m4 Solution 4
m4 Solution 4
                  2 4
Ans.𝐴=                ,
                  0 3
Since A is an upper triangular matrix, eigen values (𝜆) =diagonal elements =2,3
We know, 𝑓 (𝜆) is eigen value of 𝑓 (𝐴)
                                     𝑤₁         −𝑤₂          𝑤₃
By Crammer’s Rule, 4                   2   =   −6 2    =   −6 4
                                    1 5        3 5          3 1
    𝑤₁        −𝑤₂          𝑤₃
∴ 18 = −36 = −18
    𝑤₁        𝑤₂       𝑤₃
∴        =         = −1
    1         1
         𝑤₁       𝑤₂       𝑤₃
Let,          = 1 = −1 = 𝑡
         1
                                             OUR CENTERS :
                                 KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                                            Contact - 9136008228
∴ 𝑤 1= 𝑡; 𝑤 2 = 2𝑡; 𝑤 3 = -𝑡
∴ 𝑤 =[𝑡 2𝑡 -𝑡]
∴ For t = 1, = w = [1 2 -1]
1 c) Evaluate ∫c log 𝒛𝒅𝒛 =2𝝅𝒊, where C is the until circle in the z plane. (05)
Ans.The unit circle in the z plane is |z| = 1 with Centre (0,0) and radius =1
Let 𝐼 = ∫c log 𝑧𝑑𝑧
Put 𝑧 = 𝑟𝑒 𝑖𝜃 = 1𝑒 𝑖𝜃 = 𝑒 𝑖𝜃
∴ 𝑑𝑧 = 𝑒 𝑖𝜃 .𝑖𝑑𝜃
              2𝜋
∴𝐼=          0
                   𝑙𝑜𝑔( 𝑒 𝑖𝜃 ).𝑒 𝑖𝜃 . 𝑖𝑑𝜃
     2𝜋
=   0
          𝑖 𝜃log 𝑒. 𝑒 𝑖𝜃 𝑖𝑑𝜃
        2𝜋
= 𝑖2   0
             𝜃 𝑒 𝑖𝜃 𝑑𝜃
                               2𝜋
          𝑒 𝑖𝜃          𝑒 𝑖𝜃
= 𝑖2 𝜃           − 1.
             𝑖          𝑖2 0
                          2𝜋
= 𝑖𝜃 𝑒 𝑖𝜃 − 𝑒 𝑖𝜃          0
                                            OUR CENTERS :
                                KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                                           Contact - 9136008228
                               2𝜋
= 𝑒 𝑖𝜃 (𝑖𝜃 − 1)                0
= 𝑒 𝑖2𝜋 𝑖. 2𝜋 − 1 − 𝑒 0 (𝑖. 0 − 1)
= (1+0) (2 π 𝑖 -1) +1
= 2 𝜋 𝑖 -1 + 1
Hence, ∫c log 𝒛 𝒅𝒛 = 2 𝝅𝒊
                                                                     ∞
Ans: For any probability density function ,                          −∞
                                                                          𝑓 𝑥 𝑑𝑥 = 0
                                                                 3
                                                                     𝑥
                                                             ∴         + 𝑘 𝑑𝑥 = 1
                                                                     6
                                                                 0
                       3
    1        𝑥2
∴        .        𝑘𝑥               =1
    6        2             0
        3²
∴            + 3𝑘 - 0 = 1
        12
    3
∴ 4 + 3 k =1
             1
∴ 𝑘 = 12
                  𝑥    1
∴ 𝑓 (𝑥) = 6 + 12
                                         2 𝑥       1
∴ P (1 ≤ 𝑋 ≤ 2) =                       1 6
                                               +        𝑑𝑥
                                                   12
                                                    OUR CENTERS :
                                        KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                                                   Contact - 9136008228
                                            2
        1            𝑥²       1
=                .        + 12 . 𝑥
        6            2                      1
        2²                2        1²           1
=                + 12 -                    + 12
    12                             12
    1
=   3
                                                     3 𝑥       1
And, P(1≤ 𝑋 ≤ 3) =                                  1 6
                                                           +        𝑑𝑥
                                                               12
                                            3
    1            𝑥²           1
=            .            +           .𝑥
    6                2        12            1
        3²                3           1²        1
=          + 12 -                        + 12
        12                            12
    5
=6
                                  𝟏                                        𝟓
Hence, 𝒌 = 𝟏𝟐 ; P (1 ≤ 𝑿 ≤ 𝟐) ; P (1 ≤ 𝑿 ≤ 𝟑 ) =                           𝟔
2 a) Show that A is diagonalizable .Also find the transforming matrix M and the diagonal
                     −𝟗 𝟒 𝟒
