TRIGONOMETRI 1
PERBANDINGAN TRIGONOMETRI
SUDUT ISTIMEWA
&
SUDUT BERELASI
SMA ANGKASA BANDUNG
BY: SHAFITRI DAMAYANTI. S. Pd
𝐏𝐞𝐫𝐡𝐚𝐭𝐢𝐤𝐚𝐧 𝐠𝐚𝐦𝐛𝐚𝐫 − 𝐠𝐚𝐦𝐛𝐚𝐫 𝐬𝐞𝐠𝐢𝐭𝐢𝐠𝐚 𝐬𝐢𝐤𝐮 − 𝐬𝐢𝐤𝐮 𝐝𝐢𝐛𝐚𝐰𝐚𝐡 𝐢𝐧𝐢:
𝑫𝒆𝒑𝒂𝒏
𝑪
𝑷 𝑸
𝑺𝒂𝒎𝒑𝒊𝒏𝒈
𝑴𝒊𝒓𝒊𝒏𝒈
a
𝑺𝒂𝒎𝒑𝒊𝒏𝒈
b
𝑴𝒊𝒓𝒊𝒏𝒈
𝑨 c 𝑩
𝑫𝒆𝒑𝒂𝒏
𝑺𝒂𝒎𝒑𝒊𝒏𝒈 𝑹
𝑻 𝑺
𝑫𝒆𝒑𝒂𝒏
𝑴𝒊𝒓𝒊𝒏𝒈
𝑹
PERBANDINGAN TRIGONOMETRI PADA SEGITIGA
SIKU-SIKU
𝑪
𝑪𝑩 𝒅𝒆 𝑴𝒊𝒓𝒊𝒏𝒈 𝑫𝒆𝒑𝒂𝒏 𝑨𝑩 𝒔𝒂
𝑺𝒊𝒏 𝜶 = = 𝑪𝒐𝒔 𝜶 = =
𝑨𝑪 𝒎𝒊 𝒃 𝑨𝑪 𝒎𝒊
𝒂
𝟏 𝑨𝑪 𝒎𝒊
𝟏 𝐀𝐂 𝐦𝐢 𝑺𝒆𝒄𝒂𝒏 𝜶 = =
𝑪𝒐𝒔𝒆𝒄 𝜶 = = = = 𝒔𝒂
𝐒𝐢𝐧 𝐂𝐁 𝐝𝐞 𝑪𝒐𝒔 𝑨𝑩
𝑨 𝑩
𝒄
𝑺𝒂𝒎𝒑𝒊𝒏𝒈
DEMI SAMI DESA MIDE MISA SADE
↓ ↓ ↓ 𝑪𝑩 𝒅𝒆 ↓ ↓ ↓
Sin Cos Tan 𝑻𝒂𝒏 𝜶 = = Cosec Sec Cot
𝑨𝑩 𝒔𝒂
𝟏 𝑨𝑩 𝒔𝒂
𝑪𝒐𝒕𝒂𝒏 𝜶 = = =
𝑻𝒂𝒏 𝑪𝑩 𝒅𝒆
𝑪𝑶𝑵𝑻𝑶𝑯 INGAT!!
𝑪
DEMI SAMI DESA
𝜶 ↓ ↓ ↓
𝑴𝒊𝒓𝒊𝒏𝒈 Sin Cos Tan
𝟓 𝒄𝒎
𝟑𝒄𝒎 𝑺𝒂𝒎𝒑𝒊𝒏𝒈 MIDE MISA SADE
↓ ↓ ↓
𝑨 𝑩 Cosec Sec Cot
𝟒 𝒄𝒎
𝑫𝒆𝒑𝒂𝒏
𝑷𝒆𝒓𝒉𝒂𝒕𝒊𝒌𝒂𝒏 𝒈𝒂𝒎𝒃𝒂𝒓 𝒅𝒊𝒂𝒕𝒂𝒔, 𝒕𝒆𝒏𝒕𝒖𝒌𝒂𝒏 𝒑𝒆𝒓𝒃𝒂𝒏𝒅𝒊𝒏𝒈𝒂𝒏 𝒕𝒓𝒊𝒈𝒐𝒏𝒐𝒎𝒆𝒕𝒓𝒊𝒏𝒚𝒂?
