Lecture 3 - Forced Convection
Lecture 3 - Forced Convection
Fluid dynamics
                                                         𝑥
                                 𝜏: shear stress
                                 𝜇: dynamic viscosity
                    Fluid dynamics
 Laminar flow
                    𝑅𝑒 < 2 × 103
Transisional flow
                    𝑅𝑒 = 2 × 103 ÷ 4 × 103
 Turbulent flow
                    𝑅𝑒 > 4 × 103
           Fluid dynamics
Laminar flow          Turbulent flow
        Laminar boundary layer
                               𝑦
• Velocity profile                 𝑣∞
       𝑣   3𝑦 1 𝑦    3
         =   −                     𝑣       𝑑𝑦
                                                𝛿
      𝑣∞ 2 𝛿 2 𝛿
                                                    𝑥
                                       𝑥
                                   𝛿   5
• Laminar boundary thickness         =
                                   𝑥   𝑅𝑒
Turbulent boundary layer
Laminar layer    𝑦
                         𝑣∞
                                           Turbulent layer
                     𝑣                 𝛿
                                  𝑑𝑦
                                               𝑥
                         𝑥
                                𝛿
• Thermal layer thickness          = 1.64 𝑃𝑟
                                𝛿𝑡
             Differential relations
• Laminar boundary layer         𝑁𝑢 = 0.332𝑅𝑒 0.5 𝑃𝑟 1Τ3
• Buffer layer
    𝑁𝑢 = 𝑃𝑟 1Τ3 0.037𝑅𝑒 0.8 − 871 ;     𝑅𝑒 = 5 × 105 ÷ 107
  ൝
   𝑁𝑢 = 𝑃𝑟 1Τ3 0.228𝑅𝑒 log 𝑅𝑒 −2.584 − 871 ; 𝑅𝑒 = 107 ÷ 109
                                               0.25
               0.43        0.8
                                          𝜇∞
𝑁𝑢 = 0.036𝑃𝑟          𝑅𝑒         − 9200
                                          𝜇𝑤
          𝑃𝑟 = 0.7 ÷ 380
          𝑅𝑒 = 2 × 105 ÷ 55 × 105
          𝜇∞
             = 0.26 ÷ 3.5
          𝜇𝑤
                Other relations
• For liquid
                                            0.25
                    0.5        0.43
                                      𝑃𝑟
     𝑁𝑢 = 0.76𝑅𝑒          𝑃𝑟                       ; 𝑅𝑒 < 105
                                      𝑃𝑟𝑤
                                             0.25
                                      𝑃𝑟
     𝑁𝑢 =   0.037𝑅𝑒 0.8 𝑃𝑟 0.43                     ; 𝑅𝑒 > 105
                                      𝑃𝑟𝑤
                     𝑇𝑤 = 𝑐𝑜𝑛𝑠𝑡
                 ቊ                           𝑁𝑢 = 0.037𝑅𝑒 0.8 − 871 𝑃𝑟 1Τ3
                     𝑅𝑒 < 107
Laminar –        𝑇𝑤 = 𝑐𝑜𝑛𝑠𝑡
Turbulent                                                                         0.25
                 𝑅𝑒 < 107                                                    𝜇𝑓
                 𝜇𝑓                     𝑁𝑢 = 0.036 𝑅𝑒 0.8 − 9200 𝑃𝑟 0.43
                    = 0.26 ÷ 3.5                                             𝜇𝑤
                 𝜇𝑤
 Forced convection
in laminar tube flow
                      Fluid dynamics
                                              Velocity profile
                     𝑟
𝑟𝑜 𝑇𝑜 , 𝑣𝑜
                                              2
                          𝑣      𝑟
• Velocity profile           =1−
                          𝑣𝑜     𝑟𝑜
                                                       2            4
                                     𝑣𝑜 𝑟𝑜2       𝑟          1 𝑟        𝜕𝑇
• Temperature profile     𝑇 = 𝑇𝑜 +                         −
                                      4𝑎          𝑟𝑜         4 𝑟𝑜       𝜕𝑥
The bulk temperature
                 𝐿
   𝑇𝑏1                         𝑇𝑏2
                          𝑇𝑤
                  𝑞
Temperature varies in a wide range
                      ?
