0% found this document useful (0 votes)
74 views19 pages

Trigonometri

1) The document discusses trigonometric ratios and special angles in trigonometry. It provides examples of calculating trigonometric ratios in right triangles and for angles of 0, 30, 45, 60, and 90 degrees. 2) It also discusses the relationships between trigonometric ratios of complementary angles and relationships between trigonometric ratios in different quadrants for an angle θ. 3) Trigonometric ratios can be determined directly from trigonometric tables for special angles like 30, 45, and 60 degrees. The values of trig functions are given for these special angles.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
74 views19 pages

Trigonometri

1) The document discusses trigonometric ratios and special angles in trigonometry. It provides examples of calculating trigonometric ratios in right triangles and for angles of 0, 30, 45, 60, and 90 degrees. 2) It also discusses the relationships between trigonometric ratios of complementary angles and relationships between trigonometric ratios in different quadrants for an angle θ. 3) Trigonometric ratios can be determined directly from trigonometric tables for special angles like 30, 45, and 60 degrees. The values of trig functions are given for these special angles.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 19

TRIGONOMETRI 1

PERBANDINGAN TRIGONOMETRI
SUDUT ISTIMEWA
&
SUDUT BERELASI

SMA ANGKASA BANDUNG


BY: SHAFITRI DAMAYANTI. S. Pd
𝐏𝐞𝐫𝐡𝐚𝐭𝐢𝐤𝐚𝐧 𝐠𝐚𝐦𝐛𝐚𝐫 − 𝐠𝐚𝐦𝐛𝐚𝐫 𝐬𝐞𝐠𝐢𝐭𝐢𝐠𝐚 𝐬𝐢𝐤𝐮 − 𝐬𝐢𝐤𝐮 𝐝𝐢𝐛𝐚𝐰𝐚𝐡 𝐢𝐧𝐢:
𝑫𝒆𝒑𝒂𝒏
𝑪
𝑷 𝑸
𝑺𝒂𝒎𝒑𝒊𝒏𝒈

