0% found this document useful (0 votes)
175 views16 pages

Traverse

1) The document discusses the differences between bearings and azimuths, including how they are measured and referenced. 2) It also covers topics like declination, local attraction, traverse corrections, deflection angles, and closed versus open traverses. 3) Formulas are provided for computing traverse corrections using the compass rule and transit rule.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
175 views16 pages

Traverse

1) The document discusses the differences between bearings and azimuths, including how they are measured and referenced. 2) It also covers topics like declination, local attraction, traverse corrections, deflection angles, and closed versus open traverses. 3) Formulas are provided for computing traverse corrections using the compass rule and transit rule.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 16

Traverse

FINAL TERM
Angles and Directions
Bearings Vs. Azimuths

 Designate the direction of a line by an angle  Angles measured clockwise from any reference meridian
and quadrant letters. (e.g. N30° E)  Azimuths range from 0 to 360°
 Bearings are never greater than 90°  Azimuths are referenced from north
 Bearings are referenced from north or south  True azimuths are based on true north
and the angle to the east or west from the  Magnetic azimuths are based on magnetic north
north-south meridian.  In Surveying Practice we usually use South Azimuth
 True bearings are based on true north.  while in Navigation we usually use North Azimuth
 Magnetic bearings are based on magnetic
north.
Angles and Directions

Declination Local Attraction
• Angle that  the compass needle  • An unusually large deviation of 
at a particular time makes with  the compass needle from the 
the true North true North present at a 
particular place.
TRUE NORTH

Sample Problem MAGNETIC NORTH

• A line AB has a magnetic bearing 
of S 41° 30’ E when the 
declination was 1° 30’ E. What is  MAGNETIC NORTH
W/ LOCAL
the True Bearing of the line if  ATTRACTION

there is a Magnetic Local 
Attraction of 3° 30’ to the East of 
the vicinity?
A
Solution:

ß = 41° 30’ ‐ 1° 30’’ ‐ 3° 30


ß = 36° 30’  ß

B
Traverse Correction
A  traverse ‐ is a series of consecutive lines whose 
lengths and directions have been measured.
• Closed Traverse • Open Traverse

A closed traverse is one that starts  Open traversing starts with a known 
and ends at known points and  pre‐determined point already 
directions, whether the shape is  determined with respect to a 
closed or not. horizontal datum, and end at an 
A closed traverse can be a polygon  unknown horizontal position further 
(closed shape) or  down the line. Thus open traverses 
end without closing the loop and are 
link ( closed geometrically but open  geometrically and mathematically 
shape)    open.
Open traverses are typically used for 
plotting a strip of land which will be 
used to plan a route in road 
construction 
Deflection Angle 
Deflection Angle Traverse
Σ Deflection Angles = 360 °
Note: error correction is distributed equally to all deflection angles.
Problem: Given a field notes as follows. Correct the clockwise deflection 
angle of the 5 point traverse.

STATION DEFLECTION  E = Total Error


ANGLE E = 361 ° ‐ 360 ° Correction per Station = - =
E = 1 °
A 45 ° R
or Correction per Station = - 12’
B 123 ° R E = 60’ too much
C 48 ° L
D 100 ° R
STATION DEFLECTION  CORRECTION CORRECTED
E 141 ° R ANGLE DEFL. ANGLE
A 45 ° R - 12’ 44 ° 48’ R
Solution: Take Sum of Deflection Angle taking R –
right(Clockwise) positive B 123 ° R - 12’ 122 ° 48’ R 
C ‐ 48 ° L - 12’ ‐ 48 ° 12’ L
Σ Deflection Angles = 360 °
D 100 ° R - 12’ 99 ° 48’ R
Σ Deflection Angles = 45  ° + 123  ° + 48 ° + 100 ° + 141  °
Σ Deflection Angles =  361° E 141 ° R - 12’ 140 ° 48’ R
Closed Compass Traverse
Departure Conditions: Traverse Corrections
Σ Latitudes = 0 𝐸 = Σ Latitudes
Σ Departures = 0 𝐸 = Σ Departures

