0% found this document useful (0 votes)
64 views2 pages

Ft-Me3015-21 22 01

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
64 views2 pages

Ft-Me3015-21 22 01

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 2

FL051.

1
Giảng viên ra đề: 21 / 12 / 2021 Người phê duyệt: 21 / 12 / 2021

Phạm Công Bằng Nguyễn Quốc Chí

Học kỳ/năm học 1 2021-2022


THI CUỐI KỲ Ngày thi 25 / 12 / 2021
Môn học Kỹ thuật robot
TRƯỜNG ĐH BÁCH KHOA – ĐHQG-HCM Mã môn học ME3015
KHOA CƠ KHÍ Thời lượng 60 phút Mã đề (Mùa Covid)
Ghi chú: - Hình thức thi là tự luận, gồm 6 câu.
- Được sử dụng tài liệu.

Question 1 (1.0 marks) (L.O. 1)

Fig. 1

Do the followings:
a. Referring to Fig. 1, give the value of 𝐵𝐴𝑻
b. Referring to Fig. 1, give the value of 𝐴𝐶𝐓

Question 2 (2.0 marks) (L.O. 1)


A mechanism of Noel head prototype is included a fixed reference frame {0} and a mobile head frame {H}.

a. Determine 0RH after the head rotates an angle of 900 about the vector OP where P (0xp = 1; 0yp = 2;
0
zp = 2).
b. Determine Roll-Pitch-Yaw (, ,  in degree) according to the orientation above.

MSSV: .................................. Họ và tên SV: ................................................................................... Trang 1/2


Question 3 (1.0 marks) (L.O. 1)
A frame {B} is located initially coincident with a frame {A}. We rotate {B} about ZB by 45 degrees, and
then we rotate the resulting frame about XB by 45 degrees. Determine the rotation matrix 𝐵𝐴𝐑 that will
change the description of vectors from Bp to Ap.

Question 4 (1.5 marks) (L.O. 2)


The kinematics of a 3R robot are given by

Find 0J(), which, when multiplied by the joint velocity vector, gives the linear velocity of the origin of
frame {3} relative to frame {0}.

Question 5 (3.5 marks) (L.O. 2)

Do the followings:
a. Determine frame components at (1), (2), (3), (4), (5), and (6).
b. Derive the D-H parameters.
c. Derive the neighboring homogeneous transformation: 0T1,and 1T2
d. Derive the forward-pose kinematics solution, i.e. 0xP, 0yP, and
0
zP, as a function of joint variables (d).

Question 6 (1.0 marks) (L.O. 2)


Given an RRP manipulator in which
X3 {3} Z3

D
Y3

Z0

X2
Z2
Z1
l1

X1
Derive the constraints of 0xD, 0yD, and 0zD so that the inverse Y0
kinematic solutions exist when d3 = [0, d3max]. Comment the {0} X0
workspace shape of the manipulator.

---------------------------------------------------------------------------------------------------------------------
--- End of Paper ---

Trang 2/2

You might also like