𝑴𝒊𝒓𝒊𝒏𝒈
a

𝑺𝒂𝒎𝒑𝒊𝒏𝒈
b
𝑴𝒊𝒓𝒊𝒏𝒈

𝑨 c 𝑩
𝑫𝒆𝒑𝒂𝒏
𝑺𝒂𝒎𝒑𝒊𝒏𝒈 𝑹

𝑻 𝑺

𝑫𝒆𝒑𝒂𝒏
𝑴𝒊𝒓𝒊𝒏𝒈

𝑹
 PERBANDINGAN TRIGONOMETRI PADA SEGITIGA
SIKU-SIKU
𝑪

𝑪𝑩 𝒅𝒆 𝑴𝒊𝒓𝒊𝒏𝒈 𝑫𝒆𝒑𝒂𝒏 𝑨𝑩 𝒔𝒂
𝑺𝒊𝒏 𝜶 = = 𝑪𝒐𝒔 𝜶 = =
𝑨𝑪 𝒎𝒊 𝒃 𝑨𝑪 𝒎𝒊
𝒂
𝟏 𝑨𝑪 𝒎𝒊
𝟏 𝐀𝐂 𝐦𝐢 𝑺𝒆𝒄𝒂𝒏 𝜶 = =
𝑪𝒐𝒔𝒆𝒄 𝜶 = = = = 𝒔𝒂
𝐒𝐢𝐧 𝐂𝐁 𝐝𝐞 𝑪𝒐𝒔 𝑨𝑩
𝑨 𝑩
𝒄
𝑺𝒂𝒎𝒑𝒊𝒏𝒈
DEMI SAMI DESA MIDE MISA SADE
↓ ↓ ↓ 𝑪𝑩 𝒅𝒆 ↓ ↓ ↓
Sin Cos Tan 𝑻𝒂𝒏 𝜶 = = Cosec Sec Cot
𝑨𝑩 𝒔𝒂
𝟏 𝑨𝑩 𝒔𝒂
𝑪𝒐𝒕𝒂𝒏 𝜶 = = =
𝑻𝒂𝒏 𝑪𝑩 𝒅𝒆
𝑪𝑶𝑵𝑻𝑶𝑯 INGAT!!
𝑪
DEMI SAMI DESA
𝜶 ↓ ↓ ↓
𝑴𝒊𝒓𝒊𝒏𝒈 Sin Cos Tan
𝟓 𝒄𝒎
𝟑𝒄𝒎 𝑺𝒂𝒎𝒑𝒊𝒏𝒈 MIDE MISA SADE
↓ ↓ ↓
𝑨 𝑩 Cosec Sec Cot
𝟒 𝒄𝒎
𝑫𝒆𝒑𝒂𝒏
𝑷𝒆𝒓𝒉𝒂𝒕𝒊𝒌𝒂𝒏 𝒈𝒂𝒎𝒃𝒂𝒓 𝒅𝒊𝒂𝒕𝒂𝒔, 𝒕𝒆𝒏𝒕𝒖𝒌𝒂𝒏 𝒑𝒆𝒓𝒃𝒂𝒏𝒅𝒊𝒏𝒈𝒂𝒏 𝒕𝒓𝒊𝒈𝒐𝒏𝒐𝒎𝒆𝒕𝒓𝒊𝒏𝒚𝒂?
𝟒
𝑺𝒊𝒏 𝜶 = 𝒅𝒆 = 𝑪𝒐𝒔 𝜶 =
𝒔𝒂 𝟑
𝑻𝒂𝒏 𝜶 𝒅𝒆 𝟒
𝒎𝒊 𝟓 𝒎𝒊 = = =
𝟓 𝒔𝒂 𝟑
𝒎𝒊 𝟓 𝒎𝒊 𝟓 𝒔𝒂 𝟑
𝑪𝒐𝒔𝒆𝒄 𝜶 = = 𝑺𝒆𝒄 𝜶 = = 𝑪𝒐𝒕 𝜶 = =
𝒅𝒆 𝟒 𝒔𝒂 𝟑 𝒅𝒆 𝟒
𝑪
𝑪𝑶𝑵𝑻𝑶𝑯
𝐏𝐞𝐫𝐡𝐚𝐭𝐢𝐤𝐚𝐧 𝐠𝐚𝐦𝐛𝐚𝐫 𝐝𝐢𝐬𝐚𝐦𝐩𝐢𝐧𝐠, 𝐭𝐞𝐧𝐭𝐮𝐤𝐚𝐧 𝐩𝐞𝐫𝐛𝐚𝐧𝐝𝐢𝐧𝐠𝐚𝐧
𝐭𝐫𝐢𝐠𝐨𝐧𝐨𝐦𝐞𝐭𝐫𝐢𝐧𝐲𝐚? 𝑴𝒊𝒓𝒊𝒏𝒈
𝒃=⋯
𝑹𝒖𝒎𝒖𝒔 𝑷𝒉𝒚𝒕𝒂𝒈𝒐𝒓𝒂𝒔: 𝑫𝒆𝒑𝒂𝒏
6 𝒄𝒎
I. 𝑨𝑩 = 𝑨𝑪𝟐 − 𝑩𝑪𝟐
𝜽
II. 𝑩𝑪 = 𝑨𝑪𝟐 − 𝑨𝑩𝟐
𝑨 𝑩
8 𝒄𝒎
𝐈𝐈𝐈. 𝑨𝑪 = 𝑨𝑩𝟐 + 𝑩𝑪𝟐 𝑺𝒂𝒎𝒑𝒊𝒏𝒈