𝟒
𝑺𝒊𝒏 𝜶 = 𝒅𝒆 = 𝑪𝒐𝒔 𝜶 =
𝒔𝒂 𝟑
𝑻𝒂𝒏 𝜶 𝒅𝒆 𝟒
𝒎𝒊 𝟓 𝒎𝒊 = = =
𝟓 𝒔𝒂 𝟑
𝒎𝒊 𝟓 𝒎𝒊 𝟓 𝒔𝒂 𝟑
𝑪𝒐𝒔𝒆𝒄 𝜶 = = 𝑺𝒆𝒄 𝜶 = = 𝑪𝒐𝒕 𝜶 = =
𝒅𝒆 𝟒 𝒔𝒂 𝟑 𝒅𝒆 𝟒
𝑪
𝑪𝑶𝑵𝑻𝑶𝑯
𝐏𝐞𝐫𝐡𝐚𝐭𝐢𝐤𝐚𝐧 𝐠𝐚𝐦𝐛𝐚𝐫 𝐝𝐢𝐬𝐚𝐦𝐩𝐢𝐧𝐠, 𝐭𝐞𝐧𝐭𝐮𝐤𝐚𝐧 𝐩𝐞𝐫𝐛𝐚𝐧𝐝𝐢𝐧𝐠𝐚𝐧
𝐭𝐫𝐢𝐠𝐨𝐧𝐨𝐦𝐞𝐭𝐫𝐢𝐧𝐲𝐚? 𝑴𝒊𝒓𝒊𝒏𝒈
𝒃=⋯
𝑹𝒖𝒎𝒖𝒔 𝑷𝒉𝒚𝒕𝒂𝒈𝒐𝒓𝒂𝒔: 𝑫𝒆𝒑𝒂𝒏
6 𝒄𝒎
I. 𝑨𝑩 = 𝑨𝑪𝟐 − 𝑩𝑪𝟐
𝜽
II. 𝑩𝑪 = 𝑨𝑪𝟐 − 𝑨𝑩𝟐
𝑨 𝑩
8 𝒄𝒎
𝐈𝐈𝐈. 𝑨𝑪 = 𝑨𝑩𝟐 + 𝑩𝑪𝟐 𝑺𝒂𝒎𝒑𝒊𝒏𝒈
𝑴𝒆𝒏𝒄𝒂𝒓𝒊 𝒏𝒊𝒍𝒂𝒊 𝒃 = ⋯ 𝒅𝒆 𝟔 𝟑 𝟏𝟎 𝟓
𝑺𝒊𝒏 𝜽 = = = 𝑪𝒐𝒔𝒆𝒄 𝜽 = 𝒎𝒊 =𝟑
𝑨𝑪 = 𝑨𝑩𝟐 + 𝑩𝑪𝟐 𝒎𝒊 𝟏𝟎 𝟓 =
𝒅𝒆 𝟔
𝑨𝑪 = 𝟖 𝟐 + 𝟔𝟐 𝒔𝒂 𝟖 𝟒 𝒎𝒊 𝟏𝟎 𝟓
𝑪𝒐𝒔 𝜽 = = = 𝑺𝒆𝒄 𝜽 = = =
𝒎𝒊 𝟏𝟎 𝟓 𝒔𝒂 𝟖 𝟒
𝑨𝑪 = 𝟔𝟒 + 𝟑𝟔
𝟔 𝟑 𝒔𝒂 𝟖 𝟒
𝑻𝒂𝒏 𝜽 = 𝒅𝒆 = = 𝑻𝒂𝒏 𝜽 = = =
𝑨𝑪 = 𝟏𝟎𝟎 𝒔𝒂 𝟖 𝟒 𝒅𝒆 𝟔 𝟑
𝑨𝑪 = 𝟏𝟎 ↔ b = 10 cm
Jadi panjang sisi b adalah 10 cm
Perbandingan Trigonometri Sudut-sudut Istimewa
Sudut istimewa yaitu suatu sudut yang nilai
perbandingannya bias ditentukan secara langsung menggunakan