          𝑞 = ℎ 𝑇𝑤 − 𝑇
                                Bulk temperature
                               𝑇𝑏1 + 𝑇𝑏2
 If 𝑇𝑤 = 𝑐𝑜𝑛𝑠𝑡,     𝑞 = ℎ 𝑇𝑤 −
                                   2
                                           𝑇𝑏1 +𝑇𝑏2
then, fluid properties are determined at
                                               2
                             Differential relations
                                                                 𝑵𝒖                 𝒇𝑹𝒆
                 Cross section of tube
                                                    𝑞𝑤 = 𝑐𝑜𝑛𝑠𝑡        𝑇𝑤 = 𝑐𝑜𝑛𝑠𝑡     𝟒
10
                                  𝑥  1
                                  𝑑 𝑅𝑒𝑃𝑟
 0
  3 × 10−4 10−3         10−2      10−1     0.3
      Relation by Hausen
                            𝑑
                 0.0668𝑅𝑒𝑃𝑟 𝐿           𝜇
                                            0.14
𝑁𝑢 = 3.66 +                      2Τ3
                             𝑑         𝜇𝑤
              1 + 0.045 𝑅𝑒𝑃𝑟
                             𝐿
               𝑑
          𝑅𝑒𝑃𝑟   = 0.1 ÷ 104
               𝐿
Relation by Sieder & Tate
                           1Τ3        0.14
                 1Τ3
                       𝑑          𝜇
𝑁𝑢 = 1.86 𝑅𝑒𝑃𝑟
                       𝐿         𝜇𝑤
               𝑑
          𝑅𝑒𝑃𝑟   > 10
               𝐿
             Other relations
                                             0.25
                                       𝑃𝑟
   𝑁𝑢 =   0.17𝑅𝑒 0.33 𝑃𝑟 0.43 𝐺𝑟 0.1
                                       𝑃𝑟𝑤
                      𝐿
                        > 50
                      𝑑
                                        𝜀
                  0.165625                = 10−6 ÷ 10−3
𝑆𝑡𝑃𝑟 2Τ3 =                        2
                                       ቐ𝑑
                  𝜀   5.74              𝑅𝑒 = 5000 ÷ 108
             ln      + 0.9
                3.7𝑑  𝑅𝑒
                       General relations
                                                   0.25
                                      0.43
                                             𝑃𝑟
                       𝑁𝑢 = 𝐾𝑃𝑟
                                             𝑃𝑟𝑤
                               𝐾 = 𝑓 𝑅𝑒, 𝐺𝑟
         𝐿
    If       < 50, multiplied by 𝜀
         𝑑
𝑳
             𝟏    𝟐      𝟓       𝟏𝟎      𝟏𝟓        𝟐𝟎     𝟑𝟎     𝟒𝟎     𝟓𝟎
𝒅
𝜺        1.9     1.7    1.44    1.28    1.18   1.13       1.05   1.02   1.0
  Forced convection
in turbulent tube flow
          Differential relations
• Laminar layer thickness
    𝛿   1                                Laminar layer
      =    ; 𝑅𝑒 = 104
    𝑑 466
    𝛿    1                                          𝛿
      =     ; 𝑅𝑒 = 105            𝑑
    𝑑 3660
    𝛿    1                                    Turbulent core
      =      ; 𝑅𝑒 = 106
    𝑑 28400
• Dimensionless relations
             𝑁𝑢 = 0.0395𝑅𝑒 0.75 𝑃𝑟 1Τ3
             𝑁𝑢 = 0.023𝑅𝑒 0.8 𝑃𝑟 0.4
Empirical relations
     Relation by Dittus & Boelter
𝑁𝑢 = 0.023𝑅𝑒 0.8 𝑃𝑟 𝑛
            𝑃𝑟 = 0.6 ÷ 100
           ቐ 𝑛 = 0.4; heating of the fluid
             𝑛 = 0.3; cooling of the fluid
            Relation by Gnielinski
                                             0.055
                        0.8        1Τ3
                                         𝑑
       𝑁𝑢 = 0.036𝑅𝑒           𝑃𝑟
                                         𝐿
                 𝐿
                   = 10 ÷ 400
                 𝑑
           Relation by Nusselt
• For full turbulent
                                                  0.25
                          0.8        0.43
                                            𝑃𝑟
     𝑁𝑢 = 𝜀ℓ 𝜀𝑅 0.021𝑅𝑒         𝑃𝑟