matrix D where 𝑨 = −𝟖 𝟑 𝟒                                                 (08)
                     −𝟏𝟔 𝟖 𝟕
Characteristic equation is |A – 𝝀 I | = 0
                                       −9 − 𝜆                             4     4
                                    ∴ −8                                 3−𝜆    4
                                        −16                               8    7−𝜆
On solving we get
∴ 𝜆³ - (-9 + 3 + 7 ) 𝜆² + (-11+ 1 + 5) 𝜆 − 3 = 0
                                                            OUR CENTERS :
                                                KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                                                           Contact - 9136008228
∴ 𝜆³ - 𝜆2 − 5𝜆 − 3 = 0
Case 1: 𝜆 = −1
∴ 𝐴−𝜆𝐼 X=0
  −8 4         4 𝑥₁     0
∴ −8 4         4 . 𝑥₂ = 0
  −16 8        8 𝑥₃     0
                             −2 1    1 𝑥₁     0
                    1
𝑅 2 - 𝑅₁ ;𝑅₃ - 2𝑅 1 ; 4 𝑅1 ⇒ 0 0     0 . 𝑥₂ = 0 → (1)
                              0 0    0 𝑥₃     0
Put 𝑥1 = 𝑡and 𝑥2 = 𝑠
∴ -2𝑡 + 𝑠 + 𝑥₃ = 0
∴ 𝑥₃ = 2𝑡 – 𝑠
               𝑥₁      𝑡     1𝑡 + 0𝑠   1     0
∴ Eigen vector 𝑥₂ =    𝑠   = 0𝑡 + 1𝑠 = 0 𝑡 + 1 𝑠
               𝑥₃   2𝑡 − 𝑠   2𝑡 − 1𝑠   2     −1
Case 2; 𝜆 = 3
∴[ A – 𝜆 I] X = 0
                                    OUR CENTERS :
                        KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                                   Contact - 9136008228
  −12 4       4 𝑥₁     0
∴ −8 0        4 . 𝑥₂ = 0
  −16 8       4 𝑥₃     0
                                        2          4     1
                                𝑅2 −      𝑅1 ; 𝑅3 − 𝑅1 ;   𝑅
                                        3          3     4 1
  −3   1           1    𝑥₁   0
⇒  0 −8/3         4/3 . 𝑥₂ = 0
   0  8/3         −4/3 𝑥₃    0
                 −3 1          1 𝑥₁    0
          3
𝑅3 + 𝑅2 ; 4 𝑅2 ⇒ 0 −2          1. 𝑥₂ = 0 → (3)
                  0 0          0 𝑥₃    0
Here n = 3 and r = 1
A.M = No. of times “𝜆 = 3" is repeated =1
G.M = n-r = 3 – 2 = 1
∴ A.M = G.M .for “𝝀 = 𝟑 "
Expanding (3),
    -3𝑥1 + 𝑥2 + 𝑥3 = 0 → 4 &
    -2𝑥2 + 𝑥3 = 0 → (5)
                   𝑥₁    𝑥₂  1
    ∴ Eigen vector 𝑥₂ = 𝑥₂ = 1 𝑥₂
                   𝑥₃   2𝑥₂  2
∴ Eigen vector 𝑋2 = 𝐼 1 2 ‘
                                                      𝝅/𝟐
2 b)Find the extremal of the function                 𝟎
                                                          (𝒚ˈ²   − 𝒚𝟐 + 𝟐𝒚𝒙)𝒅𝒙 with y (0) = 0 &(06)
    𝝅
𝒚       = 0.
    𝟐
               𝑥₁                𝜋/2
Ans: Let       𝑥₁
                  𝐹𝑑𝑥     =     0
                                       𝑦ˈ2 − 𝑦 2 + 2𝑦𝑥 𝑑𝑥
∴ 𝐹 = 𝑦ˈ2 − 𝑦 2 + 2𝑦𝑥
                                            𝜕𝐹                    𝜕𝐹
                                        ∴      = −2𝑦 + 2𝑥 − 0 ; &     2𝑦ˈ ;
                                            𝜕𝑦                    𝜕𝑦ˈ
By Euler’s Lagrange equation ,the necessary condition for the given functional to be
                   𝝏𝑭      𝒅     𝝏𝑭
extremum is              − 𝒅𝒙          =0
                    𝝏𝒚           𝝏𝒚ˈ
                   𝑑
∴ 2 𝑥 – 2 𝑦 - 𝑑𝑥 (2𝑦ˈ) = 0
               𝑑   𝑑𝑦
∴𝑥– 𝑦-                   = 0 (Dividing by 2)
           𝑑𝑥      𝑑𝑥
                                                          𝑑²𝑦
                                                      ∴       +𝑦 =𝑥
                                                          𝑑𝑥²
                                                                           𝑑
                                            ∴ 𝐷2 𝑦 + 𝑦 = 𝑥 𝑤𝑒𝑟𝑒, 𝐷 =
                                                                           𝑑𝑥
                                                  ∴       𝐷2 + 1 𝑦 = 𝑥
Auxiliary equation is 𝐷2 + 1 = 0
∴ 𝐷 = ±𝑖 = 0 ± 1𝑖
∴ Complimentary Function is
𝑦˳ = 𝑒 0𝑥 (𝑐₁ cos 1 𝑥 + 𝑐₂ sin )
                                 OUR CENTERS :
                     KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                                Contact - 9136008228
                                     1
     Particular Integral is 𝑦𝑝 =           𝑋Where , X = x
                                    𝑓(𝐷)
                    1
     ∴ 𝑦𝑝 = (𝐷 2 +1) ( 𝑥 )
= (1 + 𝐷2 )−1 (𝑥)
= ( 1 - 𝐷2 + 𝐷4 − ⋯. ) 𝑥
= 𝑥 - 𝐷2 𝑥 + 𝐷4 𝑥 − ⋯.