daftar table sudut istimewa trigonometri. Berikut daftar tabel
sudut-sudut istimewa:
𝜶 0° 𝟑𝟎° 𝟒𝟓° 𝟔𝟎° 𝟗𝟎°
Sin 0 1 1 1 1
2 3
2 2 2
Cos 1 1 1 1 0
3 2
2 2 2
Tan 0 1 1 3 ∞
3
3
Cot ∞ 3 1 1 0
3
3
Sec 1 2 2 2 ∞
3
3
Cosec ∞ 2 2 2 1
3
3
Nilai Perbandingan Trigonometri Sudut-sudut Istimewa
𝑺𝒊𝒏 𝟑𝟎° + 𝑪𝒐𝒔 𝟔𝟎° − 𝑻𝒂𝒏 𝟑𝟎° = ⋯ 𝑺𝒊𝒏 𝟒𝟓° 𝑪𝒐𝒔 𝟑𝟎° − 𝑪𝒐𝒔 𝟒𝟓° 𝑺𝒊𝒏 𝟑𝟎° = ⋯
𝟏 𝟏 𝟏
= + − 𝟑 𝟏 𝟏 𝟏 𝟏
𝟐 𝟐 𝟑 = 𝟐 × 𝟑 − 𝟐 ×
𝟐 𝟐 𝟐 𝟐
𝟏 𝟏 𝟏
= 𝟏− 𝟑 = 𝟔 − 𝟐
𝟑 𝟒 𝟒
𝑺𝒊𝒏 𝟔𝟎° + 𝑪𝒐𝒔 𝟒𝟓° = ⋯
𝟏
𝟏 𝟏 = ( 𝟔− 𝟐 )
= 𝟐
𝟑 + 𝟐
𝟐 𝟒
𝑺𝒆𝒄 𝟑𝟎° − 𝑻𝒂𝒏 𝟔𝟎° = ⋯
𝟐
= 𝟑− 𝟑
𝟑
𝟐 𝟑
= 𝟑
𝟑 − 𝟑
𝟑
𝟐 𝟑
= − 𝟑− 𝟑
𝟑 𝟑
𝟏
=−
𝟑
PERBANDINGAN TRIGONOMETRI SUDUT BERELASI
Perhatikan gambar berikut ini: a. 𝜃1 𝑏𝑒𝑟𝑎𝑑𝑎 𝑑𝑖 𝐾𝑢𝑎𝑑𝑟𝑎𝑛 𝐼 𝑚𝑎𝑘𝑎:
𝒚 𝒙 𝒚
SIN + 𝑨𝑳𝑳 + 𝑺𝒊𝒏𝜽 = , 𝑪𝒐𝒔 𝜽 = − , 𝑻𝒂𝒏 𝜽 =
𝒓 𝒓 𝒙
b. 𝜃2 𝑏𝑒𝑟𝑎𝑑𝑎 𝑑𝑖 𝐾𝑢𝑎𝑑𝑟𝑎𝑛 𝐼𝐼, 𝑚𝑎𝑘𝑎:
𝒚 𝒙 𝒚
𝑺𝒊𝒏𝜽 = , 𝑪𝒐𝒔 𝜽 = − , 𝑻𝒂𝒏 𝜽 =
𝒓 𝒓 𝒙