𝑴𝒆𝒏𝒄𝒂𝒓𝒊 𝒏𝒊𝒍𝒂𝒊 𝒃 = ⋯ 𝒅𝒆 𝟔 𝟑 𝟏𝟎 𝟓
𝑺𝒊𝒏 𝜽 = = = 𝑪𝒐𝒔𝒆𝒄 𝜽 = 𝒎𝒊 =𝟑
𝑨𝑪 = 𝑨𝑩𝟐 + 𝑩𝑪𝟐 𝒎𝒊 𝟏𝟎 𝟓 =
𝒅𝒆 𝟔
𝑨𝑪 = 𝟖 𝟐 + 𝟔𝟐 𝒔𝒂 𝟖 𝟒 𝒎𝒊 𝟏𝟎 𝟓
𝑪𝒐𝒔 𝜽 = = = 𝑺𝒆𝒄 𝜽 = = =
𝒎𝒊 𝟏𝟎 𝟓 𝒔𝒂 𝟖 𝟒
𝑨𝑪 = 𝟔𝟒 + 𝟑𝟔
𝟔 𝟑 𝒔𝒂 𝟖 𝟒
𝑻𝒂𝒏 𝜽 = 𝒅𝒆 = = 𝑻𝒂𝒏 𝜽 = = =
𝑨𝑪 = 𝟏𝟎𝟎 𝒔𝒂 𝟖 𝟒 𝒅𝒆 𝟔 𝟑
𝑨𝑪 = 𝟏𝟎 ↔ b = 10 cm
Jadi panjang sisi b adalah 10 cm
Perbandingan Trigonometri Sudut-sudut Istimewa
Sudut istimewa yaitu suatu sudut yang nilai
perbandingannya bias ditentukan secara langsung menggunakan
daftar table sudut istimewa trigonometri. Berikut daftar tabel
sudut-sudut istimewa:
𝜶 0° 𝟑𝟎° 𝟒𝟓° 𝟔𝟎° 𝟗𝟎°

Sin 0 1 1 1 1
2 3
2 2 2
Cos 1 1 1 1 0
3 2
2 2 2
Tan 0 1 1 3 ∞
3
3
Cot ∞ 3 1 1 0
3
3
Sec 1 2 2 2 ∞
3
3
Cosec ∞ 2 2 2 1
3
3
 Nilai Perbandingan Trigonometri Sudut-sudut Istimewa

𝑺𝒊𝒏 𝟑𝟎° + 𝑪𝒐𝒔 𝟔𝟎° − 𝑻𝒂𝒏 𝟑𝟎° = ⋯ 𝑺𝒊𝒏 𝟒𝟓° 𝑪𝒐𝒔 𝟑𝟎° − 𝑪𝒐𝒔 𝟒𝟓° 𝑺𝒊𝒏 𝟑𝟎° = ⋯
𝟏 𝟏 𝟏
= + − 𝟑 𝟏 𝟏 𝟏 𝟏
𝟐 𝟐 𝟑 = 𝟐 × 𝟑 − 𝟐 ×
𝟐 𝟐 𝟐 𝟐
𝟏 𝟏 𝟏
= 𝟏− 𝟑 = 𝟔 − 𝟐
𝟑 𝟒 𝟒
𝑺𝒊𝒏 𝟔𝟎° + 𝑪𝒐𝒔 𝟒𝟓° = ⋯
𝟏
𝟏 𝟏 = ( 𝟔− 𝟐 )
= 𝟐
𝟑 + 𝟐
𝟐 𝟒

𝑺𝒆𝒄 𝟑𝟎° − 𝑻𝒂𝒏 𝟔𝟎° = ⋯


𝟐
= 𝟑− 𝟑
𝟑
𝟐 𝟑
= 𝟑
𝟑 − 𝟑
𝟑
𝟐 𝟑
= − 𝟑− 𝟑
𝟑 𝟑

𝟏
=−
𝟑
 PERBANDINGAN TRIGONOMETRI SUDUT BERELASI
Perhatikan gambar berikut ini: a. 𝜃1 𝑏𝑒𝑟𝑎𝑑𝑎 𝑑𝑖 𝐾𝑢𝑎𝑑𝑟𝑎𝑛 𝐼 𝑚𝑎𝑘𝑎:
𝒚 𝒙 𝒚
SIN + 𝑨𝑳𝑳 + 𝑺𝒊𝒏𝜽 = , 𝑪𝒐𝒔 𝜽 = − , 𝑻𝒂𝒏 𝜽 =
𝒓 𝒓 𝒙

b. 𝜃2 𝑏𝑒𝑟𝑎𝑑𝑎 𝑑𝑖 𝐾𝑢𝑎𝑑𝑟𝑎𝑛 𝐼𝐼, 𝑚𝑎𝑘𝑎:


𝒚 𝒙 𝒚
𝑺𝒊𝒏𝜽 = , 𝑪𝒐𝒔 𝜽 = − , 𝑻𝒂𝒏 𝜽 =
𝒓 𝒓 𝒙

c. 𝜃3 𝑏𝑒𝑟𝑎𝑑𝑎 𝑑𝑖 𝐾𝑢𝑎𝑑𝑟𝑎𝑛 𝐼𝐼𝐼, 𝑚𝑎𝑘𝑎:


𝒚 𝒙 𝒚
𝑺𝒊𝒏𝜽 = − , 𝑪𝒐𝒔 𝜽 = − , 𝑻𝒂𝒏 𝜽 =
𝒓 𝒓 𝒙

d. 𝜃4 𝑏𝑒𝑟𝑎𝑑𝑎 𝑑𝑖 𝐾𝑢𝑎𝑑𝑟𝑎𝑛 𝐼𝑉, 𝑚𝑎𝑘𝑎:


𝑻𝑨𝑵 + COS +
𝒚 𝒙 𝒚
𝑺𝒊𝒏𝜽 = − , 𝑪𝒐𝒔 𝜽 = , 𝑻𝒂𝒏 𝜽 = −
𝒓 𝒓 𝒙
𝑻𝒂𝒃𝒆𝒍 𝑷𝒆𝒓𝒖𝒃𝒂𝒉𝒂𝒏 𝒕𝒂𝒏𝒅𝒂 𝑺𝒊𝒏𝒖𝒔, 𝑪𝒐𝒔𝒊𝒏𝒖𝒔 𝒅𝒂𝒏 𝑻𝒂𝒏𝒈𝒆𝒏 𝒂𝒑𝒂𝒃𝒊𝒍𝒂 𝜽 𝒃𝒆𝒓𝒖𝒃𝒂𝒉 𝒅𝒂𝒓𝒊 𝟎° − 𝟑𝟔𝟎°

KUADRAN I II III IV

Sin 𝜃 𝑦 𝑦 −𝑦 −𝑦
(𝑃𝑜𝑠𝑖𝑡𝑖𝑓) 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 (𝑁𝑒𝑔𝑎𝑡𝑖𝑓) (𝑁𝑒𝑔𝑎𝑡𝑖𝑓)
𝑟 𝑟 𝑟 𝑟

Cos 𝜃 𝑥 −𝑥 −𝑥 𝑥
(𝑃𝑜𝑠𝑖𝑡𝑖𝑓) (𝑁𝑒𝑔𝑎𝑡𝑖𝑓) (𝑁𝑒𝑔𝑎𝑡𝑖𝑓) (𝑃𝑜𝑠𝑖𝑡𝑖𝑓)
𝑟 𝑟 𝑟 𝑟

Tan 𝜃 𝑦 𝑦 −𝑦 𝑦 −𝑦
(𝑃𝑜𝑠𝑖𝑡𝑖𝑓) (𝑁𝑒𝑔𝑎𝑡𝑖𝑓) = (𝑃𝑜𝑠𝑖𝑡𝑖𝑓) (𝑁𝑒𝑔𝑎𝑡𝑖𝑓)
𝑥 −𝑥 −𝑥 𝑥 𝑥
𝑻𝒊𝒑𝒔 𝑪𝒆𝒑𝒂𝒕
𝟗𝟎°

𝟎° , 𝟑𝟔𝟎°
𝟏𝟖𝟎°

𝟐𝟕𝟎°
𝑨𝑳𝑳 𝑺𝑰𝑵 𝑻𝑨𝑵 𝑪𝑶𝑺
 𝐒𝐮𝐝𝐮𝐭 𝐑𝐞𝐥𝐚𝐬𝐢 𝐊𝐮𝐚𝐝𝐫𝐚𝐧 𝐈

 Sudut 𝜶 𝒅𝒂𝒏(𝟗𝟎° − 𝜶)