=𝑥+0+0+⋯
=𝑥
Given, 𝑦 (0) = 0
∴ 0 = ₁. cos0 + 𝑐2 .sin0 + 0
∴ 0 = 𝑐 1 . 1 + 𝑐2 .0
∴ 0 = 𝑐1
                    𝜋
     Given, 𝑦           =0
                    2
              𝜋
   ∴ Put 𝑥= 2 , 𝑐1 = 0 and y = 0 in (1)
                        𝜋    𝜋
   ∴ 0 = 0 + 𝑐2 sin 2 + 2
                𝜋
∴ 0 = 𝑐2 . 1 + 2
                                        OUR CENTERS :
                            KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                                       Contact - 9136008228
           𝜋
∴ 𝑐2 = - 2 → (3)
                                                     𝜋
∴ From (1), (2) and (3), 𝑦 = 0 − 2 sin 𝑥 + 𝑥
∴ The extremal of the given function is
               𝝅
𝒚 = 𝒙 − 𝟐 𝐬𝐢𝐧 𝒙
2 c) Let 𝑹⁴ have the Euclidean inner product .use Gram -Schmidt process to transform the
basis {𝒖₁, 𝒖₂, 𝒖₃} in to an orthonormal basis where 𝒖₁ = (1,0,1,1); 𝒖₂ = (-1,0,-1,1); 𝒖₃ = (0,-
1,1,1).
(08)
S1:
Let 𝑣1 = 𝑢1 = (1,0,1,1)
S2:
                            𝑢 2, 𝑣1
Let 𝑣2 = 𝑢2 -                         𝑣1
                             𝑣1 ²
                        (−1)
= (-1,0,-1,1)-                      ×( 1,0,1,1,)
                            3
                                1      1 1
= (-1,0,-1,1) +                   ,0 3,3
                                3
    −2         −2 4
=         ,0           ,3
      3            3
                       −2 2                   −2 2       4 2    8
∴ 𝑣2 ² =                        + 0 2+               +         =3;
                       3                      3          3
Now ,
                                                  OUR CENTERS :
                                      KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                                                 Contact - 9136008228
 𝑢3, 𝑣1 = (0)(1) + (-1)(0) + (1)(1) + (1)(1) =2 and
                                −2                                                        −2            4    2
 𝑢3, 𝑣2 = (0)                          + −1 0 + 1                                                 + 1       =3
                                3                                                             3         3
S3:
                                𝑢 3, 𝑣1               𝑢 3, 𝑣2
Let 𝑣3 = 𝑢3, -                             𝑣1 -                     𝑣2
                                    𝑣1 ²                  𝑣2 ²
                            2                     2/3             −2              −2 4
= (0,-1,1,1) -3(1,0,1,1) -8                                             , 0,              ,3
                                                      4/ 3        3                   3
          →            1                                   3                  3           3
          𝑣₁
→=                 =            (1,0,1,1) =                       , 0,            ,
𝑞₁        →             3                                 3               3           3
          𝑣₁
          →                1         −2           −2 4
          𝑣₂
→=                 =                       , 0,           ,3
𝑞₂        →             8/3           3           3
          𝑣₂
      3 −2                  −2 4             − 6                   − 6                6
=                  , 0,             ,3 =                  , 0,                ,
      8        3                3                 6                   6           3
                       →              1      −1                     1
                       𝑣₃
And,→ =                         =                      , −1, 2 , 0
          𝑞₃           →              3/2     2
                       𝑣₃
     2 −1                       1                 − 6             − 6             6
=                  , −1, 2 , 0 =                              ,           ,           ,0
     3     2                                          6            3              6
                                       𝟑       𝟑 𝟑   − 𝟔      − 𝟔 − 𝟔   − 𝟔 − 𝟔 𝟔
                                         , 𝟎,   ,  ;     , 𝟎,    ,    ;     ,   ,   ,𝟎
                                      𝟑       𝟑 𝟑     𝟔        𝟔   𝟑     𝟔    𝟑   𝟔
                                                       OUR CENTERS :
                                           KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                                                      Contact - 9136008228
3 a) The number of accidents in a year attributed to taxi drivers in a city follows Poisson
distribution with mean 3 out of 1000 taxi drivers, find approximately the number of drivers
with                                                                                        (06)
   1) No accidents in a year
   2) More than 3 accidents in a year.
      (Given: e-1 = 0.3679,e-2 = 0.1353,e-3 = 0.0498)
Ans: Let X denote the number of accidents in a year due to taxi drivers .
N = 1000
                                                 𝑒 −𝑚 𝑚 𝑥   𝑒 −3 3𝑥
                                       ∴ 𝑃 𝑋=𝑥 =          =
                                                    𝑥!         𝑥!
                𝑒 −3 30
            =     0!
= 0.04979
            = 1000 × 0.0.4979
            = 49.8
            = 50 drivers
= 1 – P ( X ≤ 3)
= 1 – [ P ( X = 0 ) + P ( X = 1 ) + P ( X = 2 ) + ( X = 3 )]
                                      OUR CENTERS :
                          KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                                     Contact - 9136008228
                    𝑒 −3 ×30        𝑒 −3 ×31        𝑒 −3 ×32       𝑒 −3 ×33
           =1-                  +              +               +
                       0!               1!             2!             3!
                            1   3       9      27
           = 1 - 𝑒 −3         +1+2+
                            1                  6
= 0.3528
= N × P ( X> 3 )
= 352.6
≈ 353 drivers
Hence, in a year
𝑿 10 12 18 18 15 40
𝒀 12 18 25 25 50 25
X Y 𝑅₁ 𝑅₂ 𝑑 I = ( 𝑅1 − 𝑅₂)2
10 12 6 6 0
12 18 5 5 0
18 25 2.5 3 0.25
                                   OUR CENTERS :
                       KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                                  Contact - 9136008228
      18       25    2.5               3                          0.25
15 50 4 1 9
40 25 1 3 4
Total 13.5
Here, 𝑚1 = 2; 𝑚2 = 3; n = 6
               𝟔                   𝟏
𝑹 = 1 – 𝒏(𝒏𝟐 −𝟏) ∑𝒅𝟐𝒊 +                     𝒎𝟑𝟏 − 𝒎𝟏 + 𝒎𝟑𝟐 − 𝒎𝟐 + ⋯ .