c. 𝜃3 𝑏𝑒𝑟𝑎𝑑𝑎 𝑑𝑖 𝐾𝑢𝑎𝑑𝑟𝑎𝑛 𝐼𝐼𝐼, 𝑚𝑎𝑘𝑎:
𝒚 𝒙 𝒚
𝑺𝒊𝒏𝜽 = − , 𝑪𝒐𝒔 𝜽 = − , 𝑻𝒂𝒏 𝜽 =
𝒓 𝒓 𝒙
d. 𝜃4 𝑏𝑒𝑟𝑎𝑑𝑎 𝑑𝑖 𝐾𝑢𝑎𝑑𝑟𝑎𝑛 𝐼𝑉, 𝑚𝑎𝑘𝑎:
𝑻𝑨𝑵 + COS +
𝒚 𝒙 𝒚
𝑺𝒊𝒏𝜽 = − , 𝑪𝒐𝒔 𝜽 = , 𝑻𝒂𝒏 𝜽 = −
𝒓 𝒓 𝒙
𝑻𝒂𝒃𝒆𝒍 𝑷𝒆𝒓𝒖𝒃𝒂𝒉𝒂𝒏 𝒕𝒂𝒏𝒅𝒂 𝑺𝒊𝒏𝒖𝒔, 𝑪𝒐𝒔𝒊𝒏𝒖𝒔 𝒅𝒂𝒏 𝑻𝒂𝒏𝒈𝒆𝒏 𝒂𝒑𝒂𝒃𝒊𝒍𝒂 𝜽 𝒃𝒆𝒓𝒖𝒃𝒂𝒉 𝒅𝒂𝒓𝒊 𝟎° − 𝟑𝟔𝟎°
KUADRAN I II III IV
Sin 𝜃 𝑦 𝑦 −𝑦 −𝑦
(𝑃𝑜𝑠𝑖𝑡𝑖𝑓) 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 (𝑁𝑒𝑔𝑎𝑡𝑖𝑓) (𝑁𝑒𝑔𝑎𝑡𝑖𝑓)
𝑟 𝑟 𝑟 𝑟
Cos 𝜃 𝑥 −𝑥 −𝑥 𝑥
(𝑃𝑜𝑠𝑖𝑡𝑖𝑓) (𝑁𝑒𝑔𝑎𝑡𝑖𝑓) (𝑁𝑒𝑔𝑎𝑡𝑖𝑓) (𝑃𝑜𝑠𝑖𝑡𝑖𝑓)
𝑟 𝑟 𝑟 𝑟
Tan 𝜃 𝑦 𝑦 −𝑦 𝑦 −𝑦
(𝑃𝑜𝑠𝑖𝑡𝑖𝑓) (𝑁𝑒𝑔𝑎𝑡𝑖𝑓) = (𝑃𝑜𝑠𝑖𝑡𝑖𝑓) (𝑁𝑒𝑔𝑎𝑡𝑖𝑓)
𝑥 −𝑥 −𝑥 𝑥 𝑥
𝑻𝒊𝒑𝒔 𝑪𝒆𝒑𝒂𝒕
𝟗𝟎°
𝟎° , 𝟑𝟔𝟎°
𝟏𝟖𝟎°
𝟐𝟕𝟎°
𝑨𝑳𝑳 𝑺𝑰𝑵 𝑻𝑨𝑵 𝑪𝑶𝑺
𝐒𝐮𝐝𝐮𝐭 𝐑𝐞𝐥𝐚𝐬𝐢 𝐊𝐮𝐚𝐝𝐫𝐚𝐧 𝐈
Sudut 𝜶 𝒅𝒂𝒏(𝟗𝟎° − 𝜶)
𝑺𝒊𝒏 𝟗𝟎° − 𝜶 = 𝑪𝒐𝒔 𝜶 𝐂𝐨𝐭 𝟗𝟎° − 𝜶 = 𝑻𝒂𝒏 𝜶
𝐂𝐨𝐬 𝟗𝟎° − 𝜶 = 𝑺𝒊𝒏 𝜶 𝐒𝒆𝒄 𝟗𝟎° − 𝜶 = 𝑪𝒐𝒔𝒆𝒄 𝜶
𝐓𝐚𝐧 𝟗𝟎° − 𝜶 = 𝑪𝒐𝒕 𝜶 𝐂𝐨𝐬𝐞𝐜 𝟗𝟎° − 𝜶 = 𝑺𝒆𝒄 𝜶
Contoh:
1. 𝑆𝑖𝑛 36° = ⋯
𝑆𝑖𝑛 36° = 𝑆𝑖𝑛 90 − 36 °
