tca3(eua) 203 (80)
pum women wesc — ovasy izes sesoun7s) ianateq 203 (80)
aah 88.9 (3.50), 42.2 (1.66) 89 (3.50)
siz ssseqsno) sosaqaers) 39300
Pe one toe Rt co rena
BK x 2% 101.6 (4.00) 73.0 (2:88) 102 (4.00) 48 355.6 (14.00) 219.1 (8.62) 330 (13.00)
Bx? 101.6 (4.00) 603 (2.38) 102 (4.00) 14*6 355.6 (14.00) 168.3 (6.62) +330 (13.00)
Bux Ie 101.6 (4.00) 48.3 (1.90) 102 (4.00)
BRIA 101.6 (4.00) 42.2 (1.66) 102 (4.00) 16 « 14 406.4 (16.00) 355.6 (14.00) 356 (14.00)
cee cer Sean
422% nes asy rare gon —ro2(¢00) [tonto tea non) z730(G078) 35 (00)
422) treats ‘stoqesn —aeaqaon) [ieee tae anon) Biot aay” 386 00)
Sb tnalasy tna tooo)
ao os oa Coo |e ence een eth
fey tas sea (age) toa(aon) [ieee ts? nan) ese G40) 41 G50)
aASME 8169-2018
‘Table 6.1-11 Dimensions of Reducers (Cont'd)
‘Outside Diameter Tt ‘Outside Diameter
at Bevel, mm (in) vine at Bevel mm (i)
large Small Endto£nd, | size Large Small End-to-End,
(srs) End End Hmm (in)_| _(NPS) End End Hmm (in)
Tax 12 457 (1800) 3938 (1275) 381 (15.00)
aw10 457 (800) 2730 (1075) 381 (1500) | 3634 914 (3600) 864 (24.00) 10 (24.00)
3632 914 (3600) 813 (92.00) 610 (24.00)
ania 508 (2000) 457.0(1800) 508 (20.00) | 36 «30 914 (3600) 7623000) 410 (24.00)
20x16 508 (2000) 4054 (1600) S08 (20.00) | 35 «26 514 (3600) 660 (2600) 610 (24.00)
2014 508 (20.00) 355.6(1400) 508 (20.00) | 36 «24 914 (3600) 610 (2400) 610 (24.00)
20x12 508 (2000) 3238 (1275) 508 (20.00)
3836 965 (3800) 914 (36.00) 610 (24.00)
2x20 559 (2200) 508.0(2000) S08 (20.00) | 38 x34 965 (3800) 864 (34.00) 610 (28.00)
nae 559 (2200) 457.0(1800) 508 (20.00) | 38 + 32 65 (3800) 813 (22.00) 610 (24.00)
2216 5592200) 40641600) 508 (2000) | 38 « 30, 965 (38.00) 762 (30.00) 610 (24.0)
aoe 559 (2200) 355.4 (1400) 508 (20.00) | 38 = 28 65 (38.00) 711 (28.00) 610 (24.00)
an «26 965 (3800) 660 (26.00) 610 (24.00)
m2 610 (2400) 5580(2200) 504 (20.00)
2420 610 (24.09) 508.0(20.00) S08 (2000) |40~38 1 0164000) 965 (2800) 610 (24.00)
peer) 610 (2400) 457.0(1800) 508 (20.00) |40~36 1.016 (4000) 914 (3600) 610 (24.00)
24x16 610 (24.00) 406.4 (1600) Son (20.00) |40~34 1.016 (40.00) 64 (24.00) 610 (24.00)
40+32 1016 (4000) 813 (3200) 610 (24.00)
26x24 660 (2600) 610.0(2400) 610 24.00) |40~30 1.016 (4000) 762 (30.00) 610 (24.00)
26%22 60 (2600) 559.0(2200) 410 (24.00)
26x20 60 (2600) 5080(2000) 6102400) |42~40 1.067 (4200) 1016 (4000) 610 (24.00)
26018 660 (2600) 457.0(1800) 610 (2400) |42~38 1.067 (4200) 965 (3800) 610 (24.00)
42+36 1067 (4200) 914 (3600) 610 (24.00)
28x26 71 (2800) 660.0(2600) 610 (24.00) |42~24 1.067 (42.00) 864 (24.00) 610 (24.00)
pred 711 (2800) 6100(2400) 6102.00) |32%32 1.067 (4200) BI (3200) 610 (24.00)
20x20 71 (2800) S080(2000) 610 (24.00) |42~30 1.067 (4200) 762 (2000) 610 (24.00)
pret) 711 (2800) 457.0(1800) 610 (24.00)
4e=42 1118 (4400) 1.067 (4200) 610 (24.00)
a0 28 762 (3000) 7110(2800) 610 (2400) |44¢%40 —-1:118(4400) 1016 (4000) 610 (24.00)
30x26 762 (3000) 660.0(2600) 6102400) |4¢~38 1118 (4900) 965 (2800) 610 (24.00)