𝑺𝒊𝒏 𝟗𝟎° − 𝜶 = 𝑪𝒐𝒔 𝜶 𝐂𝐨𝐭 𝟗𝟎° − 𝜶 = 𝑻𝒂𝒏 𝜶


𝐂𝐨𝐬 𝟗𝟎° − 𝜶 = 𝑺𝒊𝒏 𝜶 𝐒𝒆𝒄 𝟗𝟎° − 𝜶 = 𝑪𝒐𝒔𝒆𝒄 𝜶
𝐓𝐚𝐧 𝟗𝟎° − 𝜶 = 𝑪𝒐𝒕 𝜶 𝐂𝐨𝐬𝐞𝐜 𝟗𝟎° − 𝜶 = 𝑺𝒆𝒄 𝜶
Contoh:
1. 𝑆𝑖𝑛 36° = ⋯
𝑆𝑖𝑛 36° = 𝑆𝑖𝑛 90 − 36 °
= 𝐶𝑜𝑠 54°

2. 𝑇𝑎𝑛 30° = ⋯
𝑇𝑎𝑛 30° = 𝑇𝑎𝑛 90 − 30 °
= 𝐶𝑜𝑡 60°
1
=3 3
KUIS:
1. 𝑆𝑖𝑛 45° = ⋯
2. 𝐶𝑜𝑠 16° = ⋯
 𝐒𝐮𝐝𝐮𝐭 𝐑𝐞𝐥𝐚𝐬𝐢 𝐊𝐮𝐚𝐝𝐫𝐚𝐧 𝐈𝐈
a. Sudut 𝜶 𝒅𝒂𝒏(𝟗𝟎° + 𝜶)

𝑺𝒊𝒏 𝟗𝟎° + 𝜶 = 𝑪𝒐𝒔 𝜶 𝐂𝐨𝐭 𝟗𝟎° + 𝜶 = −𝑻𝒂𝒏 𝜶


𝐂𝐨𝐬 𝟗𝟎° + 𝜶 = −𝑺𝒊𝒏 𝜶 𝐒𝒆𝒄 𝟗𝟎° + 𝜶 = −𝑪𝒐𝒔𝒆𝒄 𝜶
𝐓𝐚𝐧 𝟗𝟎° + 𝜶 = −𝑪𝒐𝒕 𝜶 𝐂𝐨𝐬𝐞𝐜 𝟗𝟎° + 𝜶 = 𝑺𝒆𝒄 𝜶

Contoh:
1. 𝑆𝑖𝑛 120° = ⋯
𝑆𝑖𝑛 120° = 𝑆𝑖𝑛(90 + 30)°
= 𝐶𝑜𝑠 30°
1
=2 3

2. 𝑆𝑒𝑐 140° = 𝑆𝑒𝑐 90 + 50 °


= −𝐶𝑜𝑠𝑒𝑐 50
KUIS:
1. 𝐶𝑜𝑠 135° = ⋯
2. 𝑇𝑎𝑛 150° = ⋯
3. 𝐶𝑜𝑠𝑒𝑐 120° = ⋯
b. Sudut 𝜶 𝒅𝒂𝒏(𝟏𝟖𝟎° − 𝜶)

𝑺𝒊𝒏 𝟏𝟖𝟎° − 𝜶 = 𝑺𝒊𝒏 𝜶 𝐂𝐨𝐭 𝟏𝟖𝟎° − 𝜶 = −𝑪𝒐𝒕 𝜶


𝐂𝐨𝐬 𝟏𝟖𝟎° − 𝜶 = −𝑪𝒐𝒔 𝜶 𝐒𝒆𝒄 𝟏𝟖𝟎° − 𝜶 = −𝑺𝒆𝒄 𝜶
𝐓𝐚𝐧 𝟏𝟖𝟎° − 𝜶 = −𝑻𝒂𝒏 𝜶 𝐂𝐨𝐬𝐞𝐜 𝟏𝟖𝟎° − 𝜶 = 𝑪𝒐𝒔𝒆𝒄 𝜶

