0% found this document useful (0 votes)
93 views2 pages

Kartu Trigonometri Pelajar

1. The document defines trigonometric ratios and identities for angles between 0-360 degrees, including special angle identities. 2. Relationships between trigonometric functions of complementary, supplementary, and related angles are provided. 3. Pythagorean identities, sum and difference identities, half-angle and double-angle formulas, and trigonometric equations are also summarized.

Uploaded by

putriindahsari77
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
93 views2 pages

Kartu Trigonometri Pelajar

1. The document defines trigonometric ratios and identities for angles between 0-360 degrees, including special angle identities. 2. Relationships between trigonometric functions of complementary, supplementary, and related angles are provided. 3. Pythagorean identities, sum and difference identities, half-angle and double-angle formulas, and trigonometric equations are also summarized.

Uploaded by

putriindahsari77
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 2

KARTU TRIGONOMETRI

➢ Ukuran sudut dan perbandingan Trigonometri 2. Sudut (𝟗𝟎° + 𝜶)


1. Sudut bertanda positif jika arah putarannya sin (90° + 𝛼) = cos 𝛼
berlawanan jarum jam cos (90° + 𝛼) = − sin 𝛼
2. Sudut bertanda negatif jika arah putarannya tan (90° + 𝛼) = −cotan 𝛼
searah jarum jam cosec (90° + 𝛼) = sec 𝛼
sec (90° + 𝛼) = −cosec 𝛼
Satuan derajat (°) dan radian (rad) cotan (90° + 𝛼) = −tan 𝛼
180° = 𝜋 𝑟𝑎𝑑𝑖𝑎𝑛
180° 3. Sudut (𝟏𝟖𝟎° − 𝜶)
1 𝑟𝑎𝑑𝑖𝑎𝑛 =
𝜋 sin (180° − 𝛼) = sin 𝛼
𝜋
1° = cos (180° − 𝛼) = −cos 𝛼
180 tan (180° − 𝛼) = −tan 𝛼
cosec (180° − 𝛼) = cosec 𝛼
➢ Sudut dan Kuadran
sec (180° − 𝛼) = − sec 𝛼
cotan (180° − 𝛼) = −cotan 𝛼

4. Sudut (𝟏𝟖𝟎° + 𝜶)
sin (180° + 𝛼) = −sin 𝛼
cos (180° + 𝛼) = −cos 𝛼
tan (180° + 𝛼) = tan 𝛼
cosec (180° + 𝛼) = −cosec 𝛼
sec (180° + 𝛼) = −sec 𝛼
➢ Perbandingan Trigonometri pada segitiga sikusiku cotan (180° + 𝛼) = cotan 𝛼