024 762 (3000) 610.0(2400) 6102400) |4¢~36 1128 (4400) 914 (2600) 610 (24.00)
3020 762 3000) 508.0(20.00) 610 (24.00)
46x44 1168(4600) 1118 (4400) 711 (2800)
3230 813 (3200) 7620(30.00) G10 (24.00) |46~42 1 168 (4500) 1.067 (4200) 711 (2800)
8228 B13 (3200) 711.0(2800) 610 24.00) |46~40 1 168 (46.00) 1.016 (4000) 711 (28.00)
3226 B13 (3200) 660.0(26.00) 610 (24.00) |46x38 1 168 (46.00) 965 (3800) 711 (2.00)
3224 813 (3200) 610.0(2400) 610 (24.00)
4846 12194800) 1168 (4600) 711 (2800)
3432 B64 (3400) 813003200) 6102400) |4B~4¢ ——1.219,(48.00) 1118 (44.00) 711 (28.00)
3430 6 (34.00) 762.0(30.00) 610 (24.00) |48x42 — 1:219(48.00) 1.067 (42.00) 711 (28.00)
3426 f6¢ (3400) 660.0(2600) 6102600) |48x40 1 219 (4800) 1015 (4000) 711 (2800)
424 Ge (24.00) _610.0(2400) 610 (24.00)
GENERAL NOTE: Although the figure Mlustrates a bell shaped reducer, the use ofa conical reducer fs not prohibited
2ASME 169-2018
Table 8-1 Welding Bevels and Root Face
as
wan) oA Ps
37.5 deg * 250g
5 deg
Note (th
37.8 deg + 25 deg
nowy 18+ 10008 = 008) mene” 15 = 1.00.08 + 0.08)
‘Root face) ‘Root face)
{a) Plain Bevel {0} Compound Bevel
‘Nominal Wall Thickness, ¢ mm (in) End Preparation
‘Gat square oF slighty chamfer, at manufacturer's option (not lustrated)
ess than x [Note (2)
2 to 22 (088) Inclusive [Note (2)]
More than 22 (08)
GENERAL NOTE: tn the illustrations, dimensions in parentheses are in inches; other dimensions are in millimeters.
Plain bevel agin illustration (a) above
Compound bevel a in illustration (b) above
NoTEs:
(2) See section 8 and Figure #1 for transition contours.
(2) x= 5 mm (0419 in) for carbon stol or fort alloy stel and 3 mm (012 in) for austontic stool oF nonferrous alloys.
23ASME 8169-2018
as) Figure 8-1 Maximum Envelope for Welding End Transitions
25min
18g ——|
Outside
Now Radius = 0.05tmin
Outside
Saal oes Radius optional
30 deg max. Ne
|
Max. Note 2)
Min. 1.0% 0
L
Component or Fitting
tin
Note (1)
inside
ie slope 1:3
Radive © 0.05tnin
| atin tansion rion
ores.
(1) The value of aus whichever ofthe fllowing i applicable:
(a) theminimum ordered wal thickness ofthe pipe to include pipe thats purchased tos nominal walthickness with an andertolorance other than
125%
(6) 0.875 times the nominal wall thickness of pipe ordered to a pipe schedule wall thickness that has an undertolerance of 12.59%
(2) The manimum thickness atthe end of the component is as follows
(a) the greater of [te * 4 tu (036 in} oF 1.15ty, when ordered on minimum wall basi
(8) the preater of exe ¢4 mm (026 in} or 11022 when ordered on a nominal wal boss,
(3) Weld bevel shown is for lustration ony.
(4) The weld reinforcement permitted by applicable code may lie outside the maximum envelope
(5) Where transitions usingmasimum slope donotintetsctthe Inside or ouside strfaces within the transition region as shown by thephantom
outline, maximum slopes shall be used, Alternatively, radi lying within the envelope may be used.