= 𝐶𝑜𝑠 54°
2. 𝑇𝑎𝑛 30° = ⋯
𝑇𝑎𝑛 30° = 𝑇𝑎𝑛 90 − 30 °
= 𝐶𝑜𝑡 60°
1
=3 3
KUIS:
1. 𝑆𝑖𝑛 45° = ⋯
2. 𝐶𝑜𝑠 16° = ⋯
𝐒𝐮𝐝𝐮𝐭 𝐑𝐞𝐥𝐚𝐬𝐢 𝐊𝐮𝐚𝐝𝐫𝐚𝐧 𝐈𝐈
a. Sudut 𝜶 𝒅𝒂𝒏(𝟗𝟎° + 𝜶)
𝑺𝒊𝒏 𝟗𝟎° + 𝜶 = 𝑪𝒐𝒔 𝜶 𝐂𝐨𝐭 𝟗𝟎° + 𝜶 = −𝑻𝒂𝒏 𝜶
𝐂𝐨𝐬 𝟗𝟎° + 𝜶 = −𝑺𝒊𝒏 𝜶 𝐒𝒆𝒄 𝟗𝟎° + 𝜶 = −𝑪𝒐𝒔𝒆𝒄 𝜶
𝐓𝐚𝐧 𝟗𝟎° + 𝜶 = −𝑪𝒐𝒕 𝜶 𝐂𝐨𝐬𝐞𝐜 𝟗𝟎° + 𝜶 = 𝑺𝒆𝒄 𝜶
Contoh:
1. 𝑆𝑖𝑛 120° = ⋯
𝑆𝑖𝑛 120° = 𝑆𝑖𝑛(90 + 30)°
= 𝐶𝑜𝑠 30°
1
=2 3
2. 𝑆𝑒𝑐 140° = 𝑆𝑒𝑐 90 + 50 °
= −𝐶𝑜𝑠𝑒𝑐 50
KUIS:
1. 𝐶𝑜𝑠 135° = ⋯
2. 𝑇𝑎𝑛 150° = ⋯
3. 𝐶𝑜𝑠𝑒𝑐 120° = ⋯
b. Sudut 𝜶 𝒅𝒂𝒏(𝟏𝟖𝟎° − 𝜶)
𝑺𝒊𝒏 𝟏𝟖𝟎° − 𝜶 = 𝑺𝒊𝒏 𝜶 𝐂𝐨𝐭 𝟏𝟖𝟎° − 𝜶 = −𝑪𝒐𝒕 𝜶
𝐂𝐨𝐬 𝟏𝟖𝟎° − 𝜶 = −𝑪𝒐𝒔 𝜶 𝐒𝒆𝒄 𝟏𝟖𝟎° − 𝜶 = −𝑺𝒆𝒄 𝜶
𝐓𝐚𝐧 𝟏𝟖𝟎° − 𝜶 = −𝑻𝒂𝒏 𝜶 𝐂𝐨𝐬𝐞𝐜 𝟏𝟖𝟎° − 𝜶 = 𝑪𝒐𝒔𝒆𝒄 𝜶
1. 𝑆𝑖𝑛 120° = ⋯
𝑆𝑖𝑛 120° = 𝑆𝑖𝑛 180 − 120 °
= 𝑆𝑖𝑛 60°
1
=2 3
2. 𝐶𝑜𝑡 120° = ⋯
𝐶𝑜𝑡 120° = 𝐶𝑜𝑡 180 − 120 °
= − cot 60°
1
= −3 3
KUIS:
1. 𝐶𝑜𝑡 150° = ⋯
2. 𝑆𝑒𝑐 135° = ⋯
𝐒𝐮𝐝𝐮𝐭 𝐑𝐞𝐥𝐚𝐬𝐢 𝐊𝐮𝐚𝐝𝐫𝐚𝐧 𝐈𝐈𝐈