5. Sudut (𝟐𝟕𝟎° − 𝜶)
sin (270° − 𝛼) = −cos 𝛼
cos (270° − 𝛼) = −sin 𝛼
tan (270° − 𝛼) = cotan 𝛼
cosec (270° − 𝛼) = −sec 𝛼
sec (270° − 𝛼) = −cosec 𝛼
𝑑𝑒𝑝𝑎𝑛 𝑚𝑖𝑟𝑖𝑛𝑔 cotan (270° − 𝛼) = tan 𝛼
sin 𝛼 = 𝑚𝑖𝑟𝑖𝑛𝑔 𝑐𝑜𝑠𝑒𝑐 𝛼 = 𝑑𝑒𝑝𝑎𝑛
𝑠𝑎𝑚𝑝𝑖𝑛𝑔 𝑚𝑖𝑟𝑖𝑛𝑔
cos 𝛼 = secan 𝛼 = 𝑠𝑎𝑚𝑝𝑖𝑛𝑔 6. Sudut (𝟐𝟕𝟎° + 𝜶)
𝑚𝑖𝑟𝑖𝑛𝑔
𝑑𝑒𝑝𝑎𝑛 𝑠𝑎𝑚𝑝𝑖𝑛𝑔 sin (270° + 𝛼) = −cos 𝛼
tan 𝛼 = 𝑠𝑎𝑚𝑝𝑖𝑛𝑔
cotan 𝛼 = 𝑑𝑒𝑝𝑎𝑛 cos (270° + 𝛼) = sin 𝛼
tan (270° + 𝛼) = −cotan 𝛼
➢ Perbandingan trigonometri Sudut Istimewa cosec (270° + 𝛼) = −sec 𝛼
𝜶 𝟎° 𝟑𝟎° 𝟒𝟓° 𝟔𝟎° 𝟗𝟎° sec (270° + 𝛼) = cosec 𝛼
1 1 1 cotan (270° + 𝛼) = −tan 𝛼
𝑠𝑖𝑛 𝛼 0 √2 √3 1
2 2 2
1 1 1 7. Sudut (𝟑𝟔𝟎° − 𝜶)
𝑐𝑜𝑠 𝛼 1 √3 √2 0
2 2 2 sin (360° − 𝛼) = −sin 𝛼
1 cos (360° − 𝛼) = cos 𝛼
𝑡𝑎𝑛 𝛼 0 √3 1 √3 −
3 tan (360° − 𝛼) = −tan 𝛼
2 cosec (360° − 𝛼) = −cosec 𝛼
𝑐𝑜𝑠𝑒𝑐 𝛼 − 2 √3 √3 1
3 sec (360° − 𝛼) = sec 𝛼
2 cotan (360° − 𝛼) = −cotan 𝛼
𝑠𝑒𝑐 𝛼 1 √3 √2 2 −
3
1 8. Sudut (> 𝟑𝟔𝟎°)
𝑐𝑜𝑡𝑎𝑛 𝛼 − √3 1 √3 0
3 𝒔𝑖𝑛 (𝛼 + 𝑘 × 360°) = 𝑠𝑖𝑛 𝛼
𝑐𝑜𝑠 (𝛼 + 𝑘 × 360°) = 𝑐𝑜𝑠 𝛼
➢ Perbandingan Trigonometri Sudut Berelasi ta n(𝛼 + 𝑘 × 360°) = ta n 𝛼
1. Sudut (𝟗𝟎° − 𝜶) 𝑐𝑜𝑠𝑒𝑐 (𝛼 + 𝑘 × 360°) = 𝑐𝑜𝑠𝑒𝑐 𝛼
𝑠𝑖𝑛 (90° − 𝛼) = 𝑐𝑜𝑠 𝛼 𝑐𝑜𝑠𝑒𝑐 (90° − 𝛼) = 𝑠𝑒𝑐 𝛼 𝑠𝑒𝑐 (𝛼 + 𝑘 × 360°) = 𝑠𝑒𝑐 𝛼
𝑐𝑜𝑠 (90° − 𝛼) = 𝑠𝑖𝑛 𝛼 𝑠𝑒𝑐 (90° − 𝛼) = 𝑐𝑜𝑠𝑒𝑐 𝛼 𝑐𝑜𝑡𝑎𝑛 (𝛼 + 𝑘 × 360°) = 𝑐𝑜𝑡𝑎𝑛 𝛼
𝑡𝑎𝑛 (90° − 𝛼) = 𝑐𝑜𝑡𝑎𝑛 𝛼 𝑐𝑜𝑡𝑎𝑛 (90° − 𝛼) = 𝑡𝑎𝑛 𝛼
KARTU TRIGONOMETRI