Note (5)
‘inside
24‘Type of Fitting Tested [Note (2)]
Short radius elbow [Note (2)]
Long radius elbow [Note (2),
30 radius elbow [Note (2)]
Straight tee
Reducing tee
Straight cross
Reducing cross
cap
coentee reducer [Note (3
CConeentne reducer [Note (3)]
Lap joint stub ond
NOTES:
ASME 169-2018
Table 9.2.1-1 Testing Coverage
(Qualifies the Following If the Same Design Thickness Is Used
‘Shor radius, long radius, reducing long radius, ar 3D radius elbow
Long radius, reducing long radius, 3D radius elbow
3 radius elbow
Straight or reducing tees of any reduction
Reducing tees with the same or more reduction in outlet size
Straight or reducing crosses of any reduction
Reducing crosses with the same or more reduction in outlet size
(Caps of the same configuration
ecentre or concentric reducers with the same or lesser included transition angle
Concentric reducers with the same or lesee included transition angle [Note (4)]
Lap joint stub ends are exempt from proof
(2) Paragraph 94 applies to as-tested and qualified fitings
(2) Atestofanyangleelbow covered in Tables 61-1 through 61-6 il qualify any other angle factory-madesegmentelbow thathasa prof test
fon a geometrically similar 45-dep or 90-deg elbow need not be tested separately,
(3) Straight conical (no tangent) and bell-shaped redicers are considered different design configurations and require separate testing.
(4) “Transition ange” s defined asthe angle ofthe conical section ands calelated as the [aretan ference of diameters twee the length] or
concentri reducers oF are tan (diference of dlameters/legth] for eccente reducers
Table 9.3.1-1 Test Factor, f, Determination
‘Number of Tests Performed, or Number of Test
(Geometrically Similar Fittings Tested Factor. f
One a0
Two 105
Three oF more 10
25Table U- Tolerances
Tees
0 a
}
This end ush against square
ceri
A tins Nts) and (2) Dinesh) ga ie Retrs
Outside Inside ‘Shdeg and 45-deg Length of Overall
y Diameter at Diameter ‘Long and ‘Reducers and — Length Centerto-—Back-to-
a ‘eve 2, min (in) at nd, mm (is) Short ads 30 Radus—Lapoint == softer’ ‘Face Aigament
Noainal Pye [os(3) oes) and | onsandTees bons SabENS —_Cays_—_—Dimersin, Dimension ol xls
‘Sue (NPS) and (4) Gl ABGM AB FMmm(in) Emin) O,mm(in) Km (in} Umm (in)
Hood wes v14,-00(006,-205) 08 (005) 2006) ——-3(008) (006) «30a (025) 6 (025) 1 (003)
303, MN 15 (6) 15 (a6) 2006), 3008) 2 (0.06) 3f042} 6 (025) 6 (025) 1 (043)
4 mo 15(006 15(00s) 20008) 300) a) as) 6025) (00H
Stoo Sw 15 0-0) 5K) 20H) 300) 2005) SS] 6) 6) 1)
oid wD -BzHIG-0) 20) 2) 32) mm) as] ) 62H 200
DoH OV) 64TH] (2000) 3) 20H) OHH) aH) 2708)
Bum — KO HAG) TU) 8) 6H) SU).
Row ODIO 6449002541) 8U]—S(H)_—6H)_—S(O)— EH
apo Sb ds Note (6) Angry Tolan i)
‘sie ile
Aina Diameter fads Noni pe on or
Pipe alia, oftap, lap Se sage, le,
(wes) ON 6m (in) A, mum (in) ‘Thickness, mam (in) (NPS) ON a Pp
Fo Buh ACOA) 0-4) hg 004464) | iS ious) 28)
3th DU) 1 (46,103) #15, 0 (61.06, 5108 150200 2 (006) + (Uy
‘ ” 0-1(44-103) 116-0(4%6-9) |iWwR —— 2003 300) 5
Sui Sw 200-1 tn) (046-2) [iets 5000 300) 6023“ze
‘Table U- Tolerances (Contd)
{ap oi Sub Ends ote (6). Angeli oleanes, ma (it)
aside filet
Nominal Dianer ads Nami Ppe of on
pe Se flap, ofl, ap Soe Angle, Pe,
(ws) wy Gam (a) um (in) Tene um in) | (AS) oN q p
Wid hw 4-240 -005 W200) 2060120) [idee GOED (012) 1008)
wu — sms +,-240 08) 0200-096) 32-0012) [25030 500TH seas) 10(038)
BoM stn Ts . Rog — owt ——5 018) 13059)
Role owi20 - oe 1iowim say) 305)
GENERAL NOTE: Tolerances are qual pls admins except te
ones
(1) The inside emer a th nmin wa tenes at end are wh pected by he purser
(2 Anima wa hides o 87S pls es the purser scien wa ikns tolerance See igure 1 Nt)
(5) Oxcou isthe sum of absolve of pu ard is ler
(4) Tis tolerance may nt apply in aed eas of farmed igs where nese val ids eure tome dsgn reves pra. 22.