                                   𝟏𝟐
           6                 1
= 1 - 6(62 −1) 13.5 +               23 − 2 + (33 − 3)
                             12
      1             1
= 1 - 35 13.5 +          6 + 24
                    12
      1
=1-        13.5 + 2.5
      35
= 0.5429
                                       𝟏
3 c) Expand 𝒇 𝒛 =                                about z = 0 for          (08)
                             𝒛²(𝒛−𝟏)(𝒛+𝟐)
   i)          |z|< 1;
   ii)         1 < 𝒛 < 2;
   iii)        |z|> 2.
                               1             𝐴      𝐵    𝐶            𝐷
Ans: Let 𝑓 𝑧 =                              = 𝑧 + 𝑧² + 𝑧−1 + 𝑧+2 → (1)
                     𝑧²(𝑧−1)(𝑧+2)
                                    −1             1         −1
By cover-up method, 𝐵=                      ;𝐶 = 3 ; 𝐷 =          ;
                                        2                    12
                                     OUR CENTERS :
                         KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                                    Contact - 9136008228
Put z= -1 in (1)
   1                   1      1           1
∴ - 2 = −𝐴 −                −6 −
                       2                  12
                                                                                   1
                                                                       ∴𝐴 = −
                                                                                   4
                                                             −1    1      1          1
                                      ∴𝑓 𝑧 =                    −     +        −            → (2)
                                                             4𝑧   2𝑧 2 3 𝑧 − 1   12 (𝑧 + 2)
                        𝑧
∴ |z|< 1 and                 <1
                        2
∴ From (2)
          −1           1              1                       1
𝑓 (z) =           −          +3                −
          4𝑧          2𝑧 2        𝑧−1               12×2 (𝑧/2+1)
  −1          1         1                 −1             1          𝑧 −1
= 4𝑧 −         −             1−𝑧                −             1+2
          2𝑧 2          3                                24
 −1        1           1                                                   1   𝑧   𝑧2   𝑧2
= 4𝑧 −         −             1 + 𝑧 + 𝑧 2 + 𝑧 3 + ⋯ − 24 1 − 2 + 22 − 23 + ⋯
          2𝑧 2         3
Region of Convergence:
                                              OUR CENTERS :
                                  KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                                             Contact - 9136008228
Which is the interior of the circle with centre (0,0) and radius 1,
Obviously, |z|> 1
    1                     𝑧
∴        < 1and                   <1
    𝑧                     2
∴ From (2)
             −1           1                 1                     1
𝑓 (𝑧) = 4𝑧 −                      −                     −
                      2𝑧 2            3𝑧 1−1/𝑧              12×2(𝑧/2+1)
    −1        1               1          1 −1               1         𝑧 −1
=        −        +               1−𝑧               −            1+2
    4𝑧       2𝑧 2         3𝑧                                24
    −1        1               1             1       1                 1         𝑧       𝑧2
=        −        2
                    −             1+            +        +⋯ −              1− +              −⋯
    4𝑧       2𝑧           3𝑧                𝑧       𝑧²                24        2       22
    −1        1               1 1       1           1                 1             𝑧   𝑧2
=        −            −             + 𝑧2 + 𝑧3 + ⋯ −                        1−     + 22 − ⋯
    4𝑧       2𝑧 2             3   𝑧                                   24        2
Region of Convergence:
1                 𝑧
    < 1&              <1
𝑧                 2
                                                  OUR CENTERS :
                                      KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                                                 Contact - 9136008228
i.e. 1 <|z| < 2, which is the annular region between the concentric circles with Centre (0,0) and
radii 1 & 2.
Obviously,|z| > 1
    1                   2
∴        < 1 and                <1
    𝑧                   𝑧
∴ From (2)
             −1         1                   1                 1
𝑓 (𝑧) =           −             +                   −
             4𝑧       2𝑧 2           3 𝑧 1−1/𝑧           12𝑧 1+2/𝑧
    −1        1             1            1 −1            1         2 −1
=        −        +                 1−𝑧             −         1+𝑧
    4𝑧       2𝑧 2       3𝑧                              12𝑧
    −1        1             1           1       1                     1            2        22
=        −        −                 1+𝑧+           +⋯ −                       1−𝑧+               −⋯
    4𝑧       2𝑧 2       3𝑧                      𝑧2                12𝑧                       𝑧2
    −1        1         1 1            1        1                 1       1    2       22
=        −          −                 + 𝑧2 + 𝑧3 + ⋯ −                       − 𝑧2 + 𝑧3 − ⋯
    4𝑧       2𝑧 2       3           𝑧                             12      𝑧
Region of Convergence:
         1                      2
For          < 1 and                 <1
         𝑧                      𝑧
i.e |z| > 2, which is the exterior region of the circle with centre (0,0) and radius 3.
                                                 OUR CENTERS :
                                     KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                                                Contact - 9136008228
                      𝒔𝒊𝒏𝜽 𝒛
4.a) Evaluate      𝒄 𝒛−𝝅/𝟔 𝒏
                                𝒅𝒛 where c is circle |z| = 1 for n= 1, n = 3       (06)
Ans: Circle |z| =1 has Centre (0,0) and radius 1.
