FL051.
1
Giảng viên ra đề: 22 / 12 / 2022 Người phê duyệt: 22 / 12 / 2022
Phạm Công Bằng Nguyễn Quốc Chí
Học kỳ/năm học 1 2022-2023
THI CUỐI KỲ Ngày thi 27 / 12 / 2022
Môn học Kỹ thuật robot
TRƯỜNG ĐH BÁCH KHOA – ĐHQG-HCM Mã môn học ME3015
KHOA CƠ KHÍ Thời lượng 120 phút Mã đề
Ghi chú: - Hình thức thi là tự luận
- Được sử dụng tài liệu
Question 1 (2.0 marks) (L.O. 1)
In a fixed reference frame {R} as shown in Fig. 1, there is a unit cube A that its frame {A} is initially
coincident with {R}. Point P is attached to the cube given by Ap = [1, 1, 1]T. In addition, there is another
frame {B} determined by:
1 0 0 3
0 1 0 6
BT
R
0 0 1 1
0 0 0 1
ZR
{R}
ZA
Fig. 1
P
A
YA YR ZB
XA {B}
XR
YB
XB
Implement two rotations of the cube: a rotation of -900 about YR-axis, then followed by 900 about ZR-axis.
Do the followings:
a. Determine 𝑅𝐴𝐓.
b. Determine 𝐵𝐴𝐓.
c. Determine Bp – coordinates of point P in {B}.
MSSV: .................................. Họ và tên SV: ................................................................................... Trang 1/3
Question 2 (4.0 marks) (L.O. 2)
An RPP spatial robot with known frames is used to manipulate a gripper at point D as shown in Fig. 2.
Fig. 2 X2 X3
Z2
D
Z3
X1
Z0 Z1
X0
With this manipulator, do the followings:
a. Determine three sets of D-H parameters corresponding to the three joints.
b. Derive the neighboring homogeneous transformation matrices: 0T1, 1T2, and 2T3.
c. Derive the forward-pose kinematics solution, i.e. 0xD, 0yD, and 0zD, as a function of joint variables
(dd3
d. Derive the constraint of 0xD, 0yD, and 0zD in which solutions of the inverse kinematic problem exist.
Assume that:
there are no joint limits of
d2 = [0, d2max] and d3 = [0, d3max]
Question 3 (4.0 marks) (L.O. 2)
An RRP spatial robot is designed to manipulate a gripper at point D as seen in Fig. 3. Frames {0}, {1}, {2}
and {3}, which are assigned to link 0, link 1, link 2 and link 3 respectively.
a. Complete frame components at (1), (2), (3), (4), (5), và (6).
b. Fill in the table missing D-H parameters.
i ai i di i
1 1
2 2
3 d3
Trang 2/3
X3
Fig. 3 {3}
(6)
Z3
D
(5)
(4)
(2)
(3)
l1
Y0
{0}
(1)
c. Derive the Jacobian matrix 0J() for this manipulator where 0𝐕𝑫 = 0𝐉(𝜃)𝛉̇. Note that:
𝛉̇ is a velocity vector of joint angles (𝜃̇1 , 𝜃̇2 , 𝑑̇3 ).
The coordinates of point D in the base frame {0} are known as:
0
xD = cos(𝜃1 )[𝑑3 sin(𝜃2 ) + 𝑙2 cos(𝜃2 )]
0
{ yD = sin(𝜃1 )[𝑑3 sin(𝜃2 ) + 𝑙2 cos(𝜃2 )]
0
zD = 𝑙1 + 𝑙2 sin(𝜃2 ) − 𝑑3 cos(𝜃2 )
d. When joint values are given as 1 = 2 = 00, and d3 = l1.
Plot the posture of the robot
Use positional expressions in part c to verify the position of point D
e. With the posture in part d, using the Jacobian matrix in part c to compute the required joint torques 1,
2, and 3 that balance the robot with all following assumptions:
The links are massless and there is an external point mass of 1 kg at D,
The robot is affected by the downward gravitational acceleration of 9.81 m/s2.
---------------------------------------------------------------------------------------------------------------------
--- End of Paper ---
Trang 3/3