➢ Identitas Perbandingan dan Kebalikan tan 𝐴 + tan 𝐵


𝑡𝑎𝑛(𝐴 + 𝐵) =
𝑠𝑖𝑛 𝛼 1 − tan 𝐴 tan 𝐵
𝑡𝑎𝑛 𝛼 = tan 𝐴 − tan 𝐵
𝑐𝑜𝑠 𝛼 𝑡𝑎𝑛(𝐴 − 𝐵) =
1 + tan 𝐴 tan 𝐵
𝑐𝑜𝑠 𝛼
𝑐𝑜𝑡𝑎𝑛 𝛼 =
𝑠𝑖𝑛 𝛼 ➢ Sudut Kembar
1 sin 2𝐴 = 2 sin 𝐴 cos 𝐴
𝑠𝑖𝑛 𝛼 = cos 2𝐴 = cos 2 𝐴 − sin2 𝐴
𝑐𝑜𝑠𝑒𝑐 𝛼
= 2 cos 2 𝐴 − 1
1 = 1 − 2 sin2 𝐴
𝑐𝑜𝑠 𝛼 =
𝑠𝑒𝑐 𝛼 2 tan 𝐴
tan 2𝐴 =
1 1 − tan2 𝐴
𝑡𝑎𝑛 𝛼 =
𝑐𝑜𝑡𝑎𝑛 𝛼
➢ Jumlah dan selisih fungsi
𝐴+𝐵 𝐴−𝐵
➢ Identitas Pythagoras sin 𝐴 + sin 𝐵 = 2 sin ( ) cos ( )
2 2
1. 𝑠𝑖𝑛2 𝛼 + 𝑐𝑜𝑠 2 𝛼 = 1 𝐴+𝐵 𝐴−𝐵
2. 𝑡𝑎𝑛2 𝛼 + 1 = 𝑠𝑒𝑐 2 𝛼 sin 𝐴 − sin 𝐵 = 2 cos ( ) sin ( )
2 2
3. 𝑐𝑜𝑡𝑎𝑛2 𝛼 + 1 = 𝑐𝑜𝑠𝑒𝑐 2 𝛼 𝐴+𝐵 𝐴−𝐵
cos 𝐴 + cos 𝐵 = 2 cos ( ) cos ( )
2 2
➢ Aturan Sinus 𝐴+𝐵 𝐴−𝐵
cos 𝐴 − sin 𝐵 = −2 sin ( ) sin ( )
2 2
𝑎 𝑏 𝑐
= =
sin 𝐴 sin 𝐵 sin 𝐶 ➢ Perkalian
2 sin 𝐴 cos 𝐵 = sin(𝐴 + 𝐵) + sin(𝐴 − 𝐵)
2 cos 𝐴 sin 𝐵 = sin(𝐴 + 𝐵) − sin(𝐴 − 𝐵)
2 cos 𝐴 cos 𝐵 = cos(𝐴 + 𝐵) + cos(𝐴 − 𝐵)
−2 sin 𝐴 sin 𝐵 = cos(𝐴 + 𝐵) − cos(𝐴 − 𝐵)
➢ Aturan Cosinus
1. 𝑎2 = 𝑏 2 + 𝑐 2 − 2𝑏𝑐 cos 𝐴 ➢ Sudut Paruh
2. 𝑏 2 = 𝑎2 + 𝑐 2 − 2𝑎𝑐 cos 𝐵 1 1−𝑐𝑜𝑠 𝐴
3. 𝑐 2 = 𝑎2 + 𝑏 2 − 2𝑎𝑏 𝑐𝑜𝑠 𝐶 • 𝑠𝑖𝑛 2 𝐴 = ±√ 2
1 1+𝑐𝑜𝑠 𝐴
➢ Luas Segitiga • 𝑐𝑜𝑠 𝐴 = ±√
2 2
Jika diketahui dua sisi dan satu sudut
1 1−𝑐𝑜𝑠 𝐴
1
1. Luas ∆𝐴𝐵𝐶 = 2 𝑏𝑐 × sin 𝐴 • 𝑡𝑎𝑛 2 𝐴 = ±√1+𝑐𝑜𝑠 𝐴
1 1 1−𝑐𝑜𝑠 𝐴
2. Luas ∆𝐴𝐵𝐶 =
2
𝑎𝑐 × sin 𝐵 • 𝑡𝑎𝑛 2 𝐴 = 𝑠𝑖𝑛 𝐴
1 1 𝑠𝑖𝑛 𝐴
3. Luas ∆𝐴𝐵𝐶 = 2
𝑎𝑏 × sin 𝐶 • 𝑡𝑎𝑛 2 𝐴 = 1+𝑐𝑜𝑠 𝐴

Jika diketahui dua sudut dan satu sisi *) Untuk menentukan +(positif) atau – (Negatif),
(𝑎 2 ×sin 𝐵×sin 𝐶) lihatlah di kuadran berapa sudut tersebut berada.
1. Luas ∆𝐴𝐵𝐶 =
2 𝑠𝑖𝑛 𝐴
(𝑏2 ×sin 𝐴×sin 𝐶)
2. Luas ∆𝐴𝐵𝐶 = 2 𝑠𝑖𝑛 𝐵
➢ Persamaan Trigonometri
(𝑐 2 ×sin 𝐴×sin 𝐵) 𝑎 sin 𝑥 ± 𝑏 cos 𝑥 = 𝑅 sin(𝑥 ± 𝛼)
3. Luas ∆𝐴𝐵𝐶 = 2 𝑠𝑖𝑛 𝐶 𝑎 cos 𝑥 ± 𝑏 sin 𝑥 = 𝑅 cos(𝑥 ± 𝛼)
𝑏
𝑅 = √𝑎2 + 𝑏 2 , dengan 𝑡𝑎𝑛 𝛼 = 𝑎
Jika diketahui Panjang ketiga sisinya
Luas ∆𝐴𝐵𝐶 = √𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)
1
Dengan 𝑠 = 2 (𝑎 + 𝑏 + 𝑐)

➢ Jumlah dan selisih dua sudut


𝑠𝑖𝑛(𝐴 + 𝐵) = sin 𝐴 cos 𝐵 + cos 𝐴 sin 𝐵
𝑠𝑖𝑛(𝐴 − 𝐵) = sin 𝐴 cos 𝐵 − cos 𝐴 sin 𝐵
𝑐𝑜𝑠(𝐴 + 𝐵) = cos 𝐴 cos 𝐵 − sin 𝐴 sin 𝐵
𝑐𝑜𝑠(𝐴 − 𝐵) = cos 𝐴 cos 𝐵 + sin 𝐴 sin 𝐵

You might also like