               𝜋
Here, 𝑧0 = 6 lies inside the circle .
Case.I. n = 1
       𝜋
𝑧0 = 6 is a simple pole.
                                         𝜋
𝑅 1 = Residue of 𝑓(z) at “ 𝑧0 = 6 ”
= lim𝑧→𝑧0 𝑧 − 𝑧0 𝑓(𝑧)
                               𝑠𝑖𝑛 6 𝑧
= lim𝑧→𝜋/6 𝑧 − 𝜋/6 ×               𝜋
                               (𝑧− )
                                   6
           𝜋
= 𝑠𝑖𝑛6 6
  1
= 64
                                             𝑐
                                                 𝑓 𝑧 𝑑𝑧 = 2𝜋𝑖 𝑅1 + 𝑅 2 + ⋯
                                                            𝑠𝑖𝑛6 𝑧             1
                                             ∴       𝑐
                                                                    𝑑𝑧 = 2𝜋𝑖.
                                                         (𝑧 − 𝜋/6)1           64
                                                                𝒔𝒊𝒏𝟔 𝒛       𝝅𝒊
                                                 ∴       𝒄
                                                                        𝒅𝒛 =
                                                             (𝒛 − 𝝅/𝟔)¹      𝟑𝟐
                                   OUR CENTERS :
                       KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                                  Contact - 9136008228
Case II: n =3
    𝜋
𝑧0 =6 is a pole of order 3
                                                 𝜋
𝑅1 = Residue of 𝑓(𝑧) at “𝑧0 =6 ”
            1                 𝑑 𝑛 −1
= (𝑛−1)ǃ lim                           (𝑧 − 𝑧0 )𝑛 × 𝑓 (𝑧)
                  𝑧→𝑧0 𝑑𝑧 𝑛 −1
            1                 𝑑 3−1                          𝑠𝑖𝑛 6 𝑧
=                   lim                (𝑧 − 𝜋/6)3 ×
        (3−1)ǃ 𝑧→𝜋/6          𝑑𝑧 3−1                     (𝑧−𝜋/6)³
    1               𝑑2
=           lim             𝑠𝑖𝑛6 𝑧
    2ǃ 𝑧→𝜋/6 𝑑𝑧 2
    1               𝑑
= 2 lim                 (6 𝑠𝑖𝑛5 𝑧. cos 𝑧)
        𝑧→𝜋/6 𝑑𝑧
        1
=           ×6          lim (sin5𝑧. – sin 𝑧 + cos 𝑧 .5 sin4𝑧 .cos 𝑧)
        2           𝑧→𝜋/6
                    6𝜋                   𝜋           𝜋
= 3 −𝑠𝑖𝑛                      + 𝑐𝑜𝑠 2 6 .5 𝑠𝑖𝑛2 6
                        6
                1         3        1
= 3 − 64 +                    . 5. 16
                          4
    21
= 32
    𝑐
        𝑓 𝑧 𝑑𝑧 = 2𝜋𝑖 𝑅1 + 𝑅2 + ⋯ 1
                                                                     𝑠𝑖𝑛6 𝑧             21
                                                     ∴       𝑐
                                                                             𝑑𝑧 = 2𝜋𝑖 .
                                                                  (𝑧 − 𝜋/6)³            32
                                                                     𝒔𝒊𝒏𝟔 𝒛       𝟐𝟏𝝅𝒊
                                                         ∴    𝒄
                                                                             𝒅𝒛 =
                                                                  (𝒛 − 𝝅/𝟔)³       𝟏𝟔
                                                   OUR CENTERS :
                                       KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                                                  Contact - 9136008228
4 b) Find the m.g.f of a random variable whose probability density function is               (06)
                                   𝟏 𝒙
𝑷 (𝑿 = 𝒙) =                              𝒙 = 𝟏, 𝟐, 𝟑, …
                                   𝟐
                                   𝟎 𝒆𝒍𝒔𝒆𝒘𝒉𝒆𝒓𝒆
𝑀𝑜 𝑡 = 𝐸 𝑒 𝑡𝑥
= ∑∞
   𝑥=1 𝑃𝑥 . 𝑒
              𝑡𝑥
                 1
= ∑∞
   𝑥=1                . 𝑒 𝑡𝑥
                 2𝑥
                          𝑥
                  𝑒𝑡
= ∑∞
   𝑥=1                2
             1                 2              3
       𝑒𝑡                 𝑒𝑡             𝑒𝑡
=                +                 +              + ⋯,
       2                  2              2
                                                                         𝑒𝑡        𝑒𝑡
which is a Geometric Progression with 𝑎= 2 and r =                                 2
      𝑒 𝑡 /2                                         𝑎
= 1−𝑒 𝑡 /2 , 𝐼𝑛 𝐺, 𝑃. , 𝑠∞ = 1−𝑟
      𝑒𝑡
= 2−𝑒 𝑡
        𝑒𝑡
=
    𝑒 𝑡 𝑒2𝑡 −1
                                                                                     1
                                                                   ∴ 𝑀𝑜 𝑡 =
                                                                                 2𝑒 −𝑡 − 1
                                                     𝑑𝑟
Now, 𝑟 𝑡 Moments 𝜇𝑟 ′ =                                    𝑀𝑜 𝑡         → (1)
                                                     𝑑𝑡 𝑟          𝑡=0
                                              𝑑1
∴ First Moment 𝜇𝑟 ′ =                                (2𝑒 −𝑡 − 1)−1
                                              𝑑𝑡 1                       𝑡=0
                                                   OUR CENTERS :
                                       KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                                                  Contact - 9136008228
