0% found this document useful (0 votes)
67 views6 pages

Sheet 11 Solutions

1. This document contains 6 math problems in the form of multiple choice, matrix, and integer type questions. The topics covered include trigonometry, relations between trig functions, and solving equations involving trig functions. 2. The questions require applying trig identities, solving equations, finding values of trig functions based on given information, and relating expressions involving trig functions to determine the answer choices. 3. The document provides step-by-step workings for each question to demonstrate the mathematical reasoning and manipulations needed to arrive at the solutions.

Uploaded by

Mehul Patil
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
67 views6 pages

Sheet 11 Solutions

1. This document contains 6 math problems in the form of multiple choice, matrix, and integer type questions. The topics covered include trigonometry, relations between trig functions, and solving equations involving trig functions. 2. The questions require applying trig identities, solving equations, finding values of trig functions based on given information, and relating expressions involving trig functions to determine the answer choices. 3. The document provides step-by-step workings for each question to demonstrate the mathematical reasoning and manipulations needed to arrive at the solutions.

Uploaded by

Mehul Patil
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 6

TM

TARGET : JEE(Main+Advanced) 2021

NURTURE COURSE
Path to success KOTA (RAJASTHAN)
PHASE-ALL

RACE # 31 MATH EM ATI CS


Straight Objective Type
1. If sin q and sec q(0 < q < p/2)are the roots of the equation 2x2 + kx + 1 = 0, then the value of k is equal to-

7 2 7 5 7 5 7 5
(A) - (B) (C) •(D) -
5 5 2 5
Ans.(D)
1 1
sin q.sec q = Þ tan q =
2 2
1 5
Þ sin q = ,sec q =
5 2

k æ 1 5ö
- = sin q + sec q Þ k =–2 çç + ÷÷
2 è 5 2 ø

-7 5
=
5
MULTIPLE CORRECT CHOICE TYPE]
2. If 2cos q + sin q = 1 , then the value of 4cos q + 3sin q is equal to
7
•(A) 3 (B) –5 •(C) (D) –4
5
Ans.(A,C)
2cosq =1– sinq Þ 2 1 - sin 2 q = 1 – sinq
3
Þ sin q = - ,1
5
4 cosq + 3sinq = 2(2 cosq + sinq) + sinq
7
= 2 + sinq = ,3
5

17 5
3. If sec A = and cosecB = , then sec(A + B) can have the value equal to -
8 4

85 85 85 85
•(A) •(B) – •(C) – •(D)
36 36 84 84

Ans. (A,B,C,D)

8 15
cos A = and sinA = ±
17 17

Maths / R # 31 1 /1
4 3
sin B = Þ cos B = ±
4 5

cos(A + B) = cosA cosB – sinAsinB

8 3 15 4 8 3 15 4
= . - . or - . - .
17 5 17 5 17 5 17 5

8 3 15 4 8 3 15 4
or . + . or - . + .
17 5 17 5 17 5 17 5

36 84 84 36
=- or - or or
85 85 85 85
[MATRIX TYPE]
4. Column-I Column-II
(A) The number of value/s of x satisfying the relation (P) 0
1
(tanx + cotx)2 = if x Î [0,2p]
sin x.cos x
tan(4q - f) p
(B) If 17sinf = sin(8q – 3f) and = (Q) –1
tan(4q - 2f) q
where p & q are co-prime numbers, then the value of (p–q) is (R) 1
a
2
sin x + a - 2
2 2

(C) The values of a for which the equation = (S) 2


1 - tan x
2
cos2x
has solution can be
Ans. (A) P; (B) R; (C) Q,R,S
1 1
(A) 2 2
=
sin x cos x sin x.cos x
sinx ¹ 0, cos x ¹ 0
sinx cosx = 1
Þ sin2x = 2
No solution.
sin(8q - 3q) 17 - 1 sin(8q - 3f) - sin f
(B) 17 = Þ =
sin f 17 + 1 sin(q - 3f) + sin f

tan(4q - f) 9
Þ =
tan(4q - 2f) 8
2
(C) a = -1
2

sin 2 x
Þ a2 Î [1,¥) Þ a Î (–¥,–1] È [1,¥)
5. Column-I Column-II
sin 54° cos 54°
(A) - has the value equal to (P) 1
sin18° cos18°
cos3 9° - cos 27° sin 3 9° + sin 27°
(B) + has the value equal to (Q) 2
cos 9° sin 9°
1 1 1
(C) - -
log 2 (1/ 6) log 3 (1/ 6) log 4 (1/ 6) is equal to (R) 3

Maths / R # 31 2 /1
(D) sin(410° – A) cos(400° + A) + cos(410° – A) sin(400° + A) (S) 4
has the value equal to
2sin 3°.sin1°
(E) is less than
cos 2 1° - cos 2 2°
(F) The value of tan 16° tan42° tan44° tan 76° is equal to
[Ans. (A) Q; (B) R; (C) P; (D) P; (E) R,S ; (F) P]
sin 36°
(A) =2
sin18° cos18°
cos3 9° - 4 cos3 9° + 3cos 9° sin 3 9° + 3sin 9° - 4 sin 3 9°
(B) cos 9°
+
sin 9°
= 3 – 3 cos29° + 3 – 3sin29° = 3
æ 2 ö
(C) log1/ 6 ç ÷ =1
è 3´ 4 ø
(D) sin(50°–A) cos(40°+A) + cos(50°–A) sin(40° +A)
= sin90° = 1
2(cos 2° - cos 4°)
(E) =2
cos 2° - cos 4°
(F) (tan16°. tan44°.tan76°) tan42°
= tan48° cot48° = 1

[INTEGER TYPE]
6. If sin 2a = 4sin 2b , show that 5tan(a - b) = 3tan(a + b) [4]
Ans.
sin 2a
=4
sin 2b
Applying componendo & dividendo,
sin 2a - sin 2b 4 - 1
=
sin 2a + sin 2b 4 + 1
2sin(a - b) cos(a + b) 3
Þ =
2sin(a + b) cos(a - b) 5
Þ 5 tan(a - b) = 3 tan(a + b)
Hence proved.
7. If sinx + cosx + tanx + cotx + secx + cosecx = 7 then sin2x = a - b 7 , where a, b Î N.
Find the value of (a + b) [Ans. 30] [7]
Ans.30
sinx + cosx = t - 2£t£ 2
1 + sin2x = t2 Þ sin2x = t2 – 1
2 2t
t+ 2 + 2 =7
t -1 t -1
t3 – t + 2 + 2t = 7t 2 – 7
Þ t3 – 7t2 + t + 9 = 0
(t + 1) (t2 – 8t + 9) = 0
Þ t = –1, 4 - 7, 4 + 7 (rejected)

Maths / R # 31 3 /1
sin2x = 0 (rejected Q out of domain)
sin2x = 22 -8 7
a + b = 22 + 8 = 30
p 5
8. If 0 < x < and cosx + sinx = , find the numerical value of cosx – sinx. [5]
4 4
7
[Ans. y = ]
4
7
Ans. y =
4
25
(cos x + sin x) 2 =
16
9
Þ cos x sin x =
32
9 7
(cosx – sinx)2 = 1 – =
16 16

é p ù
cos x - sin x =
7 ê 0<x < 4 ú
4 ê ú
ë\ cos x > sin x û

Maths / R # 31 4 /1
Maths / R # 31 5 /1
Maths / R # 31 6 /1

You might also like