Some Computational Problems on Limits and Continuity
Aditya Ghosh
 1. Suppose that lim (f (x) + g(x)) = 2 and lim (f (x) − g(x)) = 1. Is it necessary that
                       x→a                            x→a
    lim f (x)g(x) exists? If yes, can you calculate that limit?
    x→a
                                       p
                                         1 − cos 2(x − 1)            x3 − x2 log x + log x − 1
 2. Find the following limits: (i) lim                    , (ii) lim                           ,
              √    √       √       x→1       x−1                 x→1          x2 − 1
              3
                x+ x+x x−3
    (iii) lim
          x→1        x−1
                               
                                 5x − 4,     if 0 < x ≤ 1,
 3. Define a function f (x) =                               Find out whether lim f (x) exists.
                                 4x3 − 3x, if 1 < x < 2.                       x→1
    Is f continuous at x = 1?
                 3x2 + ax + a + 1
 4. Let f (x) =                    . Determine the value(s) of a for which (i) lim f (x) exist,
                    x2 + x − 2                                                 x→1
    (ii) lim f (x) exists. Do you have any conclusion? Also calculate those two limits.
          x→−2
                          bx/2c
 5. Determine lim                  , where b·c is the box/floor function.
                  x→π/2 log(sin x)
                      xp+1 − (p + 1)x + p
 6. Determine lim                         where p is a positive integer.
                  x→1      (x − 1)2
                                                                              p     √
                       sin2 x − sin2 y             sin(π cos2 x)                1 − sin 2x
 7. Evaluate: (i) lim                  , (ii) lim                , (iii) lim               .
                  x→y     x2 − y 2            x→0       x2              x→π/4    π − 4x
                                           √                           √             √      
 8. Calculate the following limits: lim         x2 + x − x and lim          x2 + x + 1 − x2 + 1 .
                             √      x→∞                            x→∞
    Also find lim n sin(2π 1 + n2 ).
                 n→∞
 9. Calculate the following limits:
                                                                      √       √
            x sin a − a sin x                          (d) lim cot−1 ( x + 1 − x).
    (a) lim                                                 x→∞
        x→a       x−a
              √                                                                      √
                2 − cos θ − sin θ                                (cos x + sin x)3 − 2 2
    (b) lim                                            (e) lim
        θ→π/4      (4θ − π)2                               x→π/4        1 − sin 2x
                sin(cot2 x)                                     x tan 2x − 2x tan x
     (c) lim                                            (f) lim
          x→π/2 (π − 2x)2                                   x→0    (1 − cos 2x)2
10. Find lim− f (x) and lim+ f (x) for the following function:
           x→0               x→0
                                     2
                                    tan ({x})/(x2 − [x]2 ),       if x > 0,
                             f (x) = 1, p                          for x = 0,
                                      1/ {x} cot{x},               for x < 0.
                                    
    Here [x] is the floor function and {x} = x − [x].
                                                  1
11. If α, β be the roots of the quadratic equation ax2 + bx + c = 0, prove that
                                    1 − cos(ax2 + bx + c)  1
                              lim                2
                                                          = (b2 − 4ac).
                              x→β         (x − β)          2
                                  tan({x} − 1) sin({x})
12. Find whether the limit lim                          exists.
                              x→0     {x}({x} − 1)
                                                        log(2 + x) − x2n sin x
13. Discuss the continuity of the function f (x) = lim                         at x = 1.
                                                  n→∞          1 + x2n
                                                                      1 x
     The next few problems will involve the concept of e := lim 1 +         . This number e is
                                                            x→∞√       x
 a real number, just like any other real number, say 2, −1, 2/3, 3, or π/2. Then you might
 wonder, why is e so special? Actually it is the function exp(x) := ex that makes e so special.
 Here is a note that attempts to give some insights about different results related to e that we
 usually use in a first course of Calculus. In particular, we assume the following limit without
 proof:
                                              ex − 1
                                          lim        = 1.
                                          x→0    x
 A proof of this is given in the above note, you may read that once you are ready. (The way I
 treated it in the note requires the knowledge of Fundamental theorem of Integral Calculus).
 Assuming the above limit (and the above definition of e), you can prove the following limits:
                       log(1 + x)          ax − 1
                   lim            = 1, lim        = loge a, lim (1 + x)1/x = e.
                   x→0     x           x→0    x             x→0
                                                                      
 Result. If lim f (x) = 0, then lim (1 + f (x))g(x) = exp lim f (x)g(x) . (Prove it yourself!)
            x→a                     x→a                         x→a
 This result is often used when we know that lim a(x) = 1, and we wish to find lim a(x)b(x) .
                                            x→a                             x→a
                           b(x)
 We just do this: lim a(x)      = exp lim b(x) log a(x) = exp lim (a(x) − 1)b(x) .
                    x→a                   x→a                                 x→a
                          Key idea: Whenever you have a(x)b(x) , take log.
        px − q x                                                 π              1/x
14. lim                                          18. lim tan              +x
    x→0 r x − sx                                      x→0             4
                                                                         1/x
        log(1 + 2h) − 2 log(1 + h)                        ax + b x + c x
                                                            
15. lim                                          19. lim
    h→0              h2                              x→0        3
              a bx                                                      x
16. lim 1 +                                                   1          1
    x→∞        x                                 20. lim sin + cos
                                                     x→∞      x          x
          x + 6 x+4                                                     2
17. lim                                          21. lim (cos x)cot           x
    x→∞ x + 1                                         x→0