                         −2 𝑑
= −1 2𝑒 −𝑡 − 1             . 𝑑𝑡     2𝑒 −𝑡 − 1
                                                           𝑡=0
= −1 2𝑒 𝑡 − 1          −2
                            . 2𝑒 𝑡 . −1     𝑡=0   → (2)
= 2𝑒 0 − 1       −2
                      . 2𝑒 0
= 1-2× 2 × 1
=2
                                                      𝑑²
From (1),Second Moment 𝜇2 ′ =                               𝑀𝑜 𝑡
                                                      𝑑𝑡²            𝑡=0
    𝑑            −𝑡        −𝑡          −2
=        . [2𝑒        2𝑒        −1          ]         (From 2)
    𝑑𝑡                                          𝑡=0
            𝑑                                                    −2 𝑑
= 2 𝑒 −𝑡 𝑑𝑡 2𝑒 −𝑡 − 1             −2
                                       + 2𝑒 −𝑡 − 1                       𝑒 −𝑡
                                                                    𝑑𝑡          𝑡=0
= 2 𝑒 −𝑡 . −2 2𝑒 −𝑡 − 1            −3
                                        . 2𝑒 −𝑡 . −1 + 2𝑒 −𝑡 − 1                 −2
                                                                                      . 𝑒 −𝑡 . −1   𝑡=0
= 2 2𝑒 0 2𝑒 0 − 1           −3
                                 . 2𝑒 0 − 𝑒 0 2𝑒 0 − 1             −2
= 2 2 × 1−3. . 2 × 1 − 1 × 1−2
= 2[ 4-1]
=6
∴ Mean = 𝜇₁ˈ = 2
= 6 - 2²
=2
Hence
Mean = 2 and Variance = 2
                                            OUR CENTERS :
                                KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                                           Contact - 9136008228
4 c) Verify the Cayley-Hamilton Theorem for matrix A and hence find 𝑨−𝟏 for                 (08)
     𝟏 𝟒
𝑨=          .
     𝟐 𝟑
Hence find 𝑨𝟓 − 𝟐𝑨𝟒 − 𝟕𝑨𝟑 + 𝟏𝟏𝑨𝟐 − 𝑨 − 𝟏𝟎𝑰 interms of A.
Ans: Part I:
On solving we get
∴ 𝜆2 + 4𝜆 − 5 = 0 → (1)
Cayley Hamilton Theorem states that the characteristic equation is satisfied by matrix A.
                                ∴ 𝐴2 + 4𝐴 − 5 𝐼 = 0 → (2)
                      1 4      1 4       9 16
Now, 𝐴2 = 𝐴 × 𝐴 =          ×          =
                      2 3      2 3       8 17
         2
∴ LHS = 𝐴 + 4 𝐴 − 5 𝐼
    9 16    1       4    1      0
=        −4           −5
    8 17    2       3    0      1
    𝟎   𝟎
=
    𝟎   𝟎
= RHS
∴ Cayley Hamilton Theorem is verified.
Part II:
∴ 𝐴 − 4𝐼 − 5 𝐴−1 = 0
                                OUR CENTERS :
                    KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                               Contact - 9136008228
∴ 5𝐴−1 = 𝐴 − 4 𝐼
            1   4    1     0
∴ 5𝐴−1 =          −4
            2   3    0     1
            −3 4
∴ 5𝐴−1 =
             2 −1
                                              𝟏 −𝟑 𝟒
                                    ∴ 𝑨−𝟏 =
                                              𝟓 𝟐 −𝟏
Part III.
Consider,
= 0 + (𝜆 + 5) (from 1)
=𝜆 + 5
                                OUR CENTERS :
                    KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                               Contact - 9136008228
5 a) Express 𝒑(𝒙) = 7 + 8𝒙 + 9𝒙² as a Liner combination of 𝒑1 = 2 + 𝒙 + 4𝒙2 ; 𝒑𝟐 =1- 𝒙 +
3𝒙2     𝒑₃ = 2 + 𝒙 + 5𝒙2 .
(06)
∴ (7,8,9) =
∴ (7,8,9) =
7 = 2 𝑘₁ + 1𝑘₂ + 2𝑘₃
8 = 1 𝑘₁ − 1𝑘₂ + 1𝑘₃
9 = 4 𝑘₁ + 3𝑘₂ + 5𝑘₃ → (2)
          1 −1 1 𝑘₁  8
𝑅₂ ↔ 𝑅₁ ⇒ 2 1 2 𝑘₂ = 7
          4 3 5 𝑘₃   9
                                 OUR CENTERS :
                     KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                                Contact - 9136008228
                     1 −1 1 𝑘₁   8
𝑅₂ − 2𝑅₁; 𝑅₃ − 4𝑅₁;⇒ 0 3 0 𝑘₂ = −9
                     0 7 1 𝑘₃   −23
                1 −1 1 𝑘₁   8
1
3
    𝑅₂;⇒        0 1 0 𝑘₂ = −3
                0 7 1 𝑘₃   −23
                           1 0        1 𝑘₁   5
𝑅₃ - 7𝑅₂ : 𝑅₁ + 𝑅₂;⇒       0 1        0 𝑘₂ = −3
                           0 0        1 𝑘₃   −2
On expansion ,
                                                    𝟐𝝅 𝒄𝒐𝒔𝟐𝜽
5 b) Using Cauchy theorem ,evaluate                 𝟎 𝟓 + 𝟒𝒄𝒐𝒔𝜽
                                                                    (06)
                            𝑒 𝑖𝜃 +𝑒 −𝑖𝜃       𝑧+𝑧 −1       𝑧 2 +1
In Denominator ,cos𝜃 =                    =            =
                                 2              2           2𝑧
In Numerator,
cos 2𝜃 = R.P (𝑒 𝑖2𝜃 ) = R.P (𝑒 𝑖𝜃 )2 = R.P (𝑧 2 )
On substituting we get,
                                   OUR CENTERS :
                       KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                                  Contact - 9136008228
 𝟐𝝅 cos 2𝜃                       𝑅.𝑃.𝑧 2       𝑑𝑧
 𝟎 5+4𝑐𝑜𝑠𝜃
                   𝑑𝜃 = ∫c         (𝑧 2 +1)
                                              . 𝑖𝑧
                              5×4×
                                      2𝑧
                 𝑧.𝑧 2    𝑑𝑧
= R.P ∫c5𝑧+2(𝑧 2 +1) . 𝑖𝑧
                 𝑧2      𝑑𝑧
= R.P ∫c2𝑧 2 +5𝑧+2 .     𝑖
Here,𝑧0 = -2 Lies outside while 𝑧0 = -0.5 Lies inside the circle |z|=1
𝑧0 = −0.5 is a simple pole.