                                            𝑃𝑟𝑤
                                      𝑃𝑟 = 0.5 ÷ 2000
 𝑛 = 0; 𝑞 = 𝑐𝑜𝑛𝑠𝑡 or gas
                                      𝑅𝑒 = 104 ÷ 5 × 106
ቐ𝑛 = 0.11; 𝑇𝑤 > 𝑇𝑏                    𝜇𝑏
 𝑛 = 0.25; 𝑇𝑤 < 𝑇𝑏                       = 0.8 ÷ 40
                                      𝜇𝑤
   Relation by Seban & Shimazaki
                                      0.8
         𝑁𝑢 = 5.0 + 0.025 𝑅𝑒𝑃𝑟
                    𝑇𝑤 = 𝑐𝑜𝑛𝑠𝑡
                    𝑅𝑒𝑃𝑟 > 102
                    𝐿
                      > 60
                    𝑑
Relation by Skupinshi, Tortel & Vautrey
                                             0.827
        𝑁𝑢 = 4.82 + 0.0185 𝑅𝑒𝑃𝑟
                                   0.4
            𝑁𝑢 = 0.625 𝑅𝑒𝑃𝑟
                               0.5
             𝑁𝑢 = 0.53 𝑅𝑒𝑃𝑟
• For liquids
                                          0.14          2Τ3
                   0.8        0.33
                                      𝜇             𝑑
𝑁𝑢 = 0.024𝑅𝑒             𝑃𝑟                      1+
                                     𝜇𝑤             𝐿
                              3             3
                ቊ 𝑅𝑒 = 7 × 10   ÷ 1000 × 10
                  𝑃𝑟 = 1 ÷ 500
             Other relations
                                               2Τ3
                    0.786        0.45
                                           𝑑
   𝑁𝑢 = 0.024𝑅𝑒             𝑃𝑟          1+
                                           𝐿
                          3             3
            ቊ 𝑅𝑒 = 7 × 10   ÷ 1000 × 10
              𝑃𝑟 = 0.7 ÷ 10
                Other relations
                                       6𝑑ത
                                     −
              𝑁𝑢 = 0.813𝑅𝑒 0.9 𝑒       𝑑
 𝑁𝑢 = 0.016𝑅𝑒1.3 𝑃𝑟 0.67
൞𝑁𝑢 = 0.426𝑅𝑒 0.3 𝑃𝑟 1Τ3 𝐴𝑟 0.17 ; 𝑅𝑒𝐴𝑟 0.4 < 2.15
                     1Τ3
 𝑁𝑢 = 0.943𝑅𝑒 𝑃𝑟 𝐴𝑟 0.69 ; 𝑅𝑒𝐴𝑟 0.4 > 2.15
              −1
                             6 × 10−5
𝑁𝑢 = 0.023𝑅𝑒 0.8 𝑃𝑟 0.4   1−
                               𝑅𝑒 1.8
          𝑅𝑒 = 2000 ÷ 104
                        Other relations
                                                       0.25
                                                𝑃𝑟
                        𝑁𝑢 =     𝐾𝑃𝑟 0.43
                                                𝑃𝑟𝑤
𝑅𝑒 = 2000 ÷ 104
𝑁𝑢 = 𝐶𝑅𝑒 𝑚 𝑃𝑟 𝑛
102
                                           𝑅𝑒
101
      103          104            105       106
Forced convection
  in flow across
                        Fluid dynamics
𝜌∞ ; 𝑣∞
                                        𝜕𝑝
                                           <0
Velocity profile                        𝜕𝑥
                    𝑣           𝑦
                                                𝛿
                                    𝑥
                        𝜕𝑣              𝜕𝑣
                           >0              =0
                        𝜕𝑦              𝜕𝑦      𝜕𝑣
                                                   <0
                                                𝜕𝑦
Empirical relations
  for cylinders
    Relation by Fand
       𝑅𝑒 = 10−1 ÷ 105
Relation by Knudsen & Katz
            𝑁𝑢 = 𝐶𝑅𝑒 𝑛 𝑃𝑟 1Τ3
                                   𝑇𝑤 +𝑇𝑏
        Fluid properties at 𝑇𝑓 =
                                      2
       𝑹𝒆                  𝑪                  𝒏
4 × 10−1 ÷ 4 × 100       0.989              0.330
4 × 100 ÷ 4 × 101        0.911              0.385
4 × 101 ÷ 4 × 103        0.683              0.466
4 × 103 ÷ 4 × 104        0.193              0.618
4 × 104 ÷ 4 × 105       0.0266              0.805
  Relation by Knudsen & Katz
 103
        𝑁𝑢
       𝑃𝑟 1Τ3
102
101
100
                            𝑅𝑒
10−1