Latitude ∅ nce
s ta Where:
Di 𝐸 = error in Latitude
𝐸 = error in Departure
∅ = Angle NL = North Latitude (+)
L = D * cos(∅) SL = South Latitude (‐)
D= D *  sin(∅) ED = East Departure (+)
WD = West Departure (‐)
Compass Rule Transit Rule
Distance of line
DF = Σ Distance of all lines
For Latitude:

Latitude of a line
𝐶 = ‐𝐸 x DF  DF = Σ Latitude of all lines

𝐶 = ‐𝐸 x DF  𝐶 = ‐𝐸 x DF 

Where: For Departure:
𝐸 = error in Latitude
Departure of a line
𝐸 = error in Departure DF = Σ Departure of all lines
𝐶 = correction in Latitude
𝐶 = correction in Departure 𝐶 = ‐𝐸 x DF 
DF = Distribution Factor
Given the following traverse notes taken by a survey party, 
find:
a) Linear error of closure
b) Relative error
c) Correct using Compass Rule
d) Correct using Transit Rule
LINE BEARING DISTANCE
AB N 45° 20’ E 410 m
BC S 65 ° 10’ E 605 m
CD N 80 ° 15’ W 600 m
DA S 55° 30’ W 280 m
LINE DISTANCE BEARING LATITUDE DEPARTURE
AB 410 m N 45° 20’ E + 288.22 +291.60
BC 605 m S 65 ° 10’ E ‐254.09 +549.06
CD 600 m N 80 ° 15’ W +101.61 ‐591.33
DA 280 m S 55° 30’ W ‐158.59 ‐230.76

TOTAL Σ Dist = 1895 m ‐22.85 +18.57

a) Linear error of closure b) Relative error
Linear error of closure
Σ Dist = 1895 m RE =
𝐸 = Σ L = ‐22.85 Perimeter of the Traverse
𝐸 = Σ D = + 18.57 29.44
RE =
1895
Error of Closure =  𝐸 𝐸 RE = 0.015536 m/m length
Error of Closure =  22.85 18.57

Error of Closure = 29.44 m
c) Correct using Compass Rule

LINE Distance Latitude Correction Adj. Latitude Departure Correction Adj. 


Departure

𝐶 = ‐𝐸 x DF  𝐶 =‐𝐸 x DF 

AB 410 m +288.22 ‐(‐22.85) +293.16 +291.60 ‐(18.57) +287.58

BC 105 m ‐254.09 ‐(‐22.85) ‐246.79 +549.06 ‐(18.57) +543.13

CD 600 m +101.61 ‐(‐22.85) +108.84 ‐591.33 ‐(18.57) ‐597.21

DA 280 m ‐158.59 ‐(‐22.85) ‐155.21 ‐230.76 ‐(18.57) ‐233.5

Σ  1895 m ‐22.85 0 +18.57 0

Distance of line
DF = Σ Distance of all lines
d) Correct using Transit Rule

LINE Latitude Correction Adj. Latitude Departure Correction Adj. 


Departure
𝐶 = ‐𝐸 x DF  𝐶 =‐𝐸 x DF 
. . +288.3433
AB +288.22 ‐(‐22.85) +296.4265 +291.60 ‐(18.57)
. .

BC ‐254.09 . ‐246.8553 +549.06 . +542.928


‐(‐22.85) ‐(18.57)
. .

CD +101.61 . +104.5032 ‐591.33 . ‐597.9341


‐(‐22.85) ‐(18.57)
. .

DA . ‐155.0744 ‐230.76 . ‐233.3372


‐158.59 ‐(‐22.85) ‐(18.57)
. .

Σ  ‐22.85 0 +18.57 0

For Latitude: For Departure:
Latitude of a line Departure of a line
DF = DF = Σ Departure of all lines
Σ Latitude of all lines

You might also like