                                      𝑧2
= lim (𝑧 + 0.5) × 𝑖×2(𝑧+0.5)(𝑧+2)
  𝑧→0.5
       (−0.5)²
= 𝑖×2(−0.5+2)
  −𝑖
= 12
∫c𝑓 𝑧 𝑑𝑧 = 2𝜋𝑖(𝑅₁ + 𝑅₂ + ⋯ )
                  𝑧2     𝑑𝑧                              −𝑖
∴ R.P. ∫c2𝑧 2 +5𝑧+2 .           = 𝑅. 𝑃 2𝜋𝑖.
                          𝑖                              12
                                                         2𝜋
                                                                𝑐𝑜𝑠2𝜃              𝜋
                                                     ∴                  𝑑𝜃 = 𝑅. 𝑃.
                                                              5 + 4𝑐𝑜𝑠𝜃            6
                                                         0
                                                              𝟐𝝅
                                                                     𝒄𝒐𝒔𝟐𝜽        𝝅
                                                         ∴                   𝒅𝜽 =
                                                                   𝟓 + 𝟒𝒄𝒐𝒔𝜽      𝟔
                                                              𝟎
                                          OUR CENTERS :
                              KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                                         Contact - 9136008228
5 c) In an examination marks obtained by students in Mathematics ,physics and Chemistry are
normally distributed with means 51, 53 and 46 respectively and standard deviation 15,12,16
respectively .Find the probability of securing total marks.                            (08)
    i)      180 or above
    ii)     90 or below
Ans:
Let M,P and C denote marks in Mathematics, Physics and chemistry respectively
Given 𝑚𝑀 = 51; 𝑚𝑃 = 53; 𝑚𝐶 = 46; 𝜎𝑀 = 15; 𝜎𝑃 = 12; 𝜎𝐶 = 16
     𝑥−𝑚       180−150
=𝑃         >
      𝜎          25
=P(z> 1.2)
= 0.5 – Area between ‘z=0’ to ‘z= 1.2’
= 0.5 – 0.3849
= 0.1151
                                     OUR CENTERS :
                         KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                                    Contact - 9136008228
     𝑥−𝑚       90−150
=𝑃         <
      𝜎          25
=𝑃 (𝑧 < −2.4)
= 0.5 – Area between ‘z=0’ to ‘z= - 2.4’
= 0.5 – 0.4918
= 0.0082
Hence,
   i)      Probability of securing total marks of 180 and above = 0.1151
   ii)     Probability of securing total marks of 90 and below = 0.0082
            𝟏    𝟎      𝟎
6 a) If 𝑨 = 𝟏    𝟎      𝟏 then find 𝑨𝟓𝟎 .
            𝟎    𝟏      𝟎
On solving we get
𝜆3 − (Sum of diagonal elements)𝜆2 + (sum of the minors of diagonal elements ) 𝜆 − 𝐴 = 0
∴ 𝜆3 − 1 + 0 + 0 𝜆2 + 1 + 0 + 0 𝜆 − −1 = 0
∴ 𝜆3 − 𝜆2 + 𝜆 + 1 = 0
                                    OUR CENTERS :
                        KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                                   Contact - 9136008228
𝑓(𝐴) = 𝐴50 = 𝑎 𝐴2 + 𝑏𝐴 + 𝑐𝐼 → 1                   ( where a, b,c are constants)
Put 𝜆 = 1,
                                     (−1)50 = 𝑎 −1        2
                                                              + 𝑏 −1 + 𝑐
∴ 1 = a – b + c → (3)
Put 𝜆 = 1 𝑖𝑛 2
                                          150 = 𝑎 1   2
                                                          +𝑏 1 +𝑐
∴ 1 = a + b + c → (4)
                            49
When 𝜆 = −1 , 50 −1               = 2𝑎 −1 + 𝑏
∴ -50 = - 2a + b→ (5)
                                          𝐴50 = 25𝐴2 + 0 𝐴 − 24 𝐼
                                          ∴ 𝐴50 = 25𝐴 × 𝐴 − 24𝐼
     1     0 0       1 0     0
= 25 1     0 1       1 0     1 − 24 𝐼
     0     1 0       0 1     0
     1     0 0      1 0              0
= 25 1     1 0 − 24 0 1              0
     1     0 1      0 0              1
  1 0        0
= 25 1       0
  25 0       1
                                  OUR CENTERS :
                      KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                                 Contact - 9136008228
                             𝟏    𝟎     𝟎
Hence, 𝑨𝟓𝟎 =                𝟐𝟓    𝟏     𝟎
                            𝟐𝟓    𝟎     𝟏
                                                             𝒆𝒛
6 b) Using residue theorem evaluate ∫c                          𝟐   𝒅𝒛, 𝒘𝒉𝒆𝒓𝒆 𝑪 𝒊𝒔 𝒛 = 𝟒(06)
                                                         𝒛𝟐 +𝝅𝟐
Ans. The circle |z| = 4 has centre (0,0) & radius 4
For singularity, z² +π² = 0
∴ 𝑧²= -𝜋 2 = 𝑖 2 𝜋 2
∴𝑧=±𝑖𝜋
                                                1          𝑑 𝑛−1
                                         =            lim 𝑛−1 (𝑧 − 𝑧0 )𝑛 × 𝑓(𝑧)
                                             (𝑛 − 1)! 𝑧→𝑧0 𝑑𝑧
        1               𝑑                        𝑒𝑧
=             lim𝑧→𝑖𝜋 𝑑𝑧 (𝑧 − 𝑖𝜋)² × (𝑧−𝑖𝜋 )²(𝑧+𝑖𝜋 )²
    2−1     !