1. 𝑆𝑖𝑛 120° = ⋯
𝑆𝑖𝑛 120° = 𝑆𝑖𝑛 180 − 120 °
= 𝑆𝑖𝑛 60°
1
=2 3
2. 𝐶𝑜𝑡 120° = ⋯
𝐶𝑜𝑡 120° = 𝐶𝑜𝑡 180 − 120 °
= − cot 60°
1
= −3 3
KUIS:
1. 𝐶𝑜𝑡 150° = ⋯
2. 𝑆𝑒𝑐 135° = ⋯
 𝐒𝐮𝐝𝐮𝐭 𝐑𝐞𝐥𝐚𝐬𝐢 𝐊𝐮𝐚𝐝𝐫𝐚𝐧 𝐈𝐈𝐈

a. Sudut 𝜶 𝒅𝒂𝒏(𝟏𝟖𝟎° + 𝜶)

𝑺𝒊𝒏 𝟏𝟖𝟎° + 𝜶 = −𝑺𝒊𝒏 𝜶 𝐂𝐨𝐭 𝟏𝟖𝟎° + 𝜶 = 𝑪𝒐𝒕 𝜶


𝐂𝐨𝐬 𝟏𝟖𝟎° + 𝜶 = −𝑪𝒐𝒔 𝜶 𝐒𝒆𝒄 𝟏𝟖𝟎° + 𝜶 = −𝑺𝒆𝒄 𝜶
𝐓𝐚𝐧 𝟏𝟖𝟎° + 𝜶 = 𝑻𝒂𝒏 𝜶 𝐂𝐨𝐬𝐞𝐜 𝟏𝟖𝟎° + 𝜶 = −𝑪𝒐𝒔𝒆𝒄 𝜶

1. Tan 210° =…
𝑇𝑎𝑛 210° = 𝑇𝑎𝑛 180 + 30 °
= 𝑇𝑎𝑛 30°
1
=3 3
2. 𝐶𝑜𝑠𝑒𝑐 240° = ⋯
𝐶𝑜𝑠𝑒𝑐 240° = 𝐶𝑜𝑠𝑒𝑐 180 + 60 °
= −𝐶𝑜𝑠𝑒𝑐 60°
2
= −3 3
KUIS:
1. 𝑆𝑖𝑛 225° = ⋯
2. 𝑆𝑒𝑐 225° = ⋯
b. Sudut 𝜶 𝒅𝒂𝒏(𝟐𝟕𝟎° − 𝜶)

𝑺𝒊𝒏 𝟐𝟕𝟎° − 𝜶 = −𝑪𝒐𝒔 𝜶 𝐂𝐨𝐭 𝟐𝟕𝟎° − 𝜶 = 𝑻𝒂𝒏 𝜶


𝐂𝐨𝐬 𝟐𝟕𝟎° − 𝜶 = −𝑺𝒊𝒏 𝜶 𝐒𝒆𝒄 𝟐𝟕𝟎° − 𝜶 = −𝑪𝒐𝒔𝒆𝒄 𝜶
𝐓𝐚𝐧 𝟐𝟕𝟎° − 𝜶 = 𝑪𝒐𝒕 𝜶 𝐂𝐨𝐬𝐞𝐜 𝟐𝟕𝟎° − 𝜶 = −𝑺𝒆𝒄 𝜶

1. 𝐶𝑜𝑠 240° = ⋯
2. 𝑇𝑎𝑛 225° = ⋯
𝐶𝑜𝑠 240° = 𝐶𝑜𝑠 270 − 240 °
𝑇𝑎𝑛 225° = 𝑇𝑎𝑛 270 − 225 °
= − sin 30°
1 = 𝐶𝑜𝑡 45°
= −2 =1