a. Sudut 𝜶 𝒅𝒂𝒏(𝟏𝟖𝟎° + 𝜶)
𝑺𝒊𝒏 𝟏𝟖𝟎° + 𝜶 = −𝑺𝒊𝒏 𝜶 𝐂𝐨𝐭 𝟏𝟖𝟎° + 𝜶 = 𝑪𝒐𝒕 𝜶
𝐂𝐨𝐬 𝟏𝟖𝟎° + 𝜶 = −𝑪𝒐𝒔 𝜶 𝐒𝒆𝒄 𝟏𝟖𝟎° + 𝜶 = −𝑺𝒆𝒄 𝜶
𝐓𝐚𝐧 𝟏𝟖𝟎° + 𝜶 = 𝑻𝒂𝒏 𝜶 𝐂𝐨𝐬𝐞𝐜 𝟏𝟖𝟎° + 𝜶 = −𝑪𝒐𝒔𝒆𝒄 𝜶
1. Tan 210° =…
𝑇𝑎𝑛 210° = 𝑇𝑎𝑛 180 + 30 °
= 𝑇𝑎𝑛 30°
1
=3 3
2. 𝐶𝑜𝑠𝑒𝑐 240° = ⋯
𝐶𝑜𝑠𝑒𝑐 240° = 𝐶𝑜𝑠𝑒𝑐 180 + 60 °
= −𝐶𝑜𝑠𝑒𝑐 60°
2
= −3 3
KUIS:
1. 𝑆𝑖𝑛 225° = ⋯
2. 𝑆𝑒𝑐 225° = ⋯
b. Sudut 𝜶 𝒅𝒂𝒏(𝟐𝟕𝟎° − 𝜶)
𝑺𝒊𝒏 𝟐𝟕𝟎° − 𝜶 = −𝑪𝒐𝒔 𝜶 𝐂𝐨𝐭 𝟐𝟕𝟎° − 𝜶 = 𝑻𝒂𝒏 𝜶
𝐂𝐨𝐬 𝟐𝟕𝟎° − 𝜶 = −𝑺𝒊𝒏 𝜶 𝐒𝒆𝒄 𝟐𝟕𝟎° − 𝜶 = −𝑪𝒐𝒔𝒆𝒄 𝜶
𝐓𝐚𝐧 𝟐𝟕𝟎° − 𝜶 = 𝑪𝒐𝒕 𝜶 𝐂𝐨𝐬𝐞𝐜 𝟐𝟕𝟎° − 𝜶 = −𝑺𝒆𝒄 𝜶
1. 𝐶𝑜𝑠 240° = ⋯
2. 𝑇𝑎𝑛 225° = ⋯
𝐶𝑜𝑠 240° = 𝐶𝑜𝑠 270 − 240 °
𝑇𝑎𝑛 225° = 𝑇𝑎𝑛 270 − 225 °
= − sin 30°
1 = 𝐶𝑜𝑡 45°
= −2 =1
KUIS:
1. 𝑆𝑖𝑛 240° = ⋯
2. 𝑆𝑒𝑐 225° = ⋯
𝐒𝐮𝐝𝐮𝐭 𝐑𝐞𝐥𝐚𝐬𝐢 𝐊𝐮𝐚𝐝𝐫𝐚𝐧 𝐈𝐕
a. Sudut 𝜶 𝒅𝒂𝒏(𝟐𝟕𝟎° + 𝜶)
𝑺𝒊𝒏 𝟐𝟕𝟎° + 𝜶 = −𝑪𝒐𝒔 𝜶 𝐂𝐨𝐭 𝟐𝟕𝟎° + 𝜶 = −𝑻𝒂𝒏 𝜶
𝐂𝐨𝐬 𝟐𝟕𝟎° + 𝜶 = 𝑺𝒊𝒏 𝜶 𝐒𝒆𝒄 𝟐𝟕𝟎° + 𝜶 = 𝑪𝒐𝒔𝒆𝒄 𝜶