(5) Unless cers sect te purchase ese toleanesapp tothe online diameter wchequtheciferece betwen the ronizal use dame ante eon
val tides,
(6) Se Tale 619 fring dimensions of ouside darter farus)
ASME 8169-2018
MANDATORY APPENDIX |
REFERENCES
‘The following is a lst of standards and specifications
referenced in this Standard. Unless otherwise specified,
the latest edition of ASME publications shall apply.
ASME B16.5, Pipe Flanges and Flanged Fittings: NPS
‘Through NPS 24 Metric/Inch Standard
ASME B16.25, Buttwelding Ends
ASME B31, Code for Pressure Piping
ASME B31.3, Process Piping
ASME B36.10M, Welded and Seamless Wrought Steel Pipe
ASME B36.19M, Stainless Stee! Pipe
ASME Boiler and Pressure Vessel Code
Publisher: The American Society of Mechanical Engineers
(ASME), Two Park Avenue, New York, NY 10016-5990
(wwwasme org)
ASTM A234/A234M-17, Specification for Piping Fittings
‘of Wrought Carbon Steel and Alloy Steel for Moderate
and High Temperature Service
ASTM A403/A403M-16, Specification for Wrought
‘Austenitic Stainless Steel Piping Fittings
ASTM A420/A420M-16, Specification for Piping Fittings
of Wrought Carbon Steel and Alloy Steel for Low-
‘Temperature Service
ASTM AB15/A815M-14el, Specification for Wrought
Ferritic, Ferritic/Austenitic and Martensitic Stainless,
Steel Piping Fittings
ASTM A960/A960M-16a, Specification for Common
Requirements for Wrought Steel Piping Fittings
28
ASTM B361-16, Specification for Factory-Made Wrought
‘Aluminum and Aluminum-Alloy Welding Fittings
ASTM B363-14, Specification for Seamless and Welded
Unalloyed Titanium and Titanium Alloy Welding
Fittings
ASTM B366/B366M-17, Specification for Factory-Made
Wrought Nickel and Nickel Alloy Fittings
ASTM E29-13, Practice for Using Significant Digits in Test
Data to Determine Conformance With Specifications
Publisher: American Society for Testing and Materials
(ASTM International), 100 Barr Harbor Drive, P.O.
Box C700, West Conshohocken, PA 19428-2959
(www.astmorg)
180 6708:1998, Pipework components — Definition and
selection of DN (nominal size)
150 9000:2015, Quality management systems —
Fundamentals and vocabulary"
150 9001:2015, Quality management systems —
Requirements!
180 9004:2009, Managing for the sustained success of an
organization — A quality management approach"
Publisher: International Organization for Standardization
(180), Central Secretariat, Chemin de Blandonnet8,Case
Postale 401, 1214 Vernier, Geneva, Switzerland
(mw.iso.org)
"May albo be obtained fom the American National Standards Insite
(ANSI), 25 West 4rd Street, New York, NY 10036ASME 169-2018
NONMANDATORY APPENDIX A
QUALITY SYSTEM PROGRAM
The products manufactured in accordance with this
Standard shall be produced under a Quality System
Program following the principles of an appropriate stan:
dard from the ISO 9000 series." A determination of the
heed for registration and/or certification of the
product manufacturer's quality system by an independent
organization shall be the responsibility of the manufactur:
er. The detailed documentation demonstrating program
"The series f also avallable from the American National Standards
Institute (ANSI) and the Ametican Society for Quality (ASQ) as
‘American National Standard hat are dente bythe prefie"Q> rea
ting the prefix "ISO" Each standard of the series i listed under
References in Mandatory Append
29
compliance shall be available to the purchaser at the
‘manufacturer's facility. A written summary description
Of the program used by the product manufacturer shall
be available to the purchaser upon request. The
“product manufacturer” is defined as the entity whose
name or trademark appears on the product in accordance
with the marking or identification requirements of this
Standard,ASME B16.9-2018ICS 35.040.269
ISO-All rights reserved