   10−1         101   103    106
         Relation by Knudsen & Katz
• For noncircular cylinder
 Cross section of tube           𝑹𝒆               𝑪       𝒏
   𝑣∞
              𝑑             5 × 103 ÷ 105       0.246    0.588
   𝑣∞
              𝑑             5 × 103 ÷ 105       0.102    0.675
   𝑣∞
              𝑑             5 × 103 ÷ 105       0.153    0.638
   𝑣∞
              𝑑          4 × 103 ÷ 1.5 × 104    0.228    0.731
     Relation by Eckert & Drake
                                                  0.25
                                            𝑃𝑟
𝑁𝑢 = 0.43 +    0.5𝑅𝑒 0.5        𝑃𝑟 0.38                  ; 𝑅𝑒 = 1 ÷ 103
                                            𝑃𝑟𝑤
                                      0.25
              0.6        0.38
                                𝑃𝑟
𝑁𝑢 = 0.25𝑅𝑒         𝑃𝑟                       ; 𝑅𝑒 = 103 ÷ 2 × 105
                                𝑃𝑟𝑤
                                      𝑃𝑟
                    For gases:               =1
                                      𝑃𝑟𝑤
Relation by Churchill & Bernstein
               𝑅𝑒 = 40 ÷ 105
               𝑃𝑟 = 0.65 ÷ 300
                𝜇
                  = 0.25 ÷ 5.2
               𝜇𝑤
              Fluid properties at 𝑇𝑏
Relation by Nakai & Okazaki
                                         −1
 𝑁𝑢 = 0.8237 − 0.5 ln 𝑅𝑒𝑃𝑟
                                𝑇𝑤 +𝑇𝑏
     Fluid properties at 𝑇𝑓 =
                                   2
𝑣∞ 𝑆𝑛 𝑣∞ 𝑆𝑛
                                             𝑺𝒏
𝑪; 𝒏
                                             𝒅
𝑺𝒑         1.25                1.5                        2.0                   3.0
𝒅                               in–line arrangement
1.25   0.386   0.592   0.305         0.608        0.111         0.704   0.0703        0.752
1.5    0.407   0.586   0.278         0.620        0.112         0.702   0.0753        0.744
2.0    0.464   0.570   0.332         0.602        0.254         0.632   0.220         0.648
3.0    0.322   0.601   0.396         0.584        0.415         0.581   0.317         0.608
          Relation by Knudsen & Katz
                                               𝑺𝒏
𝑪; 𝒏
                                               𝒅
 𝑺𝒑           1.25               1.5                        2.0                   3.0
 𝒅                               staggered arrangement
 0.6      –          –     –             –            –             –     0.236         0.636
 0.9      –          –     –             –          0.495         0.571   0.445         0.581
 1.0      –          –   0.552         0.558          –             –       –             –
1.125     –          –     –             –          0.531         0.565   0.575         0.560
1.25    0.575    0.556   0.561         0.554        0.576         0.556   0.579         0.562
 1.5    0.501    0.568   0.511         0.562        0.502         0.568   0.542         0.568
 2.0    0.448    0.572   0.462         0.568        0.535         0.556   0.498         0.570
 3.0    0.344    0.592   0.395         0.580        0.488         0.562   0.467         0.574
           Relation by Knudsen & Katz
   • For 𝑁 rows deep
  𝒉𝑵                                   𝑵 rows deep
  𝒉𝟏𝟎       𝟏      𝟐      𝟑      𝟒      𝟓      𝟔      𝟕      𝟖      𝟗     𝟏𝟎
 in–line   0.64   0.80   0.87   0.90   0.92   0.94   0.96   0.98   0.99   1.0
staggered 0.68    0.75   0.83   0.89   0.92   0.95   0.97   0.98   0.99   1.0
                 Relation by Zukauskas                                        0.25
                                                                       𝑃𝑟
   • For 20 rows        deep     𝑁𝑢 = 𝐶𝑅𝑒𝑚𝑎𝑥    𝑛 𝑃𝑟 0.36