𝐓𝐚𝐧 𝟐𝟕𝟎° + 𝜶 = −𝑪𝒐𝒕 𝜶 𝐂𝐨𝐬𝐞𝐜 𝟐𝟕𝟎° + 𝜶 = −𝑺𝒆𝒄 𝜶
1. 𝐶𝑜𝑠 330° = ⋯
𝐶𝑜𝑠 330° = 𝐶𝑜𝑠 270 + 60 °
= sin 60°
1
=2 3
KUIS:
1. Sin 315° = ⋯
2. 𝐶𝑜𝑠𝑒𝑐 330° = ⋯
b. Sudut 𝜶 𝒅𝒂𝒏 (𝟑𝟔𝟎° − 𝜶)
𝑺𝒊𝒏 𝟑𝟔𝟎° − 𝜶 = −𝑺𝒊𝒏 𝜶 𝐂𝐨𝐭 𝟑𝟔𝟎° − 𝜶 = −𝑪𝒐𝒕 𝜶
𝐂𝐨𝐬 𝟑𝟔𝟎° − 𝜶 = 𝑪𝒐𝒔 𝜶 𝐒𝒆𝒄 𝟑𝟔𝟎° − 𝜶 = 𝑺𝒆𝒄 𝜶
𝐓𝐚𝐧 𝟑𝟔𝟎° − 𝜶 = −𝑻𝒂𝒏 𝜶 𝐂𝐨𝐬𝐞𝐜 𝟑𝟔𝟎° − 𝜶 = −𝑪𝒐𝒔𝒆𝒄 𝜶
1. 𝐶𝑜𝑠 318° = ⋯
𝐶𝑜𝑠 318° = 𝐶𝑜𝑠 360 − 318 °
= 𝐶𝑜𝑠 42°
2. 𝑇𝑎𝑛 300° = ⋯
𝑇𝑎𝑛 300° = 𝑇𝑎𝑛 360 − 300 °
= −𝑇𝑎𝑛 60°
=− 3
KUIS:
1. 𝑆𝑖𝑛 345° = ⋯
2. 𝑇𝑎𝑛 289° = ⋯
3. 𝑆𝑖𝑛 300° = ⋯
𝐒𝐮𝐝𝐮𝐭 𝐍𝐞𝐠𝐚𝐭𝐢𝐟 (−𝛂)
𝑺𝒊𝒏 −𝜶 = −𝑺𝒊𝒏 𝜶 𝐂𝐨𝐭 −𝜶 = −𝑪𝒐𝒕 𝜶
𝐂𝐨𝐬 −𝜶 = 𝑪𝒐𝒔 𝜶 𝐒𝒆𝒄 −𝜶 = 𝑺𝒆𝒄 𝜶
𝐓𝐚𝐧 −𝜶 = −𝑻𝒂𝒏 𝜶 𝐂𝐨𝐬𝐞𝐜 −𝜶 = −𝑪𝒐𝒔𝒆𝒄 𝜶
1. 𝑆𝑖𝑛 (−30°) = ⋯
𝑆𝑖𝑛 −30° = −𝑆𝑖𝑛 30°
1
= −2
2. 𝐶𝑜𝑠 (−150°) = ⋯
𝐶𝑜𝑠 −150° = 𝐶𝑜𝑠 150°
= 𝐶𝑜𝑠 180 − 150 °
= −𝐶𝑜𝑠 30°
1
=− 3
2
KUIS:
1. 𝑆𝑖𝑛 225° = ⋯
2. 𝑆𝑒𝑐 135° = ⋯
Thanks !