KUIS:
1. 𝑆𝑖𝑛 240° = ⋯
2. 𝑆𝑒𝑐 225° = ⋯
 𝐒𝐮𝐝𝐮𝐭 𝐑𝐞𝐥𝐚𝐬𝐢 𝐊𝐮𝐚𝐝𝐫𝐚𝐧 𝐈𝐕

a. Sudut 𝜶 𝒅𝒂𝒏(𝟐𝟕𝟎° + 𝜶)
𝑺𝒊𝒏 𝟐𝟕𝟎° + 𝜶 = −𝑪𝒐𝒔 𝜶 𝐂𝐨𝐭 𝟐𝟕𝟎° + 𝜶 = −𝑻𝒂𝒏 𝜶
𝐂𝐨𝐬 𝟐𝟕𝟎° + 𝜶 = 𝑺𝒊𝒏 𝜶 𝐒𝒆𝒄 𝟐𝟕𝟎° + 𝜶 = 𝑪𝒐𝒔𝒆𝒄 𝜶
𝐓𝐚𝐧 𝟐𝟕𝟎° + 𝜶 = −𝑪𝒐𝒕 𝜶 𝐂𝐨𝐬𝐞𝐜 𝟐𝟕𝟎° + 𝜶 = −𝑺𝒆𝒄 𝜶

1. 𝐶𝑜𝑠 330° = ⋯
𝐶𝑜𝑠 330° = 𝐶𝑜𝑠 270 + 60 °
= sin 60°
1
=2 3
KUIS:
1. Sin 315° = ⋯
2. 𝐶𝑜𝑠𝑒𝑐 330° = ⋯
b. Sudut 𝜶 𝒅𝒂𝒏 (𝟑𝟔𝟎° − 𝜶)

𝑺𝒊𝒏 𝟑𝟔𝟎° − 𝜶 = −𝑺𝒊𝒏 𝜶 𝐂𝐨𝐭 𝟑𝟔𝟎° − 𝜶 = −𝑪𝒐𝒕 𝜶


𝐂𝐨𝐬 𝟑𝟔𝟎° − 𝜶 = 𝑪𝒐𝒔 𝜶 𝐒𝒆𝒄 𝟑𝟔𝟎° − 𝜶 = 𝑺𝒆𝒄 𝜶
𝐓𝐚𝐧 𝟑𝟔𝟎° − 𝜶 = −𝑻𝒂𝒏 𝜶 𝐂𝐨𝐬𝐞𝐜 𝟑𝟔𝟎° − 𝜶 = −𝑪𝒐𝒔𝒆𝒄 𝜶
1. 𝐶𝑜𝑠 318° = ⋯
𝐶𝑜𝑠 318° = 𝐶𝑜𝑠 360 − 318 °
= 𝐶𝑜𝑠 42°

2. 𝑇𝑎𝑛 300° = ⋯
𝑇𝑎𝑛 300° = 𝑇𝑎𝑛 360 − 300 °
= −𝑇𝑎𝑛 60°
=− 3
KUIS:
1. 𝑆𝑖𝑛 345° = ⋯
2. 𝑇𝑎𝑛 289° = ⋯
3. 𝑆𝑖𝑛 300° = ⋯
 𝐒𝐮𝐝𝐮𝐭 𝐍𝐞𝐠𝐚𝐭𝐢𝐟 (−𝛂)

𝑺𝒊𝒏 −𝜶 = −𝑺𝒊𝒏 𝜶 𝐂𝐨𝐭 −𝜶 = −𝑪𝒐𝒕 𝜶


𝐂𝐨𝐬 −𝜶 = 𝑪𝒐𝒔 𝜶 𝐒𝒆𝒄 −𝜶 = 𝑺𝒆𝒄 𝜶
𝐓𝐚𝐧 −𝜶 = −𝑻𝒂𝒏 𝜶 𝐂𝐨𝐬𝐞𝐜 −𝜶 = −𝑪𝒐𝒔𝒆𝒄 𝜶

1. 𝑆𝑖𝑛 (−30°) = ⋯
𝑆𝑖𝑛 −30° = −𝑆𝑖𝑛 30°
1
= −2
2. 𝐶𝑜𝑠 (−150°) = ⋯
𝐶𝑜𝑠 −150° = 𝐶𝑜𝑠 150°
= 𝐶𝑜𝑠 180 − 150 °
= −𝐶𝑜𝑠 30°
1
=− 3
2
KUIS:
1. 𝑆𝑖𝑛 225° = ⋯
2. 𝑆𝑒𝑐 135° = ⋯
Thanks !

You might also like