                                  𝑅𝑒     =  10 ÷ 106                   𝑃𝑟𝑤
                                 ቊ   𝑚𝑎𝑥
                                   𝑃𝑟 = 0.7 ÷ 500
      Geometry              𝑹𝒆𝒎𝒂𝒙                   𝑪                          𝒏
                           101 ÷ 102                   0.80                   0.40
                           102 ÷ 103                  Treat as single tubes
 in–line arrangement
                         103 ÷ 2 × 105                 0.27                   0.63
                           > 2 × 105                   0.21                   0.84
                           101 ÷ 102                   0.90                   0.40
                           102 ÷ 103                  Treat as single tubes
                                                                     0,2
                                            𝑆                   𝑆𝑛
staggered arrangement                    For 𝑛      < 2: 0.35                 0.60
                                            𝑆𝑝                  𝑆𝑝
                         103 ÷ 2 × 105
                                               𝑆𝑛
                                         For        > 2: 0.40                 0.60
                                               𝑆𝑝
  𝒉𝑵                                    𝑵 rows deep
  𝒉𝟐𝟎        𝟐      𝟑      𝟒      𝟓         𝟔         𝟖   𝟏𝟎     𝟏𝟔     𝟐𝟎
 in–line    0.70   0.80   0.90   0.92      0.94   0.97    0.98   0.99   1.0
staggered   0.77   0.84   0.89   0.92      0.94   0.97    0.98   0.99   1.0
                   Relation by Colburn
   • For 10 rows deep, in–line arrangement
                                       0.6    1Τ3
                     𝑁𝑢 =        0.26𝑅𝑒𝑚𝑎𝑥 𝑃𝑟
                            𝑃𝑟    𝑠1 𝑠2   0.18
𝑁𝑢 = 0.021𝑅𝑒 0.8 𝑃𝑟 0.43
                            𝑃𝑟𝑤    𝑑2
𝑠1
                       𝑠2
             Other relations
• For in–line arrangement
                                            0.25
                   0.65   1Τ3
                                      𝑃𝑟
      𝑁𝑢 =   0.23𝑅𝑒𝑚𝑎𝑥 𝑃𝑟
                                      𝑃𝑟𝑤
             𝑅𝑒 = 2 × 102 ÷ 2 × 105
   𝝋       𝟏𝟎     𝟐𝟎     𝟑𝟎     𝟒𝟎     𝟓𝟎     𝟔𝟎     𝟕𝟎     𝟖𝟎    𝟗𝟎
ℎ𝝋 Τℎ90°   0.42   0.50   0.63   0.75   0.80   0.95   0.99   1.0   1.0
Empirical relations
  for spheres
        Relation by McAdams
𝑅𝑒 = 17 ÷ 7 × 104
              Fluid properties at 𝑇𝑏
          Relation by Achenbach
• For gases
                        1.6 0.5
                    3𝑅𝑒
𝑁𝑢 = 2 + 0.25𝑅𝑒 +                 ;          𝑅𝑒 = 100 ÷ 3 × 105
                  104
           𝑅𝑒   𝑅𝑒 2     31𝑅𝑒 3
𝑁𝑢 = 430 +    +      5
                       −    16
                                ;       𝑅𝑒 = 3 × 105 ÷ 50 × 105
           20 4 × 10      10
                    Fluid properties at 𝑇𝑏
          Relation by Kramers
• For liquids
𝑅𝑒 = 1 ÷ 2000
                Fluid properties at 𝑇𝑏
     Relation by Vliet & Leppert
• For liquids
                      0.25
          −0.3
                 𝜇𝑤
   𝑁𝑢𝑃𝑟                      = 1.2 + 0.53𝑅𝑒 0.54
                  𝜇
𝑅𝑒 = 1 ÷ 2 × 105
                 Fluid properties at 𝑇𝑏
          Relation by Whitaker
                 𝑅𝑒 = 3.5 ÷ 8 × 104
               ቊ
                 𝑃𝑟 = 0.7 ÷ 380
                Fluid properties at 𝑇𝑏
  Relation by Witte
                              0.5
𝑁𝑢 = 2 + 0.386 𝑅𝑒𝑃𝑟
     Fluid properties at 𝑇𝑏
       Convection
in boiling & evaporation
                                     The effects
                                                 • Dimension 𝐿
                                      Geometry   • Position in space