    1         𝑑
= 1! lim          𝑒 𝑧 (𝑧 + 𝑖𝜋)−2
        𝑧→𝑖𝜋 𝑑𝑧
= lim 𝑒 𝑧 . −2 𝑧 + 𝑖𝜋            −3
                                      + 𝑧 + 𝑖𝜋   −2
                                                      . 𝑒𝑧
    𝑧→𝑖𝜋
     −2𝑒 𝑖𝜋          𝑒 𝑖𝜋
= (𝑖𝜋 +𝑖𝜋 )³ + (𝑖𝜋 +𝑖𝜋 )³
                                                                          2     1
                                                            ∴ 𝑅2 =           − 2
                                                                        8𝑖³𝜋³ 4𝑖 𝜋²
        𝑒𝑧                               2             1          2          1
∴ ∫c 𝑧 2 +𝜋 2     2
                      𝑑𝑧 = 2𝜋𝑖                   − 4𝑖 2 𝜋 2 − 8𝑖 3 𝜋 3 − 4𝑖 2 𝜋 2
                                      8𝑖 3 𝜋 3
                                                                                     −2
                                                                      = 2𝜋𝑖 ×
                                                                                    4𝑖²𝜋²
        𝒆𝒛                      𝒊
∴ ∫c(𝒛𝟐 +𝝅𝟐 )² 𝒅𝒛 =         𝝅
       𝟏                𝟏
𝑰=     𝟎
             𝒙𝒚 + 𝟐 𝒚ˈ² 𝒅𝒙; 𝟎 ≤ ×≤ 𝟏,given y (0)= y (1)= 0 where 𝒚 (𝒙) = 𝒄𝟎 + 𝒄𝟏 𝒙 + 𝒄𝟐 𝒙𝟐 .
              1             1
Ans:𝐼 =      0
                      𝑥𝑦 + 2 𝑦ˈ² 𝑑𝑥 → (1)
∴ 0 = 0 + 𝐶1 + 𝐶2 [𝐹𝑟𝑜𝑚 3]
                                                OUR CENTERS :
                                    KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                                               Contact - 9136008228
                                                                         ∴ 𝐶2 = −𝐶1 → (4)
          1                                          1                      2
𝐼=       0
                  𝑥        𝑐₁𝑥 − 𝑐₁𝑥² + 2 𝑐₁ − 2𝑐₁𝑥                                 𝑑𝑥
     1                                       1
=   0
             𝑐₁𝑥² − 𝑐₁𝑥³ + 2 𝑐₁² − 4𝑐₁²𝑥 + 4𝑐₁²𝑥²                                         𝑑𝑥
     1                                       1
=   0
             𝑐₁𝑥² − 𝑐₁𝑥³ + 2 𝑐₁² − 2𝑐₁²𝑥 + 2𝑐₁²𝑥² 𝑑𝑥
                                                                                1
    𝑐₁𝑥³                  𝑐1𝑥4         1                 2𝑐₁²𝑥²       2𝑐₁²𝑥³
=             −                    +       𝑐₁²𝑥 −                 +
         3                 4           2                   2            3       0
    𝑐₁        𝑐₁               1                     2
=        −                + 2 𝑐₁2 − 𝑐₁2 + 3 𝑐₁2 − 0 − 0 + 0 − 0 + 0
    3             4
             𝑐₁           1
=𝐼=               +            𝑐₁²
             12           6
                                                            𝑑𝐼
For maximum or minimum,                                           =0
                                                           𝑑𝑐 ₁
    𝑑𝐼                1        1
∴ 𝑑𝑐 ₁ = 12 + 6 × 2c₁=0
    1             −1
∴ 3 c₁= 12
              −1
∴ c₁ =        4
                                     −1       1
∴ From (5), 𝑦 =                            𝑥 +4 𝑥²
                                       4
                                                                                    𝒙
Hence, the approximate solution is                                          𝒚=           (𝒙 − 𝟏)
                                                                                    𝟒
                                                        OUR CENTERS :
                                            KALYAN | DOMBIVLI | THANE | NERUL | DADAR
                                                       Contact - 9136008228