                                                 • Roughness 𝜀
                                       ℎ
•   Density 𝜌 , heat capacity 𝑐𝑝 …
                                                 •   Mass flowrate 𝑚
•   Concentration, wettability…
                                                 •   Pressure drop ∆𝑝
                    Fluid
                                                         Operation
                  properties
                    Regimes of pooling boiling
                                Nucleate boiling is useful
                                for process design
∆𝑇 = 𝑇𝑤 − 𝑇𝑠𝑎𝑡
                                                    Annular                 Mist
                                                              Transition
                               0                               Quality 𝑥%          100
                        Empirical relations
                          𝑞𝑡𝑜𝑡𝑎𝑙 = 𝑞𝑏𝑜𝑖𝑙𝑖𝑛𝑔 + 𝑞𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛
                                         𝑠𝑝
                                            = 1.3         𝑁𝑢 = 0.01𝑅𝑒 0.9 𝑃𝑟 0.4
           Flush irrigation outside       𝑑
           of horizontal tube bank     𝑠𝑝
                                          = 1.7 ÷ 2      𝑁𝑢 = 0.0245𝑅𝑒 0.73 𝑃𝑟 0.4
                                       𝑑
                             Empirical relations
  Authors                      Restrictions                              Relations
                                                                                                   0.9
                                                                                            𝜋𝑑𝐿
               Film boiling downward in tube, 𝑅𝑒 < 7000   𝑁𝑢 = 198 × 10−7 𝑅𝑒 0.35 𝑃𝑟 0.3
                                                                                             𝜎
Kewille J.F.
                                                                                                  0.9
                                                                                            𝜋𝑑𝐿
               Film boiling downward in tube, 𝑅𝑒 > 7000    𝑁𝑢 = 54 × 10−7 𝑅𝑒 0.5 𝑃𝑟 0.3
                                                                                             𝜎
Haase B. & Film boiling downward in tube without
Struve H.  bubble, 𝑞 < 8000 𝑊 Τ𝑚2
                                                             𝑁𝑢 = 554 × 10−5 𝑅𝑒 0.856 𝑃𝑟 0.344
               CFCl3 film boiling downward in tube,
               𝑚 < 100
                                                                     𝑁𝑢 = 0.9𝑅𝑒 −0.33
                                          • Wall surface
                               Geometry   • Tube arrangement
•   Temperature 𝑇𝑠 , 𝑇𝑠𝑎𝑡
•   Heat flux direction 𝜑
                                            •   Vapor velocity 𝑣
•   Heat flux 𝑞
                                            •   Wall temperature
•   Fluid direction 𝜙
                                            •   Superheat
•
•
    Mass flowrate 𝑚
    Pressure drop ∆𝑝
                                ℎ           •
                                            •
                                                Foul gas
                                                Co–condensable
                Fluid
                                                 Operation
              properties
                           Empirical relations
     Condensation number
                                                             1Τ3
                                                    𝜇2
                   𝐶𝑜 = ℎ
                                   𝑘 3 𝜌𝑙𝑖𝑞 𝜌𝑙𝑖𝑞 − 𝜌𝑣𝑎